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ABSTRACT
Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, includ-
ing dysbiosis in the oral microbiota. Since the oral cavity is the start of the gastrointestinal tract,
this strengthens and extends the notion of a microbial gut-brain axis in ASD and even raises the
question whether a microbial oral-brain axis exists. It is clear that oral bacteria can find their way
to the brain through a number of pathways following routine dental procedures. A connection
between the oral microbiota and a number of other brain disorders has been reported. As the
evidence so far for an association between the oral microbiota and ASDs rests on a few reports
only, further studies in this field are necessary. The current review discusses a possible relation-
ship between oral bacteria and the biologic and symptomologic aspects of ASD, focusing on the
clinical implications for diagnostic and therapeutic development.
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Autism spectrum disorder (ASD), which appears in the
first years of life, is associated with abnormalities such
as buccal sensory sensitivity, taste and texture aversions,
speech apraxia and changes in salivary ribonucleic acid
expression [1–9]. It has been estimated that one in 59
American children is affected by ASD, and there has
been a marked increase in its incidence and prevalence
over the last decades [10]. There are a number of co-
occurring pathologies in ASD (Table 1). Early clinical
interventions can improve symptom trajectory, but do
not completely abrogate ASD symptoms, and pharma-
cologic interventions are limited. One novel avenue for
diagnostic and therapeutic research is the emerging
association between ASD and oral bacteria commu-
nities [1,11]. This review will discuss the possible rela-
tionship between oral bacteria and the biologic and
symptomologic aspects of ASD, focusing particularly
on the clinical implications for diagnostic and thera-
peutic development.

Dental problems in ASD

Children with autism can have multiple medical and
behavioral problems that make adequate oral hygiene
and dental treatment difficult to perform. In a study
of 61 children with ASD, aged 6–16 years (45 males
and 16 females), higher caries prevalence, poor oral
hygiene and extensive unmet needs for dental treat-
ment compared to controls without autism were
reported [12]. This could promote dissipation of
oral bacteria to the circulation and potentially the
brain [13], initiated by widespread dental plaque-

induced diseases such as caries and gingivitis/period-
ontitis [14–16].

Studies on oral bacteria in ASD

Qiao et al. [11] used high throughput sequencing to
compare the oral microbiota in children with ASD
to healthy controls (Table 2). Approximately 1 ml
of non-stimulated, naturally outflowed saliva was
first collected. Then, supragingival plaques were
obtained separately from caries-free molars in
four quadrants (upper right, upper left, lower
right and lower left) per subject. The 111 samples
were divided into four groups: 1) salivary samples
from healthy controls (HS; n = 27); 2) dental sam-
ples from healthy controls (HP; n = 26); 3) salivary
samples from ASD patients (AS; n = 32); 4) dental
samples from ASD patients (AP; n = 26). The
transcriptional activity of the salivary and dental
microbiota in ASD patients differed markedly
from that of healthy children. In children with
ASD, a lower bacterial diversity was demonstrated
than in controls, consistent with findings from
the gut [17,18]. This finding was particularly pro-
nounced in dental plaque samples. The genera
Haemophilus in saliva and Streptococcus in dental
plaque were significantly more abundant in ASD
whereas Prevotella, Selenomonas, Actinomyces,
Porphyromonas and Fusobacterium were reduced.
A depletion of the Prevotellaceae family co-occur-
rence network was also detected in plaque from
ASD patients. In saliva, no phylotypes were highly
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correlated with decayed, missing, filled teeth or
surfaces (DMFT/S). In dental plaque, however, six
phylotypes including Streptococcus, Actinomyces
and Capnocytophaga were positively associated
with DMFT/S. Accordingly, presence of dental car-
ies was more related to the microbiota of dental
plaque than to that of saliva. Aggregatibacter segnis
(OTU220) was positively associated with bleeding
on probing, gingival index and periodontitis. The
bacterial patterns observed in individuals with ASD
suggested a possible role for microorganisms in this
disorder, but did not establish a causal relationship.
The results also suggested that aversion of ASD
patients to dental hygiene interventions might be
one mechanism for oral dysbiosis.

