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Abstract
Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower
airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections
and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial
and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On
a subset of the subjects that underwent bronchoscopy, we also quanti�ed SARS-CoV-2 viral load,
analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and
pro�led the host immune response. We found that isolation of a hospital-acquired respiratory pathogen
was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment
of the lower airway microbiota with an oral commensal (Mycoplasma salivarium), while high SARS-CoV-2
viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome pro�le
of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that
1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management
strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.

Introduction
The earliest known case of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection
causing coronavirus virus disease (COVID-19) is thought to have occurred on November 17, 20191. As of
February 20, 2021, 110.3 million con�rmed cases of COVID-19 and 2.4 million deaths have been reported
worldwide2. As the global scienti�c community rallied in a concerted effort to understand SARS-CoV-2
infections, our background knowledge is rooted in previous experience with the related zoonotic
betacoronaviruses Middle East Respiratory Syndrome coronavirus (MERS-CoV) and SARS-CoV-1 that
have caused severe pneumonia with 34.4% and 9% case fatality, respectively3. As observed for these
related coronaviruses, SARS-CoV-2 infection can result in an uncontrolled in�ammatory response4

leading to acute respiratory distress syndrome (ARDS) and multi-organ failure, both associated with
increased mortality. While a large proportion of the SARS-CoV-2 infected population is asymptomatic or
experiences mild illness, a substantial number of individuals will develop severe disease and require
hospitalization, with some progressing to respiratory failure. Mortality among hospitalized COVID-19
patients is estimated to be approximately 20%, which can go up to 70% among those requiring invasive
mechanical ventilation 5–12.

Mortality in other viral pandemics, such as the 1918 H1N1 and 2009 H1N1 in�uenza pandemics, has
been attributed in part to bacterial co-infection or super-infection 13,14. To determine if this is also the
case for COVID-19, we can use next generation sequencing (NGS) to probe the complexity of the
microbial environment (including RNA and DNA viruses, bacteria and fungi) and how the host (human)
responds to infection. Recent studies have used this approach to uncover microbial signatures in patients
with ARDS.15,16 Increased bacterial burden and the presence of gut-associated bacteria in the lung were
shown to worsen outcomes in these critically ill patients 15,17, highlighting the potential role of the lung
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microbiome in predicting outcomes in ARDS. In a recent study using whole genome sequencing to pro�le
the gut microbiome of 69 patients from Hong Kong, investigators identi�ed an increased abundance of
opportunistic fungal pathogens among patients with con�rmed COVID-1918. While there is emerging
interest in understanding the microbial environment in patients with SARS-CoV-2 infections, few studies
have attempted to characterize this at the primary site of the disease activity: the lower airways19,20.
Furthermore, no study has yet determined whether microbial differences in the airways of COVID-19
patients could be contributing to the different outcomes in patients receiving mechanical ventilation.

In this investigation, we accessed a large prospective cohort of critically ill patients with SARS-CoV-2
infection who required invasive mechanical ventilation, and from whom bronchoalveolar lavage (BAL)
samples were collected. We characterized the lung microbiome of these patients in parallel with analyses
of lower airway markers of host immunity. While we did not �nd that isolation of a secondary respiratory
pathogen was associated with prolonged mechanical ventilation (> 28 days) or fatal outcome, we did
identify critical microbial signatures—characterized by enrichment of oral commensals, high SARS-CoV-2
load, and decreased anti-SARS-CoV-2 IgG response—associated with fatal outcome, suggesting a need
for more targeted antiviral therapeutic approaches for the care of critically ill COVID19 patients.

Results

Cohort
From March 3rd to June 18th 2020, a total of 589 patients with laboratory-con�rmed SARS-CoV-2
infection were admitted to the intensive care units of two academic medical centers of NYU Langone
Health in New York (Long Island and Manhattan) and required invasive mechanical ventilation (MV). This
included a subset of 142 patients from the Manhattan campus who underwent bronchoscopy for airway
clearance and/or tracheostomy from which we collected and processed lower airway samples for this
investigation (Supplementary Fig. 1). Table 1 shows demographics and clinical characteristics of the 142
patients who underwent bronchoscopy divided into three clinical outcomes: survivors with ≤28 Days on
MV; survivors with > 28 Days on MV; and deceased. The median post admission follow-up time was 232
days (CI = 226–237 days). Supplementary Tables 1 and 2 compare similar data across all 589 subjects,
divided per site and sub-cohorts. Patients at the Manhattan campus who underwent bronchoscopy were
younger, had lower body mass index (BMI), and a lower prevalence of chronic obstructive pulmonary
disease (COPD; Supplementary Table 1). Among the cohort that provided lower airway samples through
bronchoscopy, 37% of the subjects were successfully weaned within 28 days of initiation of MV and
survived hospitalization, 39% required prolonged MV but survived hospitalization, and 24% died. Patients
within the bronchoscopy cohort had a higher overall survival than the rest of the NYU COVID-19 cohort
since most critically ill patients were not eligible for bronchoscopy or tracheostomy. Mortality among
those in the no-bronchoscopy cohort was 77%. In the overall NYU cohort, higher age and BMI were
associated with increased mortality (Supplementary Table 2). There was a similar, albeit non-signi�cant,
trend for the bronchoscopy cohort. Among the clinical characteristics of this cohort, patients within the
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deceased group more commonly had a past medical history of chronic kidney disease and
cerebrovascular accident.
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Table 1
NYU Manhattan Bronchoscopy Cohort

    Outcomes    

Variable MV ≤ 28 days MV > 28 days Deceased p-value

N 52(37) 56(39) 34(24)  

Age 59[38–67] 64[47–71] 64[56–72] 0.094

Sex (Male) 40(76.9) 46(82.1) 25(73.5) 0.608

Race/Ethnicity       0.231

Caucasian 25(48.1) 28(50) 14(41.2)  

Hispanic or Latino 10(19.2) 16(28.6) 8(23.5)  

AAM 1(1.9) 4(7.1) 6(17.6)  

Asian 4(7.7) 4(7.1) 1(2.9)  

Other 22(42.3) 20(35.7) 13(38.2)  

