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Abstract. Sarcomas represent a heterogeneous group of 
mesenchymal malignancies arising at various locations in the 
soft tissue and bone. Though a rare disease, sarcoma affects 
~200,000 patients worldwide every year. The prognosis of 
patients with sarcoma is poor, and targeted therapy options 
are limited; therefore, accurate diagnosis and classification 
are essential for effective treatment. Sarcoma samples were 
acquired from 199 patients, in which TP53 (39.70%, 79/199), 
CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT 
(14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 
20/199) were identified as the most commonly mutated 
genes (>10% incidence). Among 64 soft‑tissue sarcomas that 
were unclassified by immunohistochemistry, 15 (23.44%, 
15/64) were subsequently classified using next‑generation 
sequencing (NGS). For the most part, the sarcoma subtypes 
were evenly distributed between male and female patients, 

while a significant association with sex was detected in 
leiomyosarcomas. Statistical analysis showed that osteosar‑
coma, Ewing's sarcoma, gastrointestinal stromal tumors and 
liposarcoma were all significantly associated with the patient 
age, and that angiosarcoma was significantly associated with 
high tumor mutational burden. Furthermore, serially mutated 
genes associated with myxofibrosarcoma, gastrointestinal 
stromal tumor, osteosarcoma, liposarcoma, leiomyosarcoma, 
synovial sarcoma and Ewing's sarcoma were identified, as well 
as neurotrophic tropomyosin‑related kinase (NTRK) fusions 
of IRF2BP2‑NTRK1, MEF2A‑NTRK3 and ITFG1‑NTRK3. 
Collectively, the results of the present study suggest that 
NGS‑targeting provides potential new biomarkers for sarcoma 
diagnosis, and may guide more precise therapeutic strategies 
for patients with bone and soft‑tissue sarcomas.

Introduction

Sarcoma is a rare malignant tumor that frequently occurs in, 
or originates from, the bone, cartilage or connective tissue (1). 
Globally, almost 200,000 patients are affected by sarcoma 
each year (2). The prognosis of patients is poor, and the choice 
of approved targeted drugs is somewhat limited (3,4). Surgery 
is currently the primary treatment option for most sarcomas, 
but local recurrence does occur (5). Targeted molecular thera‑
pies have yielded improved clinical outcomes (6‑8). However, 
due to diagnostic difficulties, bone and soft‑tissue sarcomas 
are often only diagnosed at the advanced stage, resulting in a 
50‑60% 5‑year survival rate (9,10). Therefore, a more accurate 
system for sarcoma diagnosis and classification is urgently 
required.

Sarcoma includes soft‑tissue sarcomas and primary 
bone sarcomas (11). Soft‑tissue sarcomas comprise >50 
subtypes (12), and the most frequently observed subtypes 
include liposarcoma, leiomyosarcoma, undifferentiated 
soft‑tissue sarcoma, fibrosarcoma and synovial sarcoma (13). 
Primary bone sarcoma subtypes include Ewing's sarcoma and 
osteosarcoma (14). Histopathological examination, such as 
the analysis of histological sections and fluorescence in situ 
hybridization (FISH), are still the only available methods for 
the accurate diagnosis of sarcomas. However, due to their 
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rarity and diversity, the classification of sarcomas remains 
a challenge. The identification and application of potential 
biomarkers is a convenient, rapid and accurate strategy for 
identifying sarcoma subtypes, and is conducive to improving 
diagnosis and prognostic prediction (15‑18). 

With continuous developments in molecular biology, 
next‑generation sequencing (NGS) technology has enabled 
more accurate and efficient molecular characterization. The 
Cancer Genome Atlas and the International Cancer Genome 
Consortium have characterized the genome and genomic 
alterations (GAs) of most types of cancer (19,20), and a number 
of recent studies have focused on the molecular profiling of 
sarcomas (21,22). Sarcomas can be divided into the following 
subgroups according to genetic heterogeneity: i) Gene fusions; 
ii) genomic amplifications; and iii) extensive combinations 
of genomic imbalances and point mutations (23‑25). There is 
also evidence to suggest that some sarcomas possess unique 
molecular characteristics, such as the SYT‑SSX fusion in syno‑
vial sarcoma, the EWS‑ATF1 fusion in clear cell sarcoma, and 
the EWSR1‑FLI1 fusion in Ewing's sarcoma (26‑28). Specific 
molecular characterizations not only assistant in the classifica‑
tion of sarcoma, but can also guide treatment programs. For 
example, imatinib has demonstrated good efficacy in gastro‑
intestinal stromal tumor (GIST) patients with KIT, PDGFRA, 
CSF1 and ABL mutations (29‑31); since 2013, palbociclib has 
undergone phase II clinical trials in liposarcoma patients with 
CDK4 mutations (32). Therefore, a clear classification system 
and a precise molecular description of sarcoma subtypes are 
necessary for subsequent diagnosis and treatment.

