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Identifying key genes in milk fat 
metabolism by weighted gene 
co‑expression network analysis
Tong Mu1, Honghong Hu1, Yanfen Ma1,2, Huiyu Wen3, Chaoyun Yang1, Xiaofang Feng1, 
Wan Wen4, Juan Zhang1 & Yaling Gu1*

Milk fat is the most important and energy‑rich substance in milk, and its content and composition are 
important reference elements in the evaluation of milk quality. However, the current identification 
of valuable candidate genes affecting milk fat is limited. IlluminaPE150 was used to sequence 
bovine mammary epithelial cells (BMECs) with high and low milk fat rates (MFP), the weighted gene 
co‑expression network (WGCNA) was used to analyze mRNA expression profile data in this study. As 
a result, a total of 10,310 genes were used to construct WGCNA, and the genes were classified into 
18 modules. Among them, violet (r = 0.74), yellow (r = 0.75) and darkolivegreen (r =  − 0.79) modules 
were significantly associated with MFP, and 39, 181, 75 hub genes were identified, respectively. 
Combining enrichment analysis and differential genes (DEs), we screened five key candidate DEs 
related to lipid metabolism, namely PI4K2A, SLC16A1, ATP8A2, VEGFD and ID1, respectively. Relative 
to the small intestine, liver, kidney, heart, ovary and uterus, the gene expression of PI4K2A is the 
highest in mammary gland, and is significantly enriched in GO terms and pathways related to milk 
fat metabolism, such as monocarboxylic acid transport, phospholipid transport, phosphatidylinositol 
signaling system, inositol phosphate metabolism and MAPK signaling pathway. This study uses 
WGCNA to form an overall view of MFP, providing a theoretical basis for identifying potential 
pathways and hub genes that may be involved in milk fat synthesis.

Milk is not only the source of nutrition for newborn cows, it is also an important source of protein, sugar, lipids, 
and other nutrients for  humans1. Milk fat is the most important and energy-rich substance in milk and is an 
important component in the production of butter and yogurt, with a content of about 3–5% in milk. Milk fat also 
plays an important role in the nutrition and metabolism of human growth and  development2 Polyunsaturated 
fatty acids such as conjugated and non-conjugated linoleic acid (C18:2) contained in milk fat play a beneficial 
role in lowering blood lipids, suppressing immune responses, and stimulating lipid  metabolism3; while high 
concentrations of saturated fatty acids such as myristic acid (C14:0), lauric acid (C12:0) and palmitic acid (C16:0) 
increase the concentration of low density lipoproteins in the blood, which is associated with cardiovascular 
 disease4. Therefore, the content and composition of milk fat is the main reference element to evaluate the quality 
of milk. Nowadays, milk fat content is not only one of the important indicators for the core competitiveness of 
dairy products, but also a major target trait for dairy cattle  breeding5. Exploring the theory and methods of milk 
fat formation and regulation to improve milk fat content in dairy cows has become a hot spot in international 
lactation biology research.

In the past, many scholars have extensively studied the complex regulatory mechanisms of mammary gland 
development and elucidated the major pathways of milk fat synthesis (including de novo synthesis and FA 
uptake in the blood)6. Breeding researchers have identified a range of potent genes and biomarkers in milk fat 
metabolism with the widespread use of next-generation sequencing technologies and the dramatic reduction in 
sequencing  costs7. Despite the transcriptome determining the characteristic of spatial and temporal specificity, 
there is less linkage to phenotypic  data8. Weighted gene co-expression network analysis (WGCNA) can combine 
gene expression with phenotypic  data9,10 and gather genes with similar expression patterns into one  module11. 
Genes in modules are often involved in the same function or pathway, which can be used in data analysis of com-
plex processes, and playing an important role in exploring the characteristics of gene networks associated with 
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complex  diseases12. For example, several biomarker genes screened and identified using the WGCNA method 
are associated with many biological problems such as  cancer13, types I  diabetes14, rheumatoid  arthritis15, feed 
 efficiency16, and meat  quality17. Potential of this approach for grouping genes into the functional modules and 
revealing regulatory mechanisms underlying the complex traits have been highlighted in many recent  studies18. In 
addition, there have been some studies on functional characteristics and lactation properties in ruminant mam-
mary  gland19, however, the application of WGCNA in milk fat metabolism in dairy cows has not been reported.