BMI 29[25–32] 26[23–29] 29[25–33] 0.094

Comorbidities        

Hyperlipidemia 11(21.2) 19(33.9) 7(20.6) 0.226

Hypertension 29(55.8) 23(41.1) 17(50) 0.306

CHF 2(3.8) 3(5.4) 3(8.8) 0.615

CAD 5(9.6) 8(14.3) 5(14.7) 0.705

Diabetes 18(34.6) 23(41.1) 13(38.2) 0.788

Asthma 1(1.9) 0(0) 1(2.9) 0.478

CKD 4(7.7) 3(5.4) 8(23.5) 0.017*#

CVA 3(5.8) 10(17.9) 13(38.2) 0.001*#

Smoking Status       0.846

Ever 10(19.2) 13(23.2) 8(23.5)  

Never 42(80.8) 43(76.8) 26(76.5)  

Bio-Markers¥        

IL-6 83[44–180] 40[16–143] 113[23–214] 0.284
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    Outcomes    

Lymphocytes 9[7–12] 6[4–8] 4[3–6] < 
0.001*#$

WBC 10.7[8.9–
13.4]

12.2[9.8–
15.7]

14.2[11-17.4] 0.004*

Ferritin 1286[722–
2513]

1448[915–
2352]

1882[1001–
2893]

0.240

CRP 49[23–135] 82[36–138] 66[37–157] 0.224

D-Dimer 2038[956–
3592]

2350[747–
3399]

2006[889–
3035]

0.903

PaO2/FiO2 168[103–210] 96[74–178] 97[65–152] 0.001*$

Treatment        

ECMO 10(19.2) 15(26.8) 2(5.9) 0.05#

Dialysis 5(9.6) 15(26.8) 11(32.4) 0.023*$

Steroids 26(50) 44(78.6) 28(82.4) 0.001*$

Anticoagulation 50(96.2) 54(96.4) 34(100) 0.521

Hydroxychloroquine 49(94.2) 51(91.1) 31(91.2) 0.799

Tocilizumab 24(46.2) 23(41.1) 12(35.3) 0.604

Antiviral 18(34.6) 21(37.5) 14(41.2) 0.827

Lopinavir/Ritonavir 10(19.2) 8(14.3) 6(17.6) 0.784

Remdesivir 5(9.6) 8(14.3) 2(5.9) 0.436

Antibiotic 52(100) 56(100) 34(100)  

Azithromycin 48(92.3) 47(83.9) 28(82.4) 0.311

Vancomycin 48(92.3) 53(94.6) 29(85.3) 0.294

Piperacillin/Tazobactam 45(86.5) 47(83.9) 21(61.8) 0.012*#

Ceftriaxone 37(71.2) 40(71.4) 19(55.9) 0.246

Cefepime 14(26.9) 22(39.3) 11(32.4) 0.392

Amikacin 14(26.9) 23(41.1) 18(52.9) 0.048*

Antifungal 32(61.5) 48(85.7) 27(79.4) 0.012
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    Outcomes    

Micafungin 22(42.3) 37(66.1) 25(73.5) 0.006*$

Fluconazole 14(26.9) 33(58.9) 10(29.4) 0.001$#

Respiratory Culture 51(98.1) 56(100) 33(97.1) 0.478

Positive Bacteria 28(54.9) 49(87.5) 22(66.7) 0.001$#

Staphylococcus aureus 11(21.6) 12(21.4) 5(15.2) 0.728

MRSA 4(7.8) 5(8.9) 0(0) 0.221

Klebsiella pneumoniae 2(3.9) 8(14.3) 2(6.1) 0.135

Blood Culture 52(100) 56(100) 34(100)  

Positive Bacteria 7(13.5) 17(30.4) 9(26.5) 0.101

Hospitalization Data        

Hospital Length of Stay 40[33–47] 60[53–82] 34[23–53] < 
0.001#$

ICU Admission Day 2[1–3] 2[0–4] 3[1–6] 0.413

Sampling Day 10[6–14] 13[8–16] 13[8–16] 0.115

ICU Length of Stay 28[21–33] 52[41–63] 29[21–40] < 
0.001#$

Intubation Day 2[1–4] 3[1–5] 4[2–8] 0.125

Ventilator Days 21[16–24] 41[34–57] 25[18–32] < 
0.001#$

Average Follow-Up 234[230–240] 230[224–235] - 0.004$

Days Between Death and ICU
Admission

n.a. n.a. 30[22–47]  

Data expressed as n(%) or median[interquartile range].

p-values denotes chi square and Kruskal-Wallis for categorical and continuous variables, respectively.

MV = Invasive mechanical ventilation

AAM = African American

BMI = The body mass index is the weight in kilograms divided by the square of the height in meters.

CHF = congestive heart failure, CAD = coronary artery disease, CKD = chronic kidney disease, CVA = 
cerebrovascular accident
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    Outcomes    

¥ Biomarkers calculated as median value day 1–14 after initiation of mechanical ventilation

IL- 6 = interleukin 6, WBC = white blood cell count, CRP = c-reactive protein, PaO2 = partial pressure of
arterial oxygen, FiO2 = fraction inspired oxygen

ECMO = extra corporeal membrane oxygenation

Anticoagulation = Full dose anticoagulation with therapeutic anti-Xa level > 0.3IU/ml and/or PTT > 45
sec.

Respiratory Culture = de�ned as having any respiratory culture performed

Positive Bacteria = a culture resulting in any bacteria growth

MRSA = methicillin-resistant Staphylococcus aureus

Blood Culture = de�ned as having any blood culture performed

ICU Admission Day = the number of days between hospital admission and ICU admission

Sampling Day = the number of days between hospital admission and day of sample collection

Intubation Day = number of days between hospital admission and day of intubation

Ventilator Days = total number of days on mechanical ventilation

Average Follow-Up = number of days between hospital admission and the last day of active follow-up

n.a. = not applicable.

Study patients were admitted during the �rst wave of the pandemic in the US, prior to current
standardized management of COVID-19. Within the bronchoscopy cohort, more than 90% of the subjects
received hydroxychloroquine and anticoagulation (therapeutic dose), 69% received corticosteroids, 41%
received tocilizumab (anti-Interleukin (IL)-6 receptor monoclonal antibody), 21% required dialysis, and
18.9% were started on extracorporeal membrane oxygenation (ECMO) (Table 1). Antimicrobial therapy
included use of antivirals (lopinavir/ritonavir in 16% and remdesivir in 10%), antifungals (�uconazole in
40% and micafungin in 57%), and antibiotics (any, in 90% of the subjects). Among the factors associated
with clinical outcome within the bronchoscopy cohort, patients who survived were more commonly
placed on ECMO whereas patients who died had frequently required dialysis (Table 1); these trends were
also observed across the whole NYU cohort. Neither hydroxychloroquine or azithromycin were
signi�cantly associated with clinical outcome; however, patients who survived were more frequently
treated with the combination antibiotic piperacillin/tazobactam.