The present study aimed to identify GAs for the mutational 
profiling of 199 patients with sarcoma (both soft‑tissue and 
primary bone sarcoma). By comparing molecular‑based classi‑
fication with traditional immunohistochemical categorization, 
the accuracy and necessity of NGS technology for sarcomas 
classification was confirmed. The results provide comprehen‑
sive and accurate information of GAs, which suggest novel 
biomarkers for sarcoma diagnosis that may guide precise 
therapeutic strategies for patients with bone and soft‑tissue 
sarcomas.

Materials and methods

Patient enrollment and sample collection. The present study 
was approved by the Ethics Committees of National Cancer 
Center/Cancer Hospital, Chinese Academy of Medical 
Sciences and Peking Union Medical College (Beijing, China) 
and the First Affiliated Hospital of Sun Yat Sen University 
(Guangzhou, China). A total of 199 patients with sarcoma were 
enrolled between January 1, 2008 and December 31, 2018. 
Tumor tissues were collected from patients, fixed in formalin 
and embedded in paraffin. Matched blood samples were 
collected as controls for GA detection. 

Identification of GAs and measurement of tumor muta‑
tional burden (TMB). Total DNA was obtained from both 
formalin‑fixed paraffin‑embedded (FFPE) tumor tissues and 
matched blood samples of each patient using the QIAamp 
DNA FFPE Tissue Kit and QIAamp DNA Blood Midi Kit 
(both Qiagen GmbH), respectively. The DNA samples were 
sequenced using the next‑generation sequencing‑based 

YuanSu450™ gene panel (OrigiMed®), in a laboratory certi‑
fied by the College of American Pathologists (CAP) and the 
Clinical Laboratory Improvement Amendments (CLIA). The 
genes were captured and sequenced with a mean depth of 
800x using the NextSeq 500 system (Illumina, Inc.). Single 
nucleotide variants (SNVs) were identified using MuTect (v1.7, 
www.broadinstitute.org/cancer/CGA), and insertion‑deletion 
polymorphisms (indels) were identified using PINDEL 
(V0.2.5, https://www.pindel.com). The functional impact of 
these mutations was annotated using SnpEff3.0 (http://snpeff.
sourceforge.net). Copy number variation (CNV) regions 
were identified by Control‑FREEC (v9.7, http://boevalab.inf.
ethz.ch/FREEC/index.html.) with the following parameters: 
Window=50,000, and step=10,000. Gene fusions/rearrange‑
ments were detected using the following in‑house pipeline: 
Paired‑end reads with an abnormal insert size of >2,000 bp 
(aligned to the same or different chromosomes) were collected; 
discordant read pairs were clustered according to the pairing 
relationship, and consistent breakpoints from the paired‑end 
discordant reads (within a single cluster) were identified to 
establish potential fusion/rearrangement breakpoints. Gene 
fusion/rearrangements were assessed using the Integrative 
Genomics Viewer (v2.4, http://software.broadinstitute.
org/software/igv/ReleaseNotes/2.4.x). The TMB of each 
patient was calculated by counting the number of somatic 
mutations (including SNVs and indels) per megabase (Mb) of 
the sequence examined. 

Statistical analysis. Statistical analyses were performed using 
SPSS version 22.0 (IBM Corp) and significant differences 
were detected using Fisher's exact test. P<0.05 was considered 
to indicate a statistically significant difference. 

Results

Clinical characteristics of patients with sarcoma. A total 
of 199 patients with soft‑tissue or osteogenic sarcomas were 
enrolled in the present study. This included 105 male and 
94 female patients, with a median age of 50 years (range, 
1‑86 years). The TMB values of all patients were identified, 
from which 197 valid values were obtained with a median of 
1.5 muts/Mb (range, 0.7‑24.5 muts/Mb) (Table I).