In this study, we used WGCNA to comprehensively analyze the mRNA expression profile data of high and 
low milk fat percentage (MFP) dairy cow mammary epithelial cells which measured by Illumina PE150 in the 
early stage of our group. Enrichment analysis of hub genes in modules closely related to MFP reveal its potential 
functions. In order to explore the signature genes and important functional enrichment pathways associated 
with MFP and provide a theoretical basis for understanding the complex biology of the milk fat synthesis process 
in dairy cows.

Results
Overview of BMECs sequencing data. Using Illumina PE150 sequencing platform, 81,605,996–
97,102,888 and 78,710,246–88,676,080 raw_reads were obtained in high and low MFP BMECs, and 80,633,532–
94,731,948 and 76,807,276–86,508,476 clean_reads were obtained after removing the adapter related, containing 
N and low quality, respectively. The sequencing error rate of the 8 samples is 0.02%, Q20 is greater than 97%, 
Q30 is greater than 94%, the GC content is about 53%, which ensures the accuracy of the subsequent analysis. 
The mapping rates for each sample after comparing clean_reads to the reference genome were 94.43% (H_2046), 
94.96% (H_2098), 94.79% (H_2190), 94.97% (H_2226), 94.08% (L_2034), 94.32% (L_2037), 94.71% (L_2137) 
and 94.69% (L_2170).

Principal component and correlation analysis of samples. The correlation of gene expression levels 
between samples and principal component analysis are important indicators to test the reliability of experimen-
tal samples. Principal component and correlation analysis was performed based on TPM values of all genes in 
each sample (Fig. 1). It was found that the samples of the high-milk fat group and the low-milk fat group were 
significantly different, and the correlation coefficients within the group were all above 0.89, which indicated a 
high similarity of expression patterns within the samples, and no outlier samples were found. Therefore, the 
transcriptome sequencing results are reliable and can be used for subsequent analysis.

Weighted correlation network analysis. WGCNA analyzed 10 310 genes obtained after data preproc-
essing. When the scale-free topology model fit reached 0.8  (R2 = 0.8), a soft thresholding power was 14 (β = 14) 
(Fig. 2A). The 41 co-expression modules were constructed by WGCNA (Fig. 2B), and 18 modules were obtained 
after merging modules with a similarity greater than 0.75 (Fig. 2C). The module containing the most genes was 
the green module (2 626 genes), followed by the pink module (1 890 genes), blue module (874 genes) and sky-
blue3 module (828 genes) (Supplementary Table 1).

The correlation between the co-expression module and the MFP phenotype was analyzed. The results showed 
that multiple modules were associated with MFP phenotype, among them violet (r = 0.74) and yellow (r = 0.75) 

Figure 1.  Principal components and correlation analysis. (A) Results of sample principal component analysis; 
(B) heat map of inter-sample correlation analysis.
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modules are significantly positively correlated with MFP (Fig. 2D), including 169 genes (Fig. 3B) and 547 genes 
(Fig. 3C) respectively, while darkolivegreen module was significantly negatively correlated with MFP (r =  − 0.79) 
(Fig. 2D), including 336 genes (Fig. 3A).There were 39, 181 and 75 genes that had high gene significance (GS > 0.4, 
Fig. 3D) with MFP phenotype in these three modules, respectively, and the correlation between all these genes 
and module members (MM) is greater than 0.9, so these genes were considered as hub genes (Supplementary 
Table 2).

After obtaining hub genes of the three modules, the intersection was taken with the 915 DEs screened from 
the transcriptome data (Supplementary Table 3) (Fig. 3E), and it was found that the hub genes were isolated 
between the three modules, and the yellow module contains 14 DEs, which is the largest number, followed by 
the darkolivegreen module (5 DEs) and the violet module (4 DEs). The DEs contained in each module are shown 
in Table 1.

Functional enrichment analysis of hub genes. To determine the specific functions of the genes within 
the three modules significantly associated with MFP, we performed GO and KEGG enrichment analysis on 295 
hub genes in the three modules. A total of 1 301 GO terms were enriched as a result (Supplementary Table 4), 
and 180 GO terms were significantly enriched (P < 0.05). There were 37 significantly enriched GO terms related 
to lipid metabolism, and Fig. 4A shows 11 significantly enriched biological processes (BP) related to lipid metab-
olism, 15 molecular functions (MF) related to lipid metabolism and 7 representative cellular components (CC). 
GO terms closely related to milk fat synthesis include acylglycerol lipase activity, ubiquitin protein ligase binding, 
intermembrane lipid transfer and lipid binding. Notably, SLC16A1, ATP8A2 and PI4K2A are hub genes related 
to lipid metabolism and also DEs screened in the transcriptome data (P < 0.05), which were mainly enriched in 
monocarboxylic acid transport, phospholipid transport and phosphatidylinositol phosphorylation terms.