Within the �rst 48hrs from admission, respiratory bacterial cultures were rarely obtained (n = 70/589,
12%) with very few positive results (n = 12, 17%). Blood cultures were more commonly obtained (n = 
353/589, 60%) but the rate of bacterial culture positivity was much lower (n = 5, 1.4%). These data
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support that community acquired bacterial co-infection was not a common presentation among critically
ill COVID-19 patients.

During their hospitalization, most patients had respiratory and/or blood specimens collected for bacterial
cultures (Table 1 and Supplementary Table 1). The proportions of positive bacterial respiratory cultures
and blood cultures were 73% and 43%, respectively. We evaluated whether respiratory or blood culture
results obtained as per clinical standard of care were associated with clinical outcome. Risk analyses for
the culture results during hospitalization for the whole cohort (n = 589) demonstrated that bacterial
culture positivity was not associated with increased odds of dying but was associated with prolonged
mechanical ventilation in the surviving patients (Fig. 1). Since length of stay could potentially affect
these results (patients who died could have a shorter hospitalization, and therefore may have had fewer
specimens collected for cultures), we repeated the analysis using culture data obtained during the �rst
two weeks of hospitalization. This analysis showed that bacterial pathogen culture positivity (both
respiratory and blood) during the early period of hospitalization was not associated with worse outcome
(Fig. 1 and Supplementary Table 3). Interestingly, identi�cation of oral bacteria in respiratory culture,
commonly regarded as procedural contaminants, was associated with higher odds of prolonged
mechanical ventilation (> 28 days) among survivors. Similar trends were noted when analysis was
performed on subjects from NYU LI and NYU Manhattan separately, or for the bronchoscopy cohort
(Supplementary Table 2). Among the bronchoscopy cohort, there was no statistically signi�cant
association between culture results and clinical outcome, but there was a trend towards an increased rate
of positive respiratory cultures for Staphylococcus aureus (including MRSA), S. epidermidis, and
Klebsiella pneumoniae in the survival groups (Table 1). These data suggest that in critically ill patients
with COVID-19 requiring MV, hospital isolation of a secondary respiratory bacterial pathogen is not
associated with worse clinical outcome.

SARS-CoV-2 load in the lower airways is associated with
poor clinical outcome
Using supraglottic and BAL samples from patients undergoing bronchoscopy (n = 142), we evaluated the
viral load by rRT-PCR for the SARS-CoV-2 N gene, adjusted by levels of human ribosomal protein (RP). Of
note, the majority of samples were largely obtained in the second week of hospitalization (Table 1,
median[IQR] = 10[6–14], 13[8–16], and 13[8–16] for the ≤28-days MV, > 28-days MV, and deceased
groups, respectively, p = ns). Paired analysis of upper and lower airway samples revealed that, while there
was a positive association between SARS-CoV-2 viral load of the paired samples (rho = 0.60, p < 0.0001),
there was a subset of subjects (21%) for which the viral load was greater in the BAL than in the
supraglottic area, indicating topographical differences in SARS-CoV-2 replication (Fig. 2a). Importantly,
while the SARS-CoV-2 viral load in the upper airway samples was not associated with clinical outcome
(Supplementary Fig. 2), patients who died had higher viral load in their lower airways than patients who
survived (Fig. 2b). We then evaluated virus replication in BAL samples by measuring levels of
subgenomic RNA (sgRNA) targeting the E gene of SARS-CoV-2. This mRNA is only transcribed inside
infected mammalian cells and is not packed into virions, thus, its presence is indicative of recent virus
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replication in a sample21 − 23. In BAL, levels of sgRNA correlated with viral load as estimated by rRT-PCR
for the SARS-CoV-2 N gene (Fig. 2c) and the highest percentage of measurable sgRNA was in the
deceased group followed by the ≤28-days MV group, and the > 28-days MV group (17,7%, 11.5%, and
3.7%, respectively, chi-square p = 0.028 for the comparison deceased vs. >28-days MV group). Thus, while
in most cases levels of sgRNA were not measurable in BAL suggesting that no active virus replication
was ongoing in the lower airways of COVID-19 patients at the time of bronchoscopy (overall median[IQR] 
= 12[7–16] days from hospitalization), the lower airway viral burden, as estimated by rRT-PCR, is
associated with mortality in critically ill COVID-19 patients.

Microbial community structure of the lower airways is distinct from the upper airways in critically ill
patients.

Considering the bacterial species and the viral loads identi�ed in the lower and upper airways of this
cohort and their association with outcomes, we pro�led in detail their viral and microbial composition.
Microbial communities were evaluated using parallel datasets of RNA and DNA sequencing from 118
COVID-19 patients with lower airway samples that passed appropriate quality control and a subset of
paired 64 upper airway samples, along with background bronchoscope controls.

RNA sequencing (RNAseq) of the metatranscriptome provided insight into the RNA virome as well as the
transcriptomes of DNA viruses, bacteria, and fungi. Given the low biomass of lower airway samples we
�rst identi�ed taxa as probable contaminants by comparing the relative abundance between background
bronchoscope and BAL samples (Supplementary Fig. 3a and Supplementary Table 4). However, we did
not remove any taxa identi�ed as probable contaminants from subsequent analyses. A comparison of
the microbial community complexity captured in these data, determined using the Shannon diversity
Index, showed there was signi�cantly lower α diversity in the lower airway samples than in the upper
airways and background controls (Supplementary Fig. 4a). Similarly, β diversity analysis based on the
Bray Curtis Dissimilarity index indicated that the microbial composition of the lower airways was distinct
from the upper airways and background controls (Supplementary Fig. 4b, PERMANOVA p < 0.01).
Sequence reads indicated a much higher relative abundance of SARS-CoV-2 in the lower than in the upper
airways for this cohort (Supplementary Fig. 4c). Comparisons of the most dominant bacterial and fungal
taxa that were functionally active showed that S. epidermidis, Mycoplasma salivarium, S. aureus,
Prevotella oris, and Candida albicans, many often-considered oral commensals, were present in both
upper and lower airway samples (Supplementary Fig. 4c). Interestingly, the lytic phage Proteus virus
Isfahan, known to be active against bio�lms of Proteus mirabilis 24, was found to be highly
transcriptionally active in the BAL.