GAs in 199 patients with sarcoma. Based on NGS targeting 
of 450 cancer‑associated genes, a total of 1,077 clinically 
relevant GAs were identified in 288 genes (Fig. 1), with an 
average of 5.41 alterations per sample (range, 0‑21). Among 
these GAs, CNV was the most frequent mutation type (49.21%, 
530/1,077), followed by SNV/short indel (39.83%, 429/1077), 
gene fusion (7.99%, 86/1,077) and long indel (2.97%, 32/1,077) 
(Fig. 1 and Table SI). The most commonly mutated genes with 
a mutation frequency of >10% were TP53 (39.70%, 79/199), 
CDKN2A (19.10%, 38/199), CDKN2B (15.08%, 30/199), KIT 
(14.07%, 28/199), ATRX (10.05%, 20/199) and RB1 (10.05%, 
20/199). Notably, most mutations in TP53, KIT and ATRX 
were SNVs, while those in CDKN2A, CDKN2B and RB1 were 
CNVs (Fig. 2).

NGS aids the diagnosis of sarcoma. All sarcomas were 
pathologically diagnosed before sample collection, after 
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which an experienced pathologist was invited to make a 
second diagnosis. Only those with the same diagnostic results 
were considered to be classified, while those with inconsis‑
tent or undetermined diagnostic results were considered 
as unclassified. As a result, 23 GISTs, 22 osteosarcomas, 
12 myxofibrosarcoma, 11 liposarcomas, 11 leiomyosarcomas, 
9 synovial sarcomas, 5 chondrosarcomas, 5 aggressive 
fibromatosis, 5 rhabdomyosarcomas, 4 Ewing's sarcomas, 
4 angiosarcomas, 4 undefferentiated pleomorphic sarcomas, 
3 mesotheliomas, 2 epithelioid hemangioendotheliomas, 
2 myofibroblastic sarcomas, 2 myxoid sarcomas, 1 dermatofi‑
brosarcoma protuberan, 1 solitary fibrous tumor, 1 embryonic 
undifferentiated sarcoma, 1 alveolar soft part sarcoma, 1 clear 
cell sarcoma, 1 malignant granular cell tumor, 1 myolipoma, 
64 unclassified soft‑tissue sarcomas and 4 unclassified osteo‑
genic sarcomas were identified (Table II). Therefore, further 
classification was carried out according to the results of NGS. 

According to the NGS detection results, 15 additional 
sarcoma cases were identified and classified, including 3 
liposarcomas with amplifications in MDM2 and CDK4, 3 
Ewing's sarcomas with EWSR1 fusions, 3 dermatofibrosar‑
coma protuberans (DFSP) cases with fusions of PDGFB 
(COL1A1‑PDGFB), 2 leiomyosarcomas with mutations of 
RB1 and TP53, 2 infantile fibrosarcomas with the fusion of 
ETV6‑NTRK3, 1 GIST with a mutation in PDGFRA, and 1 
NTRK rearranged spindle cell mesenchymal tumor. Among 
them, 1 leiomyosarcoma was misdiagnosed as a GIST before 

NGS auxiliary diagnosis. However, 54 cases remained unclas‑
sifiable. The primary characteristic mutations of these 15 
sarcomas are listed in Table III.

Association of GAs with sarcoma subtypes. The mutational 
landscapes of sarcoma subtypes including GIST, osteosar‑
coma, liposarcoma, leiomyosarcoma and myxofibrosarcoma, 
were subsequently analyzed. The most common mutated 
genes in GISTs were KIT, CDKN2A and CDKN2B, and the 
most commonly mutated genes in osteosarcoma were TP53, 
NCOR1, RB1, GID4, LRP1B, PTEN, ATRX, CCND3, MAP2K4 
and RICTOR. In liposarcoma, CDK4, MDM2, FRS2, LRP1 
and TP53 were the most frequently mutated, as were TP53, 
MAP2K4, GID4, KDM6A and MCL1 in leiomyosarcoma. 
The most commonly mutated genes in myxofibrosarcoma 
were TP53, CDKN2A, CDKN2B, FAM135B, AKT2 and JUN 
(Fig. 3).