In a second study [1], changes in the salivary micro-
biome of children 2–6 years old were identified across
three developmental profiles: ASD (n = 180), non-ASD
with development delay (DD; n = 60) and typically devel-
oping (TD; n = 106) children (Table 2). Actively tran-
scribing taxa were quantified and tested for differences
between the groups and within ASD endophenotypes.
Between the developmental groups, 12 bacterial taxa
differed. Of particular note, 28 taxa were distinctly active
among ASD patients with gastrointestinal (GI) distur-
bance. By group classification, five microbial ratios dis-
tinguished ASD from TD children (79.5% accuracy),
three separated ASD from DD (76.5% accuracy) and
three identified ASD children with GI disturbance from
ASD peers without GI comorbidities (85.7% accuracy).
There were significant differences in microbial transcrip-
tion of energy metabolism and lysine degradation path-
ways across the ASD, TD and DD groups. The results
indicated that GI microbial disruption in ASD likely
extends to the oropharynx. Given the largely unidirec-
tional transit of bacteria from the oropharynx to the lower
GI tract, this implies that oral dysbiosismay actually serve
as a primary source for a portion of the fecal dysbiosis
reported in numerous ASD studies [19–21].

Oral microbiota affecting the intestine

Studies in animals and humans have demonstrated that
oral bacteria can be transferred to the gut, changing its
microbial composition and perhaps even host immune

Table 1. Co-occurring diseases in ASD (from ref [29]).
Brain-related comorbidities

Altered metabolite profile in urine and blood
Fragile X syndrome, Rett syndrome and tuberous sclerosis
Mitochondrial dysfunction
Gut-related co-morbidities
Gastrointestinal symptoms
Increased permeability of the intestinal epithelial barrier
Decreased expression of brush-border disaccharides in the intestinal
epithelium

Other co-morbidities
Altered expression of tight junction protein in the BBL
Increased amounts of activated microglia cells
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responses [22–24]. Oral bacteria and stool bacteria over-
lapped in almost half (45%) of the subjects in the Human
Microbiome Project [25]. The ectopic transfer of oral
bacteria has also been reported in patients with systemic
diseases, such as inflammatory bowel disease [26]. Co-
occurring GI problems are common in children with
ASD [27]. GI symptoms were four times more prevalent
in children with ASD than in children with typical devel-
opment [28]. The GI symptoms seen in individuals with
autism can include constipation, diarrhea, bloating,
abdominal pain, reflux, vomiting, gaseousness and foul-
smelling stools (for a review see [29]). Such symptoms
may be related to the lower bacterial diversity reported in
children with ASD [17].

Ectopic transfer of oral bacteria can occur in patients
with localized ‘chronic’ periodontitis. Porphyromonas
gingivalis, which is proposed as a keystone bacterium
in this disease [30,31], causes dysbiosis in the period-
ontal microbiota. This may lead to microbial dysregula-
tion in the gut since each day 108–1010 of P. gingivalis
can be swallowed [32,33]. Changes in the gut micro-
biota composition could induce permeability of the gut
barrier and immune activation leading to systemic
inflammation. Ectopic colonization of oral bacteria in
the intestines has been found to drive T-helper (TH)-1
cell induction and inflammation [22]. In one case study,
Klebsiella spp. isolated from the saliva of a patient with
inflammatory bowel disease were marked inducers of
TH-1 cells. Ongoing colonization by oral bacteria was
suggested to perpetuate gut microbiota dysbiosis and
chronic inflammation. In this setting, the oral cavity can
serve as a reservoir for potential intestinal pathobionts
that aggravate intestinal disease. Wang et al. [27] and
Ashwood [34] have also reported abnormalities in
intestinal immunity in children with ASD.

Dysbiosis of the intestinal microbiota

Dysbiosis of the intestinal microbiota is an emerging
etiological factor proposed for ASD [17,29,35–40]. The
GI microbiome is thought to influence host behavior
and neurodevelopment through the ‘microbial-gut-
brain axis’ [41,42]. Imbalance in the intestinal micro-
biota or its metabolites may affect several complex
behaviors (such as emotional and anxiety-like beha-
viors), and influence brain development or modulate
cognition [11,43–45]. A microbiota-gut-brain axis is
based on a bidirectional physiologic connection where
information between the host microbiome, gut and
brain are exchanged [46]. This likely involves cross
talk between the central nervous system and microbes
within the GI tract through direct neural activation,
immune modulation, and hormonal, peptidergic and
epigenetic signaling [47–50]. Below, we consider how
each of these factors may be translated to an ‘oral-
brain axis’.