The KEGG enrichment results showed that 239 pathways were enriched (Supplementary Table 4), among 
them 66 pathways were significantly enriched (P < 0.05) and 13 pathways were associated with lipid metabo-
lism. Figure 4B show the hub genes contained in 13 lipid metabolism-related pathways, with PI4K2A, VEGFD 
and ID1 being the DEs and significantly enriched to phosphatidylinositol signaling system, inositol phosphate 
metabolism, Rap1, MAPK and Ras signaling pathway. Interestingly, the down-regulated gene PI4K2A within the 
yellow module was significantly enriched in GO terms and KEGG pathways related to lipid metabolism (Fig. 5A). 
The PI4K2A gene is involved in diacylglycerol and glycerophospholipid metabolism of the phosphatidylinositol 
and inositol phosphate metabolic pathways, respectively (Fig. 6), which suggesting that PI4K2A may play an 

Figure 2.  Weighted gene co-expression network analysis. (A) Analysis of the scale-free fit index for various 
soft-thresholding powers (left) and analysis of the mean connectivity for various soft-thresholding powers 
(right); (B) module clustering diagram, the height of the red line is 0.25, the modules below the line are the ones 
that are more similar and need to be merged; (C) gene dynamic shearing clustering tree, each color represents 
a module. The color in the first row is the result of the first clustering, and the color in the second row is the 
result of the modules after merging; (D) correlation analysis between module and MFP. Red represents positive 
correlation, green represents negative correlation, and the darker the color, the stronger the correlation.
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important function in milk fat synthesis. In addition, some hub genes were not significantly different between 
the high and low milk fat groups, but they were significantly enriched in the GO terms and KEGG pathways 
related to lipid metabolism (Table 2), and these genes are likely to play a potential role in milk fat synthesis.

Protein interaction network analysis. The results of hub genes enrichment analysis intersected with 
DEs to identify SLC16A1, ATP8A2, PI4K2A, VEGFD and ID1 may be the key candidate genes involved in milk 
fat synthesis (Fig. 5A). We performed protein interaction network analysis on these five candidate genes. Since 
these genes are not directly functionally related to each other, we have selected the top 10 interacting proteins 
that are similar in function to the candidate gene. PI4K2A and VEGFD (FIGF) had the highest strength of 
data support with the 10 proteins with a common function (Fig. 5B,F) and the confidence levels of 0.9 and 0.7 
respectively, followed by ID1 with a confidence level of 0.7 (Fig. 5E). The strength of data support for SLC16A1 
and ATP8A2 with the top 10 proteins was low (Fig. 5C,D), with moderate confidence (0.4), but still have reliable 
reference value.

Tissue expression profile analysis of key candidate genes. The expression levels of SLC16A1, 
ATP8A2, PI4K2A, VEGFD and ID1 varied in different tissues. PI4K2A gene expression was relatively highest 
in the mammary gland (Fig. 7E), which significantly higher than small intestine, liver, kidney, heart and ovary 
tissues (P < 0.05), and slightly lower in uterus than mammary gland. The expression level of ATP8A2 and ID1 
genes in mammary gland ranks second (Fig. 7C,D); VEGFD gene expression in mammary gland was signifi-
cantly lower than heart and similar to that in uterus (Fig. 7B). The SLC16A1 gene was highly expressed in the 
kidney, followed by the liver, with lower expression in other tissues and non-significant differences (Fig. 7A). 
In addition, we examined the relative expression levels of key candidate genes for milk fat synthesis in BMECs 
from the high and low milk fat groups (three technical replicates), it was found that the trends of the qRT-PCR 

Figure 3.  Major findings in module-trait correlation analysis. (A–C) A scatterplot of GS for MFP vs. MM in the 
darkolivegreen, violet and yellow module, respectively (a dot represents a gene); (D) module significance values 
of those co-expression modules associated with MFP (Module significance value indicated the summary of gene 
significance of all genes in each module, and different colors of column indicated different modules). (E) The 
number of DEs contained in the hub genes of the three modules.
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Table 1.  DEs contained within the darkolivegreen, violet and yellow modules.