DNA sequencing data provided insight into the DNA virome, as well as the bacterial and fungal
metagenomes. As for the metatranscriptome data, we �rst identi�ed taxa as probable contaminants but
these were not removed for subsequent analyses (Supplementary Fig. 3b). Both α and β diversity
analyses of the metagenome support distinct microbial community features in the lower airways as
compared with the upper airways and background controls (Supplementary Fig. 5a, 5b). Among the top
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10 taxa across lower and upper airway samples were S. aureus, Salmonella enterica, Burkholderia dolosa,
and Klebsiella variicola. Candida albicans only ranked #77 in the BAL while it was ranked 5th in the
metatranscriptome data indicating that while present at low relative abundance, it was highly active
(Supplementary Table 4). K. variicola, while prevalent at a high relative abundance (#4 in BAL, and #5 in
the upper airways) in patients of this cohort, its ranking in the RNAseq data was not among the top 50,
indicating that it was not as active functionally as other bacteria. Conversely, while S. epidermis ranked
as the most highly functional taxon in both lower and upper airways, based on RNAseq reads
(Supplemental Fig. 3c), it was 33rd in relative abundance in the BAL DNAseq data but was present at very
high relative abundance in the upper airways (ranked #3). These data suggest that microbes that
colonize the upper airways and the skin were common in the lower airways in this cohort of COVID-19
patients requiring invasive mechanical ventilation.

Distinct microbial signatures are associated with different clinical outcomes.

To determine the potential impact of vertebrate viruses on outcome, we compared virus enrichment
differences in BAL samples across the three clinical outcome groups (≤28-days MV, > 28-days MV, and
deceased). As it pertains to the vertebrate RNA virome subfraction, there were signi�cant differences (β
diversity) between the three clinical outcome groups (Supplementary Fig. 6, PERMANOVA p < 0.01). There
were no signi�cant differences for the vertebrate DNA virome or DNA virus transcriptome subfractions of
the sequence reads (data not shown). Consistent with the SARS-CoV-2 viral load assessed by RT-PCR,
differential expression analysis (DESeq) of the RNA virome identi�ed SARS-CoV-2 as being enriched in
the deceased group, as compared with both ≤ 28-days and > 28-days MV groups (fold change > 5,
Fig. 2d). Cox proportional hazards modeling supports that enrichment with SARS-CoV-2 was associated
with increased risk for death (HR 1.33, 95% CI = 1.07–1.67, pvalue = 0.011, FDR adjusted pvalue = 0.06;
Supplementary Table 5).

Analysis of differential DNA virus abundance using DEseq did not show statistically signi�cant
differences. Because the virome includes viruses of bacteria and archaea, we also analyzed the phage
data (including viruses of archaea). Phages impact the bacterial population—including bacterial
pathogens—and so could be clinically relevant. At a compositional level, the virome of DNA phages did
not display statistically signi�cant differences or signi�cant virus enrichment based on clinical outcome
groups (data not shown). However, while the phage metatranscriptome α and β diversity was similar
across the clinical outcome groups, there were various taxonomic differences at the RNA level with
enrichment of Staphylococcus phages CNPx in the deceased and > 28-day MV groups when compared
with the ≤ 28-day MV group (Fig. 2e). Differential expression from two other Staphylococcus phages was
also observed in the > 28-days MV group as compared with the ≤ 28-days MV group (Fig. 2e). None of the
described taxa were identi�ed as possible contaminants (Supplementary Table 4).

Enrichment of the lower airway microbiota with oral
commensals is associated with poor outcome



Page 15/42

We evaluated the overall bacterial load by quantitative PCR, targeting the 16S rRNA gene. As expected,
the bacterial load in the lower airways was several folds lower than in the upper airways but clearly higher
than the background bronchoscope control (Supplementary Fig. 7). Patients who died had higher total
bacterial load in their lower airways than patients who survived (Fig. 3a).

While no statistically signi�cant differences were noted in α or β diversity across clinical outcome groups
(Fig. 3b-c), several differences were noted when differential enrichment was evaluated using DESEq. For
the comparisons made across the clinical outcome groups we focused on consistent signatures
identi�ed in the lower airway metagenome and metatranscriptome. Coherence of differentially enriched
taxa was determined by gene set enrichment analysis (GSEA) (Fig. 3d) and directionality of enrichment
between the two datasets was evaluated (Fig. 3e). Among the most abundant taxa, the oral commensal
M. salivarum was enriched in the deceased and > 28-days MV groups as compared with the ≤ 28-days
MV group. In contrast, a different oral commensal, Prevotella oris, was enriched in the ≤ 28-days MV
group as compared with the deceased and > 28-days MV groups. These data support that oral
commensals are frequently found in the lower airways of critically ill COVID-19 patients and that
differences between groups could be due to differential microbial pressures related to host factors.
Interestingly, most of the statistically signi�cant taxa were identi�ed in the metatranscriptome rather than
in the metagenome data, with only P. oris identi�ed in both datasets. None of the described taxa were
identi�ed as possible contaminants (Supplementary Table 4). Overall, most of the microbial signatures
identi�ed as enriched in the deceased or in subjects on prolonged MV are regular colonizers of healthy
skin and mucosal surfaces rather than frequent respiratory pathogens.

For the fungal data, there were no statistically signi�cant differences in α or β diversity identi�ed between
clinical outcome groups in the metagenome or the metatranscriptome data (Supplementary Fig. 8a and
8c). However, in the metagenome data, we identi�ed Candida glabrata enriched in the deceased group as
compared with the ≤ 28-days MV and the > 28-days MV groups but this was not consistent in the
metatranscriptome data (Supplementary Fig. 8b and 8d).