Oral microbiota and the brain

How oral microbiota may reach the brain

There are several plausible pathways for bacteria in the
mouth to reach the brain and directly influence neuro-
immune activity and inflammation [51] (Figure 1). Even
routine dental procedures can cause bacteremia [52],
and a portion of these microbes may traverse the
blood–brain barrier (BBB). Altered transcript expres-
sion has been described inmicroglia of ASD individuals,
and disrupted microglia function could impair BBB
integrity [53]. Increased permeability of the BBB has
been described in children with ASD [54]. This could
expose the brain to bacterial metabolites, thereby trig-
gering an inflammatory response and alteringmetabolic
activity within the central nervous system [29].
Prolonged disruption of energymetabolismwithin neu-
rons, oligodendrocytes and glia could lead to structural
changes in the cortex, hippocampus, amygdala or cere-
bellum, which have all been documented in ASD indi-
viduals [29].

How oral microbiota may affect the brain:
inflammation

Central nervous system inflammation has been
a prominent feature in studies of both animal models
and post-mortem brains from individuals with ASD.
For example, a study by Morgan and colleagues
described the up-regulation of microglia in the ASD
brain [56]. Cytokines and chemokines are also elevated
in the cerebrospinal fluid of ASD patients [57,58].
Moreover, genes associated with immune and inflam-
matory responses are activated in the ASD cortex [59].
There appears to be a general dysregulation of the
immune system towards a pro-inflammatory pheno-
type in ASD individuals [58,60]. Such inflammation
in the developing brain may lead to synapse malfunc-
tion [61]. A significant reduction of both synaptic trans-
mission and excitability has been observed when
hypoxia and inflammation occur in combination,
whereas re-oxygenation leads to neuronal hyper-
excitability [62]. Malfunctioning synapses may cause
the release of vasopressin, which has been shown to
affect social behavior [61]. Interestingly, induction
of inflammation early in gestation may promote an
ASD-like phenotype through increased synaptic excita-
tion [58] (Figure 2). In this process, early life exposure
to inflammationmight primemicroglial cells to become
hyper-responsive to subsequent insults [63]. Notably,
chronic application of periodontal pathogens in mice
have resulted in the development of neuropathological
changes consistent with Alzheimer’s disease (a condi-
tion in which cortical inflammation is a decisive factor)
[64]. Oral bacteria reaching the brain could reduce the
anti-oxidative capacity and lead to reduction in the
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ability of mitochondria to produce energy in ASD indi-
viduals [65]. Gram-negative, putative periodontal
pathogens, are rich in lipopolysaccharide (LPS) which

has pro-inflammatory activity. Leakage of LPS through
the BBB in ASD individuals could lead to inflammation
in the central nervous system. Furthermore, increased

Figure 1. Direct and indirect mechanisms of infecting the brain. In the direct mechanism, the oral cavity infects the olfactory
tract, and the olfactory nerve transfer the bacteria to the brain. In other mechanisms, bacteria inside the mouth infect the blood
and find their way via blood, blood–brain barrier (BBB), perivascular spaces and circumventricular organs to the brain (figure is
based on concepts presented in ref [51] and collected from ref [55]).

Figure 2. ASD phenotype can lead to oral dysbiosis.
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levels of LPS in individuals with autism have been
found to correlate with high levels of IL-6, a pro-
inflammatory cytokine [66].

How oral microbiota may affect the brain:
metabolic alterations

Microbial communities have a significant impact on
metabolism within the human GI tract [67,68]. Thus,
oral dysbiosis in ASD could lead to disruptions in the
metabolome – a putative mechanism for ASD pathogen-
esis [69–71]. There are indications that increases in acet-
ate and propionate, as well as decreases in butyrate
(short-chain fatty acids of bacterial origin), can
be involved in the development of ASD together with
indoles [29] (Figure 3). There are also increased levels of
3-(3-hydroxyphenyl)-3-hydroxypropionic acid, 3-hydro-
xyphenylacetic acid and 3-hydroxyhippuric acid in chil-
dren with ASD, which together indicate potential
perturbations in the phenylalanine metabolism [72].
These metabolites are related to the abundance of
Clostridium spp. and associated with aggravated
restricted and repetitive behaviors in children. The high
abundance of intestinal Clostridium detected in ASD
may reflect a pathogenic role for these particular organ-
isms [73]. Whether metabolic changes result from the
oral microbiota composition in children with ASD
remains to be determined. However, a study of oral
microbe transcription across 346 children (including
180 with ASD) identified ASD-specific changes in path-
ways involving lysine degradation – a precursor to the
neurotransmitter glutamate, that has been implicated in
ASD pathogenesis [1]. By using saliva samples from this
same cohort, the authors also described ASD-specific
alterations in human microRNA expression that were
associated with microbial activity, and implicated in cell
growth and metabolism pathways [1]. Such findings
provide a framework for human–microbial interaction

at the biochemical level that may have functional con-
sequences for host behavior.