Modules Symbol Gene_locus Log2FoldChange P-value

Yellow

SLC34A2 6:45,185,925–45,205,946 8.646257 0.002225

IL23R 3:78,077,155–78,150,856 8.425257 0.039538

SYTL5 X:105,235,090–105,341,728 8.268285 0.040235

DMKN 18:46,167,026–46,178,470 7.077906 0.000224

TLR7 X:130,769,575–130,786,365 6.663896 0.003289

POLQ 1:65,944,699–66,053,204 1.552549 0.01384

SBSN 18:46,186,110–46,190,724 2.949797 0.012799

PSTPIP2 24:45,737,786–45,832,060 1.563937 0.013285

CIP2A 1:53,314,658–53,338,782 1.029365 0.046888

ATP8A2 12:33,380,874–33,831,448  − 13.011 4.14E-07

TMEM215 8:11,330,165–11,335,552  − 2.16016 0.031349

SPON1 15:38,457,984–38,773,001  − 1.34677 0.003535

PLCXD2 1:56,425,478–56,476,144  − 0.99338 0.043642

PI4K2A 26:18,819,244–18,845,948  − 0.94566 0.011456

Darkolivegreen

UNC5D 27:31,082,652–31,370,431 10.0263 0.010558

LCN2 11:98,781,893–98,785,927 8.328422 0.000447

ERH 10:81,172,307–81,184,975 0.925145 0.027718

SLC16A1 3:30,382,285–30,411,742 0.78718 0.017597

FAM171B 2:9,553,295–9,633,357  − 3.41115 0.001731

Violet

ZNF365 28:18,471,094–18,494,821 8.432485 0.012442

VEGFD X:128,109,577–128,153,168 8.164288 0.003258

ID1 13:61,179,938–61,182,003 4.735816 0.000109

MOXD1 9:70,257,747–70,355,603 2.521412 0.002972

Figure 4.  Enrichment analysis of hub genes. (A) Bubble plot of GO enrichment analysis of hub genes; (B) 
Circos plot of KEGG enrichment analysis of hub genes, with *for DEs.
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experiment results and the RNAseq sequencing results are consistent by using  log2FoldChange to convert the 
difference multiples (Fig. 7F), confirming the accuracy of the transcriptome sequencing.

Discussion
Some new analytical methods are gradually making up for the limitations of traditional biological research with 
the continuous innovation of sequencing technology and the rapid development of bioinformatics, which can 
fully and effectively explore the biological significance of the massive amount of  data20,21. Compared to other 

Figure 5.  Protein interaction network analysis of key candidate genes for milk fat metabolism. (A) DEs 
contained in hub genes related to lipid metabolism significantly enriched in BP, MF and KEGG pathways; (B–F) 
protein interactions network plots for PI4K2A, SLC16A1, ATP8A2, ID1 and VEGFD, respectively; Thicker lines 
indicate stronger data support.

Figure 6.  Localization of the DEs PI4K2A in the phosphatidylinositol and inositol phosphate metabolic 
pathways. (A) Phosphatidylinositol signaling system; (B) inositol phosphate metabolism; Blue dashed boxes 
indicate the specific location of the PI4K2A gene and the pathway involved in triglyceride synthesis.
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regulatory networks, WGCNA is an effective data mining method that modularizes large datasets based on simi-
lar expression patterns of genes to obtain co-expression modules with high biological  significance22. In recent 
years, WGCNA has been applied to explore the characteristics of human and plant life  activities23–25. However, the 
use of WGCNA on the metabolism of milk fat has not been reported. Milk fat synthesis in dairy cows is related 
to many physiological and metabolic changes. To gain new insights into the expression and regulation of key 
genes in milk fat synthesis, we used WGCNA to comprehensively analyze the mRNA expression profile data of 
high and low MFP dairy cow mammary epithelial cells which measured by Illumina PE150 in the early stage of 
our group. Clustering the important genes into modules of specific biological pathways that may be associated 
with MFP in cows, thereby improving the efficiency of identification of important genes.