Poor clinical outcomes are associated with enrichment of
antimicrobial resistance genes and glycosphingolipid
biosynthesis
We used the gene annotation of the DNAseq and RNAseq data to pro�le the microbial functional potential
of the lower airway samples. For the comparisons made across the clinical outcome groups, we focused
on consistent functional signatures identi�ed in the lower airway metagenome and metatranscriptome.
Coherence of differentially enriched functions was determined using GSEA (Fig. 4a) and directionality of
enrichment was also evaluated (Fig. 4b). Overall, there was coherence of directionality between the
metranscriptomics and metagenomics datasets for the comparisons between deceased vs ≤ 28-days MV,
and > 28-days MV vs ≤ 28-days MV groups. Interestingly, statistically signi�cant differences were only
noted in the metatranscriptome data and not in the metagenome data. Among the top differentially
expressed pathways in the poor outcome groups were glycosylases, oxidoreductase activity, transporters,
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and two-component system, among other genes. The two-component system is used by bacteria and
fungi for signaling. A speci�c analysis of antibiotic resistance genes shows that there was signi�cant
gene enrichment and expression of biocide resistance in the deceased group as compared to the two
other MV groups (Supplementary Fig. 9). There was also signi�cant expression of genes resistant to
trimethoprim and phenolic compound, as well as multi drug resistance in the deceased group as
compared to the ≤ 28-days MV group. Presence of the resistance gene against Trimethropim was not
signi�cantly associated with prior exposure with Trimethoprim. However, only 7 patients received this
drug before sample collection.

Lower airway host immune phenotype shows failure of adaptive and innate immune response to SARS-
CoV-2 among deceased subjects

To evaluate the host immune response to SARS-CoV-2 infection, we �rst measured levels of anti-Spike
and anti-RBD (receptor binding domain) antibodies in BAL samples. For both anti-Spike and anti-RBD
immunoglobulins, levels of IgG, IgA and IgM were several logs higher than levels found in BAL samples
from non-SARS-CoV-2 infected patients. Importantly, IgG levels of anti-Spike and anti-RBD were
signi�cantly lower in the deceased group as compared to the levels found in patients who survived
(Fig. 5a and Supplementary Fig. 10a-c, p < 0.05). A neutralization assay performed using BAL �uid
showed varying levels of neutralization across all samples (as estimated by EC50) but no statistically
signi�cant differences between the clinical outcome groups (Supplementary Fig. 10d). We then evaluated
whether levels of antibodies correlated with viral load in BAL samples. While viral load levels of SARS-
CoV-2 measured with rRT-PCR did not correlate with BAL measurements of SARS-CoV-2 speci�c
antibodies, sgRNA viral load levels negatively correlated with BAL levels of Anti-Spike (IgG and IgA), Anti-
RBD (IgG and IgA) and the Neutralization assay (Supplementary Table 6). These data suggest that the
IgG subfraction is an important marker of the adaptive immune response in the lung of critically ill
COVID-19 patients and that both sub-fractions of IgG and IgA anti-SARS-CoV-2 may contribute to the viral
replication control in the lower airways.

Host transcriptome analyses of BAL samples showed signi�cant differences across clinical outcome
groups based on β diversity composition (Supplementary Fig. 11). We identi�ed multiple differentially
expressed genes across the clinical outcome groups (Supplementary Fig. 11b-d). First, we noted that the
lower airway transcriptomes showed downregulation of heavy constant of IgG (IGHG3), and heavy
constant of IgA (IGHA1) genes in those with worse clinical outcome (Supplementary Table 7). We then
used IPA (Ingenuity Pathway Analysis) to summarize differentially expressed genes across the three
clinical outcome groups (Fig. 5b). The sirtuin Signaling Pathway (a pathway known to be involved in
aging, gluconeogenesis/lipogenesis, and host defense against viruses)25 and the ferroptosis pathway (an
iron-dependent form of regulated cell death present in bronchial epithelium)26,27 were both upregulated in
those with worse outcome. While this may re�ect the host response to viral infection, other differences in
the transcriptomic data showed downregulation of mitochondrial oxidative phosphorylation, HIF1α,
STAT3, and Phospholipase C Signaling. Additional canonical signaling pathways, including insulin
secretion, multiple Inositol related pathways, noradrenaline/adrenaline degradation signaling, and
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xenobiotic related metabolism were signi�cantly downregulated when comparing the > 28-days MV vs.
≤28-days MV groups. Upstream pathway prediction analyses of the host airway transcriptome support
previously reported mitochondria dysfunction28 (inhibition in mitochondrial related regulators NSUN3,
MRPL14, MRPL12, LONP1, DAP3), and metabolic/gluconeogenesis dysregulation29,30 (SIRT3) in critically
ill COVID-19 subjects with poor outcome (Supplementary Table 8). We also observed decreased
activation in the in�ammatory response in critically ill COVID-19 subjects with poor outcome (phagocytes,
neutrophils, and granulocytes, and leukocytes; Supplementary Table 9). A comparison of clinical outcome
between the > 28-days MV vs. ≤28-days MV groups showed upstream predicted inhibition in insulin,
estrogen, beta-estradiol, EGF, EGFR, IL-5, and IL-10RA in the > 28-days MV group (Supplementary Table 9).
These differences suggest that, at the stage that we sampled the lower airways of patients with critically
COVID-19, an overt in�ammatory tone was not predictive of worst outcome.

To determine if the abundance of immune cells varies between different clinical outcome groups, we
estimated cell type abundance from the host transcriptome with computational cell type quanti�cation
methods, including a deconvolution approach implemented in CIBERSORTx 31 and a cell type signature
enrichment approach implemented in xCell 32. As reported recently in other studies33, among the cell
types detected in the BAL samples we observed a consistent enrichment of mast cells and neutrophils in
the > 28-days MV and deceased groups compared with the ≤ 28-days MV group (Fig. 5c and
Supplementary Table 10). We also identi�ed signi�cantly higher in�ammatory macrophages (M1), innate
T-cells and memory T-cells (CCR7+) among subjects with worse clinical outcome.