Statistical analysis revealed that mutations in TP53, AKT2, 
FAM135B, CDKN2A, JUN, CDKN2B, ROS1, AXL, SETD2 
and CCNE1 were significantly associated with myxofibro‑
sarcoma (Table IV). The primary mutation type in GISTs 
was SNV, and mutations in KIT and TP53 were significantly 
associated with GISTs. Gene amplifications were the most 
common mutations in osteosarcoma and liposarcoma (Fig. 2). 
Mutations in NCOR1, GID4, LRP1B, RB1, AURKB, GLI2, 
RICTOR, MAP2K4, STK24, TNFSF13B, CCNE1, PRKDC, 
PTEN, CCND3, FGF10, BRD4, PRKACA, RET and IL7R were 
significantly associated with osteosarcoma, while those in 
CDK4, MDM2, FRS2, FUS, LRP1, MYB, PTPN11 and TYK2 
were significantly associated with liposarcoma (Table IV). 
Furthermore, mutations in MAP2K4, TP53 and KDM6A were 
significantly associated with leiomyosarcoma (Table IV). 
Except for the negative association between TP53 mutations 
and GISTs, the majority of these frequently‑mutated genes 
significantly occurred in corresponding sarcomas. Although 
only 9 synovial sarcomas and 7 Ewing's sarcomas were identi‑
fied in the present study, the mutations in SS18 and EWSR1 
significantly occurred in synovial sarcoma and Ewing's 
sarcoma, respectively. Notably, the mutation of TP53 was 
also significantly negatively associated with synovial sarcoma 
(Table IV).

Association between TMB value, sarcoma subtype and patient 
demographics. The associations between sarcoma subtype, 
TMB value and patient sex and age were further analyzed. 
Based on age distribution, the patients we categorized into 4 
groups: i) 1‑19 years; ii) 20‑39 years; iii) 40‑59 years; iv) and 
60‑86 years of age. Osteosarcoma and Ewing's sarcoma 
commonly occurred in younger patients (1‑19 years old), 
accounting for 40.91% (9/22) and 57.14% (4/7), respectively; 
GISTs and liposarcomas were more common in elderly 
patients (60‑86 years old), accounting for 39.13% (9/23) and 
71.43% (10/14), respectively; and synovial sarcoma commonly 
occurred in young patients (20‑39 years old), accounting for 
66.67% (6/9). Statistical analysis showed that osteosarcomas, 
Ewing's sarcomas and synovial sarcomas significantly 
occurred in younger patients, while liposarcomas and GISTs 
significantly occurred in older patients (Fig. 4).

Most of the sarcoma subtypes had comparable frequencies 
in male and female patients, while 11 of the 13 leiomyosarcomas 

Table I. Clinicopathological features of 199 patients in the 
sarcoma cohort.

Variable Value

Sex, n (%) 
  Male 105 (52.76)
  Female 94 (47.24)
Median age (range), years  50 (1‑86)
Median TMB (range), muts/Mb  1.5 (0.7‑42.5)

TMB, Tumor mutational burden.

Figure 1. Statistical distribution map of variation types. CNV, copy number 
variations; SNV, single nucleotide variants; FUS, gene fusion; LONG, long 
insertion‑deletion polymorphism.
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Figure 2. Mutational profiling of 199 patients with sarcoma. X‑axis represents each case sample, and the Y‑axis represents each mutated gene. Bar graphs 
to the right and above show the gene mutation frequency of each sample, and the TMB value of all samples, respectively. Green represents substitu‑
tion/insertion‑deletion polymorphism, red represents gene amplification, blue represents gene homozygous deletion, yellow represents fusion/rearrangement, 
and purple represents truncation. TMB, tumor mutation burden.

Figure 3. Mutational profiling of sarcoma subtypes. X‑axes represent each case sample and the Y‑axes represent the mutated genes. Bar graphs to the right and 
above show the gene mutation frequency of each sample, and the TMB value of each subtype, respectively. Green represents substitution/insertion‑deletion 
polymorphism, red represents gene amplification, blue represents gene homozygous deletion, yellow represents fusion/rearrangement, and purple represents 
truncation. TMB, tumor mutation burden.
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occurred in females. Statistical analysis showed that leiomyo‑
sarcomas occurred significantly more often in women than in 
men (Fig. 5A). TMB values were obtained from 194 of the 199 
enrolled patients. High TMB (TMB‑H), which was defined 
as a TMB value >10 muts/Mb, was observed in 5 patients, 
including 1 with fibrosarcoma, 2 with angiosarcoma and 
2 patients with unclassified soft‑tissue sarcoma. Notably, only 
4 angiosarcomas were identified in the cohort, and statistical 
analysis showed that angiosarcoma was significantly associ‑
ated with TMB‑H (Fig. 5B).