In this study, we constructed the first gene co-expression network for high and low MFP in Holstein cows, 
and obtained three modules significantly associated with MFP, violet, yellow and darkolivegreen respectively. The 
hub gene enrichment analysis in the three modules showed that SLC16A1, ATP8A2, VEGFD, ID1 and PI4K2A 
genes, which overlap with DEs, were significantly enriched to lipid metabolism-related pathways. Among them, 
the SLC16A1, ATP8A2 and PI4K2A genes were significantly enriched for monocarboxylate transport, phospho-
lipid transport and phosphatidylinositol phosphorylation terms. It is well known that many monocarboxylic 
acids were utilised by the body’s metabolism, and acetic acid and β-hydroxybutyric acid are the main substrates 
for the de novo synthesis of fatty acids in ruminants and are essential for meeting the energy requirements 
(70%) and milk fat synthesis in cows. Acetic acid and β-hydroxybutyric acid play a positive regulatory role in 
the de novo synthesis of fatty acids, the transport and desaturation of long-chain fatty acids and the synthesis of 
 triglycerides26–28; Phosphatidylinositol is a phospholipid, it is also one of the five main polar lipids in milk (less 
than 2% of total fat) in  milk29. Polar lipids are the main component of the milk fat globule membrane (MFGM), 
which is responsible for wrapping the lipid droplets secreted by  BMECs30. Therefore, SLC16A1, ATP8A2 and 
PI4K2A may be key candidate genes for the regulation of milk fat synthesis. The MAPK signalling pathway 
plays a key role in the inflammatory response and induces the expression of a variety of inflammatory media-
tors and pro-inflammatory  cytokines31. The RAP1 pathway is a key component of the  BMECs32, and during 
peak lactation in dairy cows, MAPK and RAP1 signaling pathways can increase milk production by regulating 
the proliferation and differentiation of  BMECs33,34. Rap1 has been shown to antagonize Ras signals in inactive 

Table 2.  Hub genes significantly enriched to lipid metabolism-related GO terms and the KEGG pathway 
(non-DEs).

Genes Enrichment type Gene_locus Log2FoldChange P-value

SOCS4 BP, MF, KEGG 10:67,504,612–67,518,536 0.045374504 0.915092

UBE2J1 BP, MF, KEGG 9:60,811,836–60,836,538  − 0.220599808 0.598978

PIK3R3 BP, MF, KEGG 3:99,963,094–100,063,831 0.899633498 0.138561

UBE2B BP, MF, KEGG 7:45,944,974–45,957,591  − 0.227826355 0.484955

CUL1 BP, MF, KEGG 4:111,931,406–112,019,124 0.030709711 0.947533

GRAMD1B BP, MF 15:34,027,052–34,225,316  − 0.488085938 0.475434

GRAMD1A BP, MF 18:45,743,703–45,767,909  − 0.697366096 0.347438

HDAC6 BP, MF X:86,916,119–86,933,774 0.057863262 0.911513

SLC16A7 BP, MF 5:53,698,770–53,892,992 0.838823738 0.493724

OSBPL5 BP, MF 29:48,450,137–48,518,334  − 0.267683419 0.465346

OSBPL9 BP, MF 3:94,541,126–94,702,551  − 0.017030062 0.9537

PLEKHA8 BP, MF 4:66,266,959–66,326,201  − 0.263741351 0.438704

NDFIP2 BP, MF 12:54,578,637–54,649,183 0.06042112 0.852244

KLHL42 BP, MF 5:82,047,183–82,063,595 0.467789955 0.244411

AKTIP BP, MF 18:21,848,713–21,860,197  − 0.113342608 0.744733

UBE2T BP, MF 16:80,305,103–80,309,731  − 0.263593638 0.649904

USP15 BP, MF 5:51,147,112–51,275,743 0.082023217 0.816405

NKD2 MF, KEGG 20:71,307,541–71,311,025  − 2.162984035 0.21443

PCYT1A MF, KEGG 1:70,824,603–70,877,084  − 0.382732935 0.245659

MTM1 MF, KEGG X:33,290,880–33,359,619  − 0.388458912 0.381421

FBXW8 MF, KEGG 17:58,026,797–58,141,074  − 0.082095548 0.835147

ITPR1 MF, KEGG 22:21,523,823–21,876,681 0.305321904 0.491774

JUN MF, KEGG 3:87,265,962–87,268,007  − 0.389295398 0.532967

BAX MF, KEGG 18:55,531,246–55,534,932  − 0.200972783 0.794355

IKBKG MF, KEGG X:37,587,308–37,604,668  − 0.264005172 0.577697

RALB MF, KEGG 2:71,941,425–72,015,169  − 0.439258818 0.228456

NGFR MF, KEGG 19:37,093,181–37,112,123  − 0.096890779 0.978203

SUCLG2 MF, KEGG 22:33,859,633–34,134,874 0.124067981 0.680863

RRM2B MF, KEGG 14:62,133,632–62,171,095 0.143114079 0.752695
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complexes by capturing its effector protein (serine/threonine kinase Raf)35. In this study, KEGG enrichment 
analysis revealed that PI4K2A, VEGFD and ID1 genes (i.e. DEs and hub genes) were significantly enriched in 
the phosphatidylinositol, Rap1, MAPK and Ras signaling pathway, which suggested that PI4K2A, VEGFD and 
ID1 genes were likely to be involved in the lactation process of cows. Notably, the PI4K2A gene was significantly 
enriched to the GO terms and KEGG pathways associated with lipid metabolism and was involved in diacylglyc-
erol and glycerophospholipid metabolism in the phosphatidylinositol and inositol phosphate metabolic pathways, 
respectively, which indicates its potential to be involved in regulating milk fat synthesis.