Cross-kingdom network analyses identify bacteria, fungi,
and host pathways functionally impacted by SARS-CoV-2
To identify potential microbe-microbe and microbe-host interactions that could have an effect on
outcome, we used a multi-scale network analysis approach (Multiscale Embedded Gene co-Expression
Network Analysis, MEGENA)34. We �rst used the relative abundance from the RNAseq data to capture co-
expressing taxa in the metatranscriptome network neighborhood of SARS-CoV-2 (SARS2-NWN). We
examined �ve such network neighborhoods (constructed by including nodes with increasing distance 1 to
5 from SARS-CoV-2, i.e. neighborhood 1 to neighborhood 5) that were signi�cantly enriched for taxa
functionally active in the deceased group when compared with the ≤ 28-day MV group. Only the largest
cluster, with 504 taxa, had signi�cantly enriched taxa in both the deceased and in the ≤ 28-day MV
outcome groups (Supplementary Fig. 12a) (FET P-value = 4.6e-45, 4.0 FE). Many of these taxa are among
the top 50 most abundant microbes we had previously identi�ed in the metatranscriptome dataset. Taxa
present that are in�uenced by SARS-CoV-2 and signi�cantly differentially enriched in the deceased group
include bacteria such as M. salivarium, Bi�dobacterium breve, and Lactobacillus rhamnosus (a gut
commensal), that we had previously identi�ed by differential expression analysis (Fig. 3e), but also taxa
such as S. epidermis, Mycoplasma hominis (urogenital bacteria), and the phage VB_PmiS-Isfahan (also
referred to as Proteus virus Isfahan) that we had previously only picked up as being highly abundant but
not necessarily differentially enriched in the deceased group. Most of the fungi, such as C. albicans, C.
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glabrata and C. orthopsilosis were enriched in the ≤ 28-day MV group. Interestingly, our earlier analysis of
the metagenome (Supplementary Fig. 8b) had identi�ed C. glabrata as being enriched in the deceased
group with no enrichment in the metatranscriptome. This analysis indicates that some of these abundant
taxa could be responding to SARS-CoV-2 disruption in a similar manner, or indirectly interacting
functionally.

We further investigated the association of the network neighborhood with host network modules using
the host transcriptome data to identify groups of host genes that are co-expressed in response to SARS-
CoV-2 disruption. The 3 host modules with the most signi�cant correlations to SARS2-NWN are M175,
M277 and M718. M277 is the parent module of M718, and both are enriched with genes related to
respiratory electron transport, while M175 is enriched for IFN-γ signaling (Supplementary Fig. 12b).
Module M175 is positively correlated with the SARS2-NWN (ρ = 0.32, P-value = 2.1e-3). While there was no
collective enrichment of the module by differentially expressed genes (DEGs) in the deceased vs ≤ 28-
days MV, there was for > 28-days vs ≤ 28-days MV (FET P-value = 0.030, 4.5 FE). This module includes
well-known antiviral IFN stimulated genes (ISGs), such as IRF7 and OASL. Investigating module response
on an individual gene level, Interleukin 4 induced 1 (IL4I1) appears as one of the most up-regulated genes
in this module when comparing the deceased group with the ≤ 28-day MV group. The transporter 1, ATP
binding cassette subfamily B member (TAP1) is also upregulated and a key regulator (hub gene).
Together with TAP2, TAP1 plays a central role in MHC I antigen presentation35. Transcriptional regulators
SP110 and SP140, both ISGs and also identi�ed as hub genes, were down-regulated. Module 718 was
also positively correlated with the SARS2-NWN (ρ = 0.31, P-value = 1.3e-3; enrichment FET P-value = 0.029,
3.7 FE of M178 by differentially expressed genes in deceased vs ≤ 28-days MV). The majority of genes in
this module are down-regulated in the deceased group compared with the ≤ 28-day group. Some of the
genes encode subunits of the mitochondrial ATP synthase, such as ATP6 and ATP8, the cytochrome C
oxidase, with COX2 and COX3 as well as the NADH dehydrogenase complex, such as ND1-ND6. ND4L,
ATP6, COX2, ND1, ND3, ND4L and ND6 are key regulators, potentially modulating the expression of the
other genes in the module. These �ndings further support mitochondria dysfunction28, potentially
disrupting processes indicated by the module. Other down-regulated genes are humanin1 (MTRNR2L1)
and R-spondin 1 (RSPO1). Humanin is known to protect against oxidative stress and mitochondrial
dysfunction36. RSPO1 protects against cell stress by activating the Wnt/β-catenin signaling pathway37.
Non-coding RNAs, such as MALAT1 and RHOQ-AS1 were found to be up-regulated. MALAT1 is known to
suppress IRF3-initiated antiviral innate immunity38 while the function of RHOQ-AS1 is unknown.

Metatranscriptome and Transcriptome signatures are
predictive of mortality
We evaluated the strength of the metatranscriptomic, metagenomic and host transcriptomic pro�les to
predict mortality in this cohort of critically ill COVID-19 patients. To this end, we identi�ed features in each
of these datasets and constructed risk scores that best predicted mortality. Figure 6a shows that the
metatranscriptome data, alone or combined with the other two datasets, was most predictive of mortality.
Importantly, the predictive power (as estimated by the area under the curve) of the metatranscriptome
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data was improved by excluding probable contaminants and worsened when SARS-CoV-2 was removed
from the modeling. The selected features we used to construct the metatranscriptome, metagenome and
host transcriptome risk scores are reported in Supplementary Table 11). Using the means of the scores,
we classi�ed all subjects into high risk and low risk groups for mortality. Figure 6b shows Kaplan-Meier
survival curve comparisons evaluating the predictive power of risk score strati�cation based on
metatranscriptome, metagenome and host transcriptome data. Combining risk scores from different
datasets showed an optimal identi�cation of mortality when metatranscriptome and host transcriptome
were considered (Fig. 6c). We then used the gene signature found as being the most predictive of
mortality to conduct IPA analyses. Among the upstream regulators, mortality was associated with
predicted activation of interferon alpha while chemotaxis and infection by RNA virus were predicted as
activated in diseases and functions. These data highlight the importance of SARS-CoV-2 abundance in
the lower airways as a predictor for mortality, and the signi�cant contribution of the host cell
transcriptome, which re�ects the lower airway cell response to infection.

Discussion
A limited number of studies to date have evaluated the lower airway microenvironment in patients with
SARS-CoV-2 infection because of the increased risk of virus transmission to healthcare providers during
sampling19,20,39−44. This has limited molecular investigations into the primary site of the disease. Having
built a substantial biorepository of lower airway samples among COVID-19 patients on mechanical
ventilation recruited during the �rst wave of SARS-CoV-2 infections in New York City, we used a
metagenomic approach to characterize the microbiome in the lower airways and assessed its impact on
clinically meaningful outcomes. In this analysis of 142 critically ill hospitalized patients with con�rmed
SARS-CoV-2 infection and lower airway biorepository samples available, we determined that higher SARS-
CoV-2 viral load, higher relative abundance of Mycoplasma salivarium, and limited anti-SARS-CoV-2
Spike protein IgG response in the lower airways were associated with increased mortality. This signature
was supported by the metatranscriptome data of the lower airway samples where SARS-CoV-2 sequence
reads were signi�cantly enriched in those patients who died compared to those who survived after
developing respiratory failure requiring mechanical ventilation. Importantly, although we observed
changes in other microbial components of the lower airway microbiome in our analysis of lower airway
samples from 118 patients and by clinical laboratory culture results obtained from 589 patients, we did
not �nd evidence to support the hypothesis that co-infection with common (bacterial, viral, fungi)
respiratory pathogens was associated with poor outcome—although most patients received empiric
treatment with broad spectrum antibiotics and anti-fungals.