Cause–effect relationship between ASD and
microbes?

Although numerous studies have identified microbial
disruptions in patients with ASD and linked those
disruptions to symptoms and behavior, we still do
not fully understand the mechanism by which micro-
bial communities are dysregulated in individuals with
ASD. Furthermore, it is unclear if the microbial pat-
terns described in individuals with ASD cause ASD
symptoms, or result from behaviors common to the
ASD phenotype.

Phenotype

Microbial dysbiosis may be influenced by the ASD
phenotype. This could occur through resistance to
dental hygiene, lack of a varied diet, and placing
objects into the mouth as sensory seeking behavior.
Discontinuation of oral hygiene in 29 orally healthy
individuals for 4, 7 and 10 days, and assessment 14
days after resumption of oral hygiene, was asso-
ciated with a significant increase in relative abun-
dance of potential cariogenic Leptotrichia species
and a decrease in Streptococcus species [74]. This
study demonstrated the importance of regular oral
hygiene on the maintenance of oral homeostasis.
Furthermore, dental caries can be caused by ecolo-
gical imbalance of commensal microbiota (mainly
due to lack of a varied diet, such as frequent carbo-
hydrate consumption) [75]. Placing foreign objects
(e.g. toys, dirt, etc.) in the mouth is yet another
source of dysbiosis, because these objects can be
contaminated with microorganisms from unwashed
hands in contact with other human body fluids [76].

Figure 3. Proposed mechanisms for development of ASD.
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Discerning the importance of ASD phenotype as
a modulator of the oral and intestinal microbiota will
likely require parallel studies in both humans and
animal models. One potential strategy to help eluci-
date the cause/effect dilemma involving microbial
disruption and ASD, is to establish ASD in
a gnotobiotic animal and examine the potential of
major members of the oral and intestinal microbiota
(for example, oral P. gingivalis and Klebsiella spp.
[22,77], and intestinal Clostridium spp. [17]) to
induce ASD symptoms. Furthermore, promising
pilot studies on microbiota transfer therapy (i.e.
fecal transfer) should be extended to include double-
blinded placebo controlled trials with well-defined
a-priori hypotheses for functional outcome measures.
Studies carefully examining the interaction between
probiotic therapies (e.g. Bifidobacterium) and antibio-
tic therapies (e.g. vancomycin, minocycline) may also
provide useful information about whether microbial
modulation can alter ASD behaviors [78,79].

Environmental and genetic factors

Although most cases of ASD are idiopathic [17],
both environmental and genetic factors are likely
important for ASD development [80,81]. Exposure
to environmental risk factors or genetic risk trans-
mission can affect the maternal microbiome [21].
Offspring acquires a large portion of their micro-
biome from mothers during the birth process.
Whether birth occurs via the vaginal canal or by
cesarean section significantly affects the infant’s
microbiome [82–84]. Thus, delivery mode might
play a role in certain neurodevelopmental disorders.
To date, studies examining the relationship between
ASD and cesarean sections have demonstrated
mixed results [85–87]. Changes in the microbiome
due to stress might also be transferred to offspring
during birth, initiating microbial dysbiosis that lasts
into adulthood [88–90]. It has been reported that
early life exposures to plastics and other chemicals
can affect the infant microbiota [21]. Disentangling
the relationship between these exposures, micro-
biome profiles and developmental trajectories is
a difficult task that will require careful, comprehen-
sive data collection, and powerful statistical models
that can account for the interplay of many different
environmental factors.

Clinical implications for microbial dysbiosis in
ASD

Biomarkers

Many children with ASD exhibit hyperserotonemia
[91], augmented oxidative stress [92] and increased
expression of neuro-inflammatory markers [93–95].