PI4K2A is a key enzyme for the synthesis of phosphatidylinositol 4-phosphate with multiple cell signaling 
 functions36, which is critical for epidermal growth factor receptor  degradation37, transferrin receptor  recycling38, 
autophagy-lysosome  fusion39 and prognosis of breast cancer  patients40. A genome-wide association study of 
milk fatty acid composition in Italian Simmental and Italian Holstein cows by using single nucleotide polymor-
phism  arrays41, which revealed that PI4K2A may be involved in milk fat metabolism. In addition, the CDIPT 
gene, which significantly interacts with PI4K2A, and it also plays an important role in fatty acid and energy 
 metabolism42, which reflecting the potential importance of the PI4K2A gene in milk fat metabolism. This study 
found that the expression level of PI4K2A was significantly higher in dairy cows’ mammary tissue than the small 
intestine, liver, kidney, heart and ovary. It further indicates that PI4K2A may have an important function in milk 
fat synthesis in dairy cows, and a more in-depth functional verification of specific mechanisms is required. DNA 
binding inhibitor 1 (ID1) is a helix-loop-helix transcription factor that is highly expressed in brown adipose 
 tissue43 and promotes obesity by inhibiting brown fat thermogenesis and white fat  browning44. Functionally ID1 
is involved in regulating the transcriptional activity of ADD1/SREBP-1c, thereby regulating  adipogenesis45. Mar-
cin et al.46 showed that Mammalian target of rapamycin can regulate mammary epithelial cells growth through 
ID1. ATP8A2 is a P4-ATPase that transfers (flips) phosphatidylserine and phosphatidylethanolamine from the 
ectoplasmic lobules of the cell membrane lipid bilayer to the cytoplasmic lobules, resulting in asymmetric lipid 
partitioning between membrane  lobules47. Vascular endothelial growth factor D (VEGFD) is considered the 
main angiogenic component of adipose  tissue48, which enhances lymphangiogenesis and reduces obesity-related 
immune accumulation in mouse adipose  tissue49, but VEGFD deficiency does not affect adipose tissue develop-
ment in  mice50. The expression levels of ATP8A2, ID1 and VEGFD were significantly higher in mammary tissue 
than small intestine, liver, kidney and ovary of dairy cows, which suggested that they may have potential biologi-
cal functions in the mammary gland. SLC16A1 has an important role in short-chain fatty acid  transport51. Hu 
et al.52 studies suggested that SLC16A1 may be involved in hepatic lipid metabolism in pigs, which is consistent 
with the high-level expression results of SLC16A1 in liver tissues of this study. Although the expression level 
of the SLC16A1 gene in dairy cows’ mammary gland tissue is significantly lower than that in liver and kidney. 
However, compared with other tissues, the expression abundance of SLC16A1 is still at the upper-middle level, 
so the role of SLC16A1 in dairy cows’ milk fat metabolism cannot be ignored. In the future, members of our 

Figure 7.  Expression levels of key candidate DEs in milk fat metabolism. (A–E) Expression levels of SLC16A1, 
VEGFD, ID1, ATP8A2 and PI4K2A genes in different tissues, respectively; (F) expression of SLC16A1, VEGFD, 
ID1, ATP8A2 and PI4K2A genes in BMECs of high and low milk fat groups. Different capital letters indicate 
significant differences.
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group will continue to investigate the functional mechanisms of these key candidate DEs (SLC16A1, VEGFD, 
ID1, ATP8A2 and PI4K2A) in lipid metabolism screened by WGCNA, and in order to elucidate their specific 
regulatory mechanisms.

Conclusion
In this study, a comprehensive analysis of mRNA expression profile data based on Illumina PE150 sequencing 
of high and low MFP BMECs was performed by WGCNA, resulting in three modules (violet, yellow and darko-
livegreen) that were significantly associated with MFP. After enrichment analysis, a total of 5 candidate DEs 
related to lipid metabolism were screened out, namely PI4K2A, SLC16A1, ATP8A2, VEGFD and ID1. Among 
them, PI4K2A is more likely to be involved in milk fat metabolism. The results of this study provide a new way 
to understand the function of genes in milk fat synthesis in dairy cows and it also provide a new perspective on 
the study of the lactation process in cattle.