Several studies have explored the relationship between SARS-CoV-2 viral load and mortality45–50. Severe
in�uenza requiring hospitalization has also been associated with higher viral loads51,52. It has been
argued that high viral load might merely be a re�ection of an individual’s immune response45. In fact, in
SARS-CoV-1, clinical progression was not associated with increased viral load or uncontrolled viral
replication in the nasopharynx but rather with an upregulated immune pro�le in these patients53. In a
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large cohort of 1145 patients with con�rmed SARS-CoV-2, viral load measured in nasopharyngeal swab
samples was found to be signi�cantly associated with mortality, even after adjusting for age, sex, race
and several co-morbidities 50. Similar results were found in a cohort of patients in New York City with or
without cancer, where in-hospital mortality was signi�cantly associated with a high SARS-CoV-2 viral load
in the upper airways 49. The data presented here through the use of direct quantitative methods (RT-PCR)
and a semiquantitative untargeted approach (metatranscriptome sequencing) support the hypothesis
that the SARS-CoV-2 viral load in the lower airways plays a critical role in the clinical progression of
critically ill COVID-19 patients. It is important to note that current guidelines for treatment of COVID-19 do
not recommend treatment with remdesivir for patients receiving invasive mechanical ventilation54. The
results of this investigation suggest that antivirals might still have a role in the treatment of critically ill
COVID-19 patients.

We investigated the possibility that mortality with SARS-CoV-2 infection was related to co-infection with
other pathogens. To this point several investigations have shown evidence of SARS-CoV-2 co-infection
with other viruses, bacteria and fungi identi�ed by culture-based techniques 18,55−62. In a cohort of 116
specimens positive for SARS-CoV-2, 21% were positive for one or more additional respiratory pathogens
including rhinovirus/enterovirus and respiratory syncytial virus55. In a meta-analysis of 3,338 patients
with COVID-19, only 3.5% of patients had an identi�ed bacterial co-infection at admission, while 14.3%
were found later to have a secondary bacterial infection57. The most common pathogens identi�ed
included species in the genera Mycoplasma, Hemophilus, and Pseudomonas. In another study, the most
commonly identi�ed co-infections were with Streptococcus pneumoniae, Klebsiella pneumoniae, and
Haemophilus in�uenzae59. Using detailed clinical laboratory culture data available for 589 subjects
hospitalized with respiratory failure due to COVID-19, we showed that higher rates of respiratory infection
with other organisms, especially early in their hospitalization, did not occur among subjects with poor
clinical outcome. Further, we did not observe an association between positive cultures for any pathogen
tested and increased odds of dying in critically ill COVID-19 patients.

In the subset of COVID-19 patients with BAL samples, we used NGS to identify all potential pathogens
and commensals in the lower airways beyond microbial cultures routinely obtained as per clinical care.
The RNA virome data showed that SARS-CoV-2 dominates the lower airways and was signi�cantly
associated with death. A small number of samples had a few sequences that mapped to in�uenza A or B
viruses, suggesting that co-infection with in�uenza did not occur frequently during this �rst wave of
SARS-CoV-2 infections. Within the DNA virome, there was no signi�cant difference in viruses between the
three outcome groups despite the frequent �nding of HSV-1. Similarly, when evaluating the
metatranscriptome of DNA viruses, there were few differences between the three outcome groups.
Although analysis of the phage metagenome data showed no differential enrichment between the three
cohorts, we did identify in the metatranscriptome data differentially active phages when comparing the
three cohorts, suggesting that changes in the bacterial microbiome may be occurring in critically ill
patients with COVID-19. Certain Staphylococcus phages were differentially active in those who were
ventilated for more than 28 days and in those who died. Interestingly, the bacterial signatures also



Page 21/42

identi�ed Mycoplasma salivarium, a known oral commensal that has previously been associated with
ventilator-acquired pneumonia63, as differentially active in those who died and those who were ventilated
for more than 28 days when compared to those ventilated less than 28 days. From previous data
published by us, enrichment of the lower airway microbiota with oral commensals was seen to be
associated with a pro-in�ammatory state in several diseases including lung cancer64,65 and non-
tuberculosis mycobacterium related bronchiectasis66.

With the use of metagenomic and metatranscriptomic analyses it is also possible to examine how
functionally active microbes impact the host67. In this cohort of patients, we evaluated the functional
pro�le of the microbiome within the lower airways and its effect on mortality, something that, to our
knowledge, had not yet been assessed in COVID-19 patients. The only signi�cant gene function
enrichment was found with the metatranscriptome data suggesting that functional activation of
microbes can provide further insights into the lower airway microbial environment of patients with worst
outcome. Among the pathways that were differentially expressed in those patients with poor outcome, we
identi�ed genes associated with degradation, transport, and antimicrobial resistance genes, as well as
with signaling. These differences may indicate important functional differences leading to a different
metabolic environment in the lower airways that could impact host immune responses. It could also be
representative of differences in microbial pressure in patients with higher viral loads and different
in�ammatory environments.

In the current investigation, we also characterized the immune response within the lower airways by
measuring anti-SARS-CoV-2 Spike antibodies and pro�ling the host RNA transcriptome. We observed that
low levels of anti-Spike and anti-RBD IgG in the lung were associated with poor outcome. Although we did
not �nd a statistically signi�cant association between SARS-CoV-2 neutralizing capacity and poor
outcome, levels of SARS-CoV-2 neutralizing antibodies, anti-Spike and anti-RBD antibodies (both IgG and
IgA) were negatively correlated with SARS-CoV-2 viability. Prior investigations have suggested that IgA
levels are a key driver of neutralization in the mucosa68–70. The differences noted in the current
investigation in the IgG pools are intriguing and future work investigating the antibodies generated during
SARS-CoV-2 infections will be essential.