Such disturbances may be related to disruptions in
glutamate [96] and brain-derived neurotrophic factor
[97]. In a study using mass spectrometry, West et al.
[98] identified several blood plasma metabolites that
could be of value in diagnosing ASD in 4 to 6 years
old children. Amino acid metabotypes have been
proposed as biomarkers for diagnostic subtypes of
ASD [99]. Metabolites detected in blood and urine
such as short-chain fatty acids, indoles and LPSs of
bacterial origin might have diagnostic utility [29].
However, this biologic approach has not demon-
strated an ability to differentiate children with ASD
from peers with non-ASD developmental delay –
a comparison that forms the crux of the ASD diag-
nostic dilemma. At the present time, the diagnosis of
ASD remains dependent on clinical evaluation of
behavioral symptoms, with no laboratory or objective
biologic tests [100]. There is, however, growing evi-
dence that oral microbes may be useful as
a diagnostic aid in ASD [1,11]. This is an extension
of a larger body of evidence relating ASD to the gut
microbiome. Recently, salivary poly-omic RNA mea-
surement was described as a novel approach to accu-
rately identify children with ASD [101]. This
objective, quantitative algorithm accurately discrimi-
nated children with ASD from peers with either
developmental delay, or typical development. It
could one day be used as a rapid, biologic aid for
ASD diagnosis. This would constitute an important
advancement, given the evidence that early diagnosis
and intervention lead to the improvement of devel-
opmental trajectories for children with ASD.

Therapeutics

In animal studies, the microbiome has been shown to
modulate social behavior through dysbiosis, while
microbiome restoration may ameliorate ASD symp-
toms [102,103]. Hsaio et al. [36] demonstrated that
microbial shifts within the gut of a maternal immune
activation (MIA) mouse model that is known to display
features of ASD, changed metabolites in the serum and
that these caused autism-like behaviors. Notably,
administration of a beneficial bacterium, Bacteroides
fragilis, reversed the observed physiological, neurologi-
cal and immunological anomalies. Wang et al. [104]
reported that oral probiotics prevented ASD-like beha-
viors in offspring induced by maternal immune activa-
tion. Bifidobacterium (e.g. B. longum, B. breve and
B. infantis) and Lactobacillus (e.g. L. helveticus and
L. rhamnosus) are commonly employed probiotics in
human patients. These probiotics have demonstrated
promising effects on behaviors such as anxiety, depres-
sion, ASD, obsessive-compulsive disorder, and memory
(including spatial and non-spatial memory) [105]. In
a recent review by Ng et al. [106] it was concluded that
prebiotics played a limited role in alleviating the GI and
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behavioral symptoms in children with ASD, but when
combined with an exclusion diet (gluten and casein-
free) could potentially impact sociability. Significant
support for a microbial-gut-brain axis in ASD arises
from studies demonstrating that microbiota transfer
therapy changes the gut ecosystem and improves gas-
trointestinal and autism symptoms in children [107].
When microbiota transfer therapy was combined with
antibiotics, bowel cleanse, and a stomach-acid suppres-
sant, 18 individuals with ASD demonstrated significant
improvements in GI symptoms, autism-related symp-
toms, and gut microbiota [108]. Follow-up 2 years after
treatment found that most improvements in GI symp-
toms were maintained, and some ASD-related symp-
toms also remained improved. Notably, there was
a significant increase in bacterial diversity and relative
abundances of bifidobacteria and Prevotella. Well-
designed, randomized, placebo-controlled clinical trials
are needed to assess the effectiveness of probiotics and
microbial transfer therapies in the treatment of ASD.
Choice of appropriate strains, dose, and timing of treat-
ment are all important factors to consider [109].

Conclusions

Microbial studies of ASD have focused largely on fecal
samples [45]. It is worth noting that the oral microbiota
and a possible microbial oral-brain axis have been
disregarded in this context. The mouth is an extension
of the digestive tract and has an abundant microbiome
that includes more than 700 identified bacterial species
(http://www.homd.org). Oral bacteria can enter the
circulation and cause bacteremia following routine
procedures such as chewing, flossing, brushing and
dental cleaning [52]. Oral microbiota may contribute
to several neurological diseases, including Alzheimer’s
disease [51,77,110–113], epileptic seizures [114], multi-
ple sclerosis [115], migraines [116], and Parkinson’s
disease [117–119]. Whether a microbial oral-brain
axis exists in ASD has yet to be definitively demon-
strated. However, the relationship of oral bacteria with
neurological function makes the existence of such an
axis highly plausible.
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