Materials and methods
Ethics statement. Animal experiments were conducted in accordance with the Regulations for the Admin-
istration of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China, 2004). It is 
authorized by the Animal Ethics Committee of Ningxia University (permit number NXUC20200619). The cattle 
used in the experiments was electric shocked before being released. Take tissue samples immediately, making all 
efforts to minimize its suffering. This work also conformed to the requirements of American Veterinary Medical 
Association (AVMA) Guidelines. This study is reported in accordance with the recommendations put forward 
by the ARRIVE guidelines.

Data source and preprocessing. The data of 14 543 mRNA expression profiles in this study were obtained 
from the results of Illumina PE150 sequencing of BMECs of high and low MFP cows in the previous study by our 
research group (Supplementary Table 5). Sequencing samples were obtained from the Maosheng pasture of He 
Lanshan in Ningxia state farm, where the test cows were fed the same balanced total mixed diet. A total of 245 
Holstein cows of similar age and in the mid and late lactation were selected. Collect milk samples of each cow 
in the morning, at noon, and in the evening for dairy herd improvement (DHI). Screen 8 Holstein cows with 
somatic cell counts within 100,000/mL and extreme differences in MFP (Table 3). BMECs were isolated from 
fresh milk by aseptic  collection53, and the library construction and transcriptome sequencing were carried out 
by Beijing Nuohe Zhiyuan Biotechnology Co., Ltd.

A chain-specific library was constructed by removing ribosomal RNA. After passing the library inspec-
tion, Illumina PE150 sequencing was performed. After the original data is obtained, the reads with adapter, N 
(undetermined base information) ratio greater than 0.002, and low-quality bases with a read length of more 
than 50% are removed. After sequencing error rates (Q20 and Q30) and GC content distribution checks, clean 
reads for subsequent analysis were obtained. Hisat2 (http:// ccb. jhu. edu/ softw are/ hisat2, version 2.1.0) soft-
ware were used to compare and analyze the RNA sequencing (RNA-seq) data (the reference genome version is 
bos_taurus_Ensembl_97)54.

Since the mRNA expression profile data in transcriptome sequencing is represented by the FPKM value, the 
FPKM was converted to TPM by using the colSums function of the tidyverse package of the R (version 4.1.1). 
After that, the principal component and correlation analysis of the eight samples was performed by online post-
sale tool platform provided in Beijing Nuohe Zhiyuan Biotechnology Co., Ltd (https:// magic. novog ene. com/ 
custo mer/ main#/home/2d9dc26d1e059b931b9ac5364 9482c7c).

Construction of co‑expression network. The median absolute deviation of different gene expression 
profiles were first calculated by the apply function in R to eliminate outliers and abnormal values in the data 
set, and then the goodSamplesGenes function was used to detect missing values and samples below the sample 
threshold. And finally, 10,310 genes with relatively high expression were obtained. The co-expression network 
of mRNA expression profile data was constructed by the R package  WGCNA55. The construction of a weighted 
gene network requires the optimal selection of soft thresholding power β that improves co-expression similar-

Table 3.  High and low MFP of Holstein cattle. Number the number of each cow, MFP milk fat percentage, 
SCC somatic cell count, age month age of cattle at the time of sampling.

Item Number Age Lactation days MFP (%) SCC (100,000/mL)

High-milk fat group

H_2098 29.81 186 4.82 5

H_2046 30.57 189 4.54 2

H_2226 28.56 160 4.74 9

H_2190 28.89 157 4.88 5

Low-milk fat group

L_2034 30.57 187 2.60 6

L_2037 30.5 175 2.81 5

L_2170 30.43 189 2.85 8

L_2137 29.41 150 2.84 7

http://ccb.jhu.edu/software/hisat2
https://magic.novogene.com/customer/
https://magic.novogene.com/customer/
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ity and calculates the adjacency. Therefore, picking the optimal soft thresholding power β was performed using 
the function pickSoftThreshold (based on the criterion of approximate scale-free topology) in the R package 
WGCNA. When 0.8 is used as the correlation coefficient threshold  (R2 = 0.8), the soft thresholding power β 
was 14 and the minimum number of genes in the module is 111, and the number of genes to construct the co-
expression network is set to 100. The module detection sensitivity was 2 (deepSplit = 2), and the cut height for 
merging of modules was 0.25 (mergeCutHeight = 0.25, i.e., merge into one module if the correlation coefficient 
of eigengenes within the module is greater than 0.75).