New neurotrophic tyrosine kinase (NTRK)1/3 fusions in the 
current cohort. NTRK1/3 mutations were detected in 11 of the 
199 patients with sarcoma. Among these patients, 4 NTRK1 
and 1 NTRK3 mutations were gene amplifications, and 2 
NTRK1 and 4 NTRK3 mutations were gene fusions, including 
1 LMNA‑NTRK1, 1 IRF2BP2‑NTRK1, 1 MEF2A‑NTRK3, 1 
ITFG1‑NTRK3 and 2 ETV6‑NTRK3 fusions (Table V). Similar 
to previous reports (33,34), gene fusions of ETV6‑NTRK3 and 
LMNA‑NTRK1 were detected in 2 infantile fibrosarcoma cases 
and 1 unclassified sarcoma, respectively. To the best of our 
knowledge, the present study is the first to describe the fusion 

of IRF2BP2‑NTRK1, MEF2A‑NTRK3 and ITFG1‑NTRK3 in 
sarcoma. Therefore, sarcoma patients with NTRK fusions or 
amplifications may potentially benefit from NTRK inhibitor 
therapy.

Discussion

The tumorigenesis of sarcoma is characterized by genomic 
abnormalities, manifested as multiple phenotypic changes 
and divided into various subtypes (35). To date, histological 
examination remains the primary method of sarcoma diag‑
nosis (36). The histological and molecular heterogeneity of 
sarcoma make it particularly difficult to diagnose, though with 
the rapid development of NGS technology, increasing numbers 
of sarcoma genome sequencing studies have emerged (37‑40). 
In the present study, the most commonly mutated genes were 
identified in 199 patients with sarcoma, and included TP53, 
CDKN2A, CDKN2B, KIT, ATRX and RB1. TP53 encodes 
the p53 protein and functions in the p53 pathway, while the 
CDKN2B and CDKN2A genes are associated with the regu‑
lation of p53 pathways (41). These findings suggest that p53 
pathway mutations frequently occurred in the present cohort, 

Table II. Comparison of sarcoma subtypes identified by histochemistry‑ and NGS‑based methods.

Sarcoma subtype Histochemistry‑based, n NGS‑based, n

Gastrointestinal stromal tumor 23 23
Osteosarcoma 22 22
Liposarcoma 11 14
Leiomyosarcoma 11 13
Myxofibrosarcoma 12 12
Synovial sarcoma 9 9
Ewing's sarcoma 4 7
Chondrosarcoma 5 5
Rhabdomyosarcoma 5 5
Aggressive fibromatosis 5 5
Angiosarcoma 4 4
Dermatofibrosarcoma protuberans 1 4
Undifferentiated pleomorphic sarcoma 4 4
Malignant pleural mesothelioma 3 3
Infantile fibrosarcoma 0 2
Epithelioid hemangioendothelioma 2 2
Myofibroblastic sarcoma 2 2
Myxoid sarcoma 2 2
Solitary fibrous tumor 1 1
Embryonic undifferentiated sarcoma 1 1
Alveolar soft part sarcoma 1 1
Clear cell sarcoma 1 1
Malignant granular cell tumor 1 1
Myolipoma 1 1
NTRK rearrangement spindle cell mesenchymal tumors 0 1
Unclassified osteogenic sarcoma 4 4
Unclassified 64 50

NGS, next‑generation sequencing; NTRK, tropomyosin‑related kinase.
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which is consistent with a previous report (42). Somatic muta‑
tions of TP53 are associated with poor prognosis and low 
chemotherapy response rates in various tumor types (43,44). 
Poor patient prognosis is associated with TP53 mutations in 
various sarcoma subtypes, such as gliosarcoma (45), osteo‑
sarcoma (46), Ewing's sarcoma (47), chondrosarcoma (48) 
and liposarcoma (49). In the present study, the highly frequent 
TP53 mutations were identified in osteosarcoma, fibrosarcoma, 
liposarcoma and leiomyosarcoma, suggesting an association 
with poor prognosis in these subtypes. 

Molecular diagnosis based on NGS detection can accurately 
characterize sarcomas according to molecular characteristics, 
which is a powerful complement to histological identifica‑
tion (50) since pathologists often provide descriptions such 
as ‘probable’ or ‘possible’ during sarcoma diagnosis. The 
molecular features of different sarcoma subtypes have been 
extensively studied. For example, PDGFB rearrangement 
in DFSP, MDM2 and CDK4 amplification in liposarcoma, 
EWSR1 translocation in Ewing's sarcoma, and SS18 transloca‑
tion in synovial sarcoma (51‑54). With the additional assistance 
of NGS detection, 15 sarcomas that were difficult diagnose by 
histological examination were further classified. Notably, one 
misclassified sarcoma subtype was also successfully corrected. 
These results suggest that NGS technology can effectively 
assist in the diagnosis and classification of sarcoma subtypes. 
However, 54 cases were still not well classified, which may be 
due to the fact that the corresponding molecular characteris‑
tics or biomarkers of sarcoma are still not clearly understood. 
Therefore, the identification of sarcoma biomarkers is impor‑
tant for further diagnostic advancements.