Identification of key candidate genes. In the module-trait correlation analysis, hub genes were consid-
ered as genes with GS greater than 0.4 and high module group members (MM, weighted correlation index > 0.9), 
indicating a significant correlation with milk fat percentage.

Functional enrichment and protein interaction network analysis. Here, functional enrichment 
analysis was performed using the KOBAS website (http:// kobas. cbi. pku. edu. cn/ genel ist/, version 3.0) and its 
results were visualized by the R package GOplot (version 1.0.2). The hub genes were intersected with the differ-
ential genes (DEs) screened by the transcriptome (P < 0.05) and combining the results of enrichment analysis to 
screen key candidate genes for milk fat metabolism, and protein interaction network analysis carried by String 
website (https:// www. string- db. org/https://www.string-db.org/, version 11.5).

qRT‑PCR validation of key candidate genes. Small intestine, liver, kidney, heart, ovary, uterus and 
mammary gland tissues were collected from three cows in the mid and late lactation with similar age, and the 
tissues were cut and quickly placed in liquid nitrogen and brought back to the laboratory for total RNA extrac-
tion and first-strand cDNA synthesis. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to 
detect the expression of key candidate genes for milk fat in different tissues and to verify their expression levels 
in BMECs of high and low MFP cows.

Total RNA was extracted by using RNA simple Total RNA Kit (Tiangen Biochemical Technology Co., Ltd). 
First-strand cDNA synthesis was performed by using PrimeScript RT Kit (Takara, Dalian, China). qRT-PCR 
(three replicates) was performed by SYBR Premix Ex Taq II (TaKaRa, Dalian, China) on the Bio-Rad CFX96 
Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Amplification procedure: 95 °C for 30 s, 
95 °C for 5 s, annealing for 30 s, 40 cycles. qRT-PCR primers were designed by using Primer Premier 5.0 and the 
primers span at least one intron, the sequence and annealing temperature of each primer were shown in Table 4.

Statistical analysis. The statistical significance of differences between the two groups was analyzed using 
a non-parametric test or t-test based on the data distribution characteristics. All the analyses were conducted 
using the software R; the P < 0.05 was considered statistically significant. The relative expression of DEs was 
analyzed by the  2−ΔΔCt method and normalized using the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
gene.

Institutional review board statement. The Animal Ethics Committees of Ningxia University approved 
the experimental design and animal sample collection for the present study (permit number NXUC2 0200619). 
And animal experiments were conducted strictly followed the guidelines of the Regulations for the Administra-
tion of Affairs Concerning Experimental Animals (Ministry of Science and Technology, China, 2004).

Data availability
All data generated or analyzed in this study are included in this article [and its Supplementary Information File], 
and the datasets have been submitted to the SRA database with the Accession Number PRJNA730595. Access 
to the data of permanent link to https:// www. ncbi. nlm. nih. gov/ sra/ PRJNA 730595.

Table 4.  Primer sequence and annealing temperature.

GenBank ID Genes Primer sequence (5′–3′) Product length/bp Tm/℃

NM_001100316.1
PI4K2A F ATC CGC AAC ACT GAT CGA GG

137 60
PI4K2A R AGC CCA TTA TCT ATG GCC GC

NM_001101043.2
VEGFD F CCA CTC GCA GGA ATG GAA GAT CAC 

238 62
VEGFD R GAA AGG GGC ATC TGT CCT CACA 

NM_001037319.1
SLC16A1 F TGG CAG CAC CTT TAT CCT CTAC 

162 60
SLC16A1 R ACT CCA CAA TGG TCA CCA ATCC 

NM_001097568.2
ID1 F CTG GGA TCT GGA GTT GGA GC

155 59
ID1 R GGA ACA CAC GCC GCC TCT 

NM_001163802.3
ATP8A2 F GCC CAC AGC TGG AGA AGA TA

189 60
ATP8A2 R GTA CTT GGC CGT GCT GAT CT

NM_001034034.2
GAPDH F TCG GAG TGA ACG GAT TCG G

192 60
GAPDH R TGA TGA CGA GCT TCC CGT TC

http://kobas.cbi.pku.edu.cn/genelist/
https://www.string-db.org/
https://www.ncbi.nlm.nih.gov/sra/PRJNA730595
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