A number of specific mutations have been used for the clas‑
sification of sarcoma. For example, Pierron et al (55) defined a 
novel type of bone sarcoma by identifying the BCOR‑CCNB3 
gene fusion. Yoshida et al (56) identified that CIC‑rearranged 
sarcomas were distinctly different from Ewing's sarcomas, clini‑
cally, morphologically and immunohistochemically. Furthermore, 
Michal et al (57) reported a EWSR1‑SMAD3‑rearranged 
fibroblastic tumor that represented a novel subtype, and 
Chiang et al (58) identified a novel tumor type with the features 
of fibrosarcoma by NTRK fusion. However, few reports have 
focused on the association between gene mutations and different 
sarcoma subtypes. In the present study, the associations between 
GAs and tumor subtypes, patient demographics and TMB values 
were analyzed, which may provide potential biomarkers for the 
future diagnosis of sarcoma.

KIT mutations are a significant phenotypic feature of 
GISTs (59). As predicted, the association between KIT muta‑
tions and GISTs was also identified in the present study. In 
addition, a significant negative association was observed 
between TP53 mutations and GISTs. These results suggest that 
mutations in both KIT and TP53 may be used as biomarkers 
for GIST diagnosis. 

In osteosarcoma, the frequent mutation of RB1 was highly 
prevalent, and was thus proposed as a potential prognostic 
biomarker (60). With the exception RB1, the association between 
NCOR1 mutation and osteosarcoma was also identified in the 
present study. NCOR1 is a transcription factor that regulates 
various biological functions (61). As a tumor suppressor gene, 
mutation in NCOR1 was confirmed to be associated with the 
prognostic prediction of numerous cancers, such as breast cancer, 

Table III. List of cases diagnosed by next‑generation sequencing.

Case Sarcoma subtype Mutated genes  Mutation type

  1 DFSP COL1A1‑PDGFB FUS
  2 DFSP COL1A1‑PDGFB FUS
  3 DFSP COL1A1‑PDGFB FUS
  4 Ewing's sarcoma EWSR1 (EWSR1‑FLI1) FUS
  5 Ewing's sarcoma EWSR1 (EWSR1‑ERG) FUS
  6 Ewing's sarcoma EWSR1 (EWSR1‑Intergenic) FUS
  7 Liposarcoma  CDK4 CNV
  MDM2 CNV
  8 Liposarcoma  CDK4 CNV
  MDM2 CNV
  9 Liposarcoma  CDK4 CNV
  MDM2 CNV
10 Leiomyosarcomas  RB1 SNV
  TP53 SNV
11 Leiomyosarcomas  TP53 SNV
12 Infantile fibrosarcoma ETV6‑NTRK3 FUS
13 Infantile fibrosarcoma ETV6‑NTRK3 FUS
14 GIST PDGFRA SNV
15 Spindle cell mesenchymal tumor NTRK1 (LMNA‑NTRK1) FUS

DFSP, dermatofibrosarcoma protuberans; GIST, Gastrointestinal stromal tumor FUS, fusion; CNV, copy number variant; SNV, single nucleo‑
tide variant.
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Table IV. Association between mutated genes and sarcoma subtypes.

  Mutation frequency Mutation frequency
Sarcoma subtype Mutated gene within subtype, % outside of subtype, % P‑value

Osteosarcoma NCOR1 36.36 1.69 8.14x10‑7 

 GID4 22.73 1.13 1.92x10‑4 

 LRP1B 22.73 1.69 4.75x10‑4 

 RB1 31.82 6.21 1.12x10‑3 

 AURKB 13.64 0.00 1.19x10‑3 

 GLI2 13.64 0.00 1.19x10‑3 

 RICTOR 18.18 1.13 1.15x10‑3 

 MAP2K4 18.18 2.82 9.90x10‑3 

 STK24 9.09 0.00 0.012
 TNFSF13B 9.09 0.00 0.012
 CCNE1 13.64 1.69 0.019
 PRKDC 13.64 1.69 0.019
 PTEN 22.73 6.21 0.020
 CCND3 18.18 3.95 0.022
 FGF10 13.64 2.26 0.031
 BRD4 9.09 0.56 0.033
 PRKACA 9.09 0.56 0.033
 RET 9.09 0.56 0.033
 IL7R 13.64 2.82 0.046
Myxofibrosarcoma TP53 91.67 31.02 4.28x10‑5 

 AKT2 25.00 0.53 6.57x10‑4 

 FAM135B 33.33 2.67 8.32x10‑4 

 CDKN2A 58.33 16.04 1.77x10‑3 

 JUN 25.00 1.60 3.06x10‑3 

 CDKN2B 50.00 12.83 3.48x10‑3 

 ROS1 16.67 1.07 0.019
 AXL 16.67 1.60 0.030
 SETD2 16.67 1.60 0.030
 CCNE1 16.67 2.14 0.044
Leiomyosarcoma MAP2K4 30.77 2.69 1.17x10‑3 

 TP53 69.23 32.26 0.013
 KDM6A 15.38 1.08 0.022
GIST KIT 91.30 1.70 4.00x10‑23

 TP53 0.00 39.20 3.36x10‑5

Liposarcoma CDK4 64.29 3.78 1.72x10‑8

 MDM2 64.29 4.86 6.96x10‑8

 FRS2 50.00 4.32 7.70x10‑6

 FUS 21.43 0.00 2.81x10‑4 

 LRP1 28.57 3.24 2.58x10‑3 

 MYB 14.29 0.00 4.62x10‑3 

 PTPN11 14.29 0.54 0.013
 TYK2 14.29 1.62 0.041
Synovial sarcoma SS18 77.78 0.00 1.63x10‑11

 TP53 0.00 36.32 0.029
 CREB3L1 11.11 0.00 0.045
 PDK1 11.11 0.00 0.045
 TET1 11.11 0.00 0.045
Ewing's sarcoma EWSR1 71.43 1.04 1.75x10‑7

 EPHB1 14.29 0.00 0.035
 FEV 14.29 0.00 0.035
 VGLL3 14.29 0.00 0.035

GIST, gastrointestinal stromal tumor.
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lung adenocarcinoma and GISTs (62,63). These findings suggest 
that NCOR1 mutations are a potential biomarker for the molec‑
ular diagnosis and prognosis of osteosarcoma. In the present 
study, genes such as GID4, LRP1B and PTEN were found to be 
significantly associated with osteosarcoma. These results have 
important relevance for guiding the diagnosis of osteosarcoma. 

The amplification of MDM2 and CDK4 has been reported 
to occur in liposarcoma, and may therefore be considered as 
therapeutic targets (64), as well as used to assist the diagnosis 
of well‑differentiated and dedifferentiated liposarcomas (65). 
The significant association between CDK4 and MDM2 ampli‑
fication and liposarcoma was detected in the present study, and 
was able to successfully classify 2 cases of liposarcoma from 
soft‑tissue sarcomas. These results support the significance of 
NGS detection in the diagnosis of liposarcoma. In addition 

to CDK4 and MDM2, 6 additional mutated genes (including 
FRS2, FUS, LRP1, MYB, PTPN11 and TYK2) were also asso‑
ciated with the liposarcoma subtype, indicating the potential 
diagnostic value of these genes in liposarcoma.

Fibrosarcoma can also be divided into multiple subtypes, 
such as myxofibrosarcoma, DFSP, solitary fibrous tumor and 
infantile fibrosarcoma. COL1A1‑PDGFB fusion is a promi‑
nent molecular feature of DFSP (66). Mutations within the 
telomerase reverse transcriptase promoter were reported to be 
associated with the histologically malignant features of solitary 
fibrous tumors, and to some extent, to play an auxiliary role 
in their diagnosis and treatment (67). Although there are high 
mutational frequencies of TP53, RB1, CDKN2A, CDKN2B, NF1 
and NTRK1, few molecular predictors of myxofibrosarcoma 
have been identified (68). Due to the limited number of subtypes 

Figure 5. Association of sarcoma subtype with patient sex and TMB‑H. (A) Association between specific sarcoma subtypes and the proportion of female 
patients. Each subtype (blue) was compared with the rest of the sarcoma subtypes (red). Leiomyosarcoma was the only subtype to be significantly associated 
with female patients; P=0.012. (B) Association between TMB‑H and angiosarcoma compared with the association between TMB‑H and other sarcoma 
subtypes. TMB‑H, tumor mutational burden >10 muts/Mb; GIST, gastrointestinal stromal tumor.

Figure 4. Association between patient age and sarcoma subtype for (A) osteosarcomas, (B) liposarcomas, (C) GISTs, (D) Ewing's sarcomas and (E) and 
synovial sarcomas. GIST, gastrointestinal stromal tumor.
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across the samples, only the association between the mutated 
genes and myxofibrosarcoma was analyzed in the present study, 
and the results showed that mutations in TP53, AKT2, FAM135B, 
CDKN2A, JUN, CDKN2B, ROS1, AXL, SETD2 and CCNE1 
were significantly associated with myxofibrosarcoma. These 
results may be helpful for the diagnosis of myxofibrosarcoma. 
Although the number of cases was not large, the association 
between mutated genes and sarcoma subtype may still be used 
to guide molecular diagnoses. For example, based on 9 cases, 
a positive association was detected between the SS18 muta‑
tion and synovial sarcoma, and based on 7 cases, a significant 
association was also detected between the EWSR1 mutation 
and Ewing's sarcoma. However, studies with larger cohorts 
are required to identify potential biomarkers for the auxiliary 
diagnosis of sarcomas. 

The incidence rate of different sarcoma subtypes varies 
with sex and age. Classical osteosarcoma and rhabdomyo‑
sarcoma frequently occur in children and adolescents, while 
myxofibrosarcoma, synovial sarcoma, angiosarcoma, DFSP and 
clear cell sarcoma are more common in patients >20 years of 
age (69,70). Also, myxofibrosarcoma, rhabdomyosarcoma and 
synovial sarcoma may be more likely to occur in men, while 
the occurrence of leiomyosarcoma was notably more common 
in female participants (70). The results of the present study 
support previous studies suggesting that osteosarcomas, Ewing's 
sarcomas, GISTs and liposarcomas are associated with patient 
age, and that leiomyosarcoma is associated with patient sex.

TMB is a novel biomarker for the prognosis of cancer patients 
treated with immune checkpoint inhibitors (ICPIs) (71,72). 
The majority of sarcomas (such as osteosarcomas, GISTs and 
Ewing's sarcomas) are reported to have a low TMB (73,74), 
while Trabucco (75) reported TMB‑H in skin atypical fibrox‑
anthoma and skin sarcoma. However, the results of the present 
study support that with the exception of 2 angiosarcoma cases, 
the TMB value of most sarcomas is low. Though only 4 cases 
were included in the current cohort, a significant association 
was detected between angiosarcomas and TMB‑H, indicating 
that patients with angiosarcomas may benefit from ICPI 
therapy. 

NTRK functions in the development, differentiation and 
metabolism of nerves and other tissues. NTRK inhibitors can 
be used as targeted agents for tumor therapy, thus the detection 
of NTRK fusions has important clinical significance (76‑78). 
ETV6‑NTRK3 fusion is common in infantile fibrosarcoma, 
and the tropomyosin‑related kinase inhibitor LOXO‑101 was 
reported to benefit infantile fibrosarcoma patients harboring 
ETV6‑NTRK3 fusions (78). A metastatic infantile fibrosar‑
coma patient harboring LMNA‑NTRK1 showed a complete 
and durable response to crizotinib (79). Furthermore, 
Wong et al (77) presented a case of a reverse transcription PCR 
ETV6‑NTRK3‑negative congenital infantile fibrosarcoma 
harboring a LMNA‑NTRK1 gene fusion with a near‑complete 
response to crizotinib. The data support the assumption that 
NTRK fusions are the drug target of LOXO‑101 or crizo‑
tinib in sarcomas. In the present study, ETV6‑NTRK3 and 
LMNA‑NTRK1 fusions were successfully detected, indicating 
a potential treatment target for these patients. Follow‑up 
information on the targeted treatment of patients with new 
NTRK fusions of IRF2BP2‑NTRK1, MEF2A‑NTRK3 and 
ITFG1‑NTRK3 may also guide and expand the use of NTRK 
fusion therapy in patients with sarcoma.

In conclusion, the present study investigated the genomic 
mutation profiles of pan‑sarcomas, identified potential 
biomarkers, and accurately classified sarcoma subtypes with 
the assistance of NGS. The identification of NTRK fusions 
in sarcoma provides important value for NTRK inhibitor 
therapy. The absence of FISH confirmation is a limitation 
of the present study. However, the results support that NGS 
targeting may effectively promote the accurate classification 
and diagnosis of sarcomas, and provide guidance for precise 
therapeutic strategies for bone and soft‑tissue sarcomas.
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