When examining host transcriptomic differences across the different clinical outcome groups, Sirtuin and
Ferroptosis signaling pathways were found to be upregulated in the most critically ill COVID-19 patients.
Upregulation in the Sirtuin pathway demonstrates an increased host in�ammatory response to viral
infection25. In addition, ferroptosis, a recently identi�ed form of non-apoptotic regulated cell death
through iron-dependent accumulation of lipid peroxides, has been shown to cause direct lung injury71 or
pulmonary ischemia-reperfusion injury72,73. Interestingly, there is evidence to support that STAT371 and
ACSL472 alleviated ferroptosis-mediated acute lung injury dysregulation, which are both down-regulated
in COVID-19 patients with worse clinical outcome. Further analysis showed that there appeared to be an
inactivation of phagocytes, neutrophils, granulocytes, and leukocytes, including downregulation of IgG
expression levels, with additional mitochondria dysfunction, and down-regulation of Inositol related
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pathways and noradrenaline/adrenaline degradation. There is evidence that in the neonatal lung, inositol
related components exert an anti-in�ammatory effect and can prevent acute lung injury74,75.

Collectively, these data suggest that an imbalance rather than an elevated in�ammatory state in the lung
is an important marker that predicts poor outcomes in critically ill COVID-19 patients. Indeed, the inferred
cell composition analysis from the bulk transcriptome data overall points to a tepid immune response.
Memory T cells have been implicated with a robust immune response in SARS-CoV-2.76 The de�ciency of
these memory T cells that we found in the lungs of COVID-19 patients with worse outcome further
supports the presence of an ineffective immune response or presence of immune exhaustion. IL4I1,
found in the network analysis to be up-regulated in the deceased group in association with SARS-CoV-2,
is an immunosuppression enzyme that plays a role in infection and the control of immunopathology77.
IL4I1 induction has been reported in viral infections with in�uenza virus78. The ISGs and transcriptional
regulators SP110 and SP140, both downregulated in the deceased group. play important roles in resisting
intracellular pathogens79.

Strikingly, interrogation of the host transcriptomic analysis identi�ed survival-associated differences in
interferon-related responses. Our host transcriptomic risk strati�ed model seems to point to a predictive
activation of type I interferon as a prediction for mortality. This might be inconsistent with the current
suggestion that, based on systemic levels, early interferon responses are associated with poor outcome in
COVID19.80,81 Others have suggested that a robust interferon response may lead to a hyperin�ammatory
state that could be detrimental in the disease process, justifying the use of Janus kinase inhibitor
inhibitors in patients with COVID-19.82 Studies comparing transcriptomic signatures in BAL of patients
with severe COVID-19 and controls have shown activation of type 1 interferons.83 While further
longitudinal data will be needed to clarify the role of interferon signaling on the disease, the data
presented here suggest that combining microbial and host signatures could help understand the increase
risk for mortality in critically ill COVID-19 patients.

By collecting BAL samples rather than endotracheal aspirate specimens we were able to ensure extensive
sampling of the lower respiratory tract in intubated patients. However,

we were limited to samples from intubated patients in whom a clinically indicated bronchoscopy was
done to place a percutaneous tracheostomy or for airway clearance. Although this included a large
number of patients with various clinical outcomes, those sampled may not be representative of the
extremes in the spectrum of disease severity who were most likely not eligible for bronchoscopy. For
example, patients that presented with very rapid clinical deterioration and died within the �rst few days of
hospitalization or those who were quickly weaned from mechanical ventilation did not receive
bronchoscopy. However, extensive and detailed clinical data were also obtained from intubated COVID-19
patients without bronchoscopy performed within the Manhattan Campus (no bronchoscopy cohort) and
from the Long Island cohort for whom bronchoscopies were done without collecting research samples. In
both of these cohorts, clinical laboratory culture data did not identify untreated secondary pathogen
infections associated with poor outcome.
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The samples used in this investigation were obtained during the �rst surge of cases of COVID-19 in New
York City, and management re�ected clinical practices at that time. Among the differences with current
therapeutic approaches in COVID-19 patients, corticosteroids and remdesivir, two medications that likely
affect the lower airway microbial landscape, were rarely used during the �rst surge. Other medications,
such as antibiotics and anti-in�ammatory drugs could affect our �ndings and we therefore considered
them as potential confounders. However, the use of these medications was not found to be associated
with clinical outcome. The cross-sectional study design precluded evaluation of the temporal dynamics
of the microbial community or the host immune response in this cohort, which could provide important
insights into the pathogenesis of this disease. Performing repeated bronchoscopies without a clinical
indication would be challenging in these patients and other less invasive methods might need to be
considered to study the lower airways at earlier timepoints and serially over time in patients with
respiratory failure. It is important to note that there were no statistically signi�cant differences in the
timing of sample collection across the three outcome groups.

In summary, we present here the �rst evaluation of the lower airway microbiome using a metagenomic
and metatranscriptomic approach, along with host immune pro�ling in critically ill patients with COVID-
19 requiring invasive mechanical ventilation. The RNA metatranscriptome analysis showed an
association between the abundance of SARS-CoV-2 and mortality, consistent with the signal found when
viral load was assessed by targeted rRT-PCR. These viral signatures correlated with lower anti-SARS-CoV-
2 Spike IgG and host transcriptomic signatures in the lower airways associated with poor outcome.
Importantly, both through culture and NGS data, we did not �nd evidence for an association between
untreated infections with secondary respiratory pathogens and mortality. Together, these data suggest
that active lower airway SARS-CoV-2 replication and poor SARS-CoV-2-speci�c antibody responses are
the main drivers of increased mortality in COVID-19 patients requiring mechanical ventilation. The
potential role of oral commensals such as Mycoplasma salivarium need to be explored further. It is
possible that M. salivarium can impact key immune cells and has recently been reported at a high
prevalence in patients with ventilator-acquired pneumonia63. Critically, our �nding that SARS-CoV-2
evades and/or derails effective innate/adaptive immune responses indicates that therapies aiming to
control viral replication or induce a targeted antiviral immune response may be the most promising
approach for hospitalized patients with SARS-CoV-2 infection requiring invasive mechanical ventilation.

Methods
Subjects

Enrolled subjects were 18 years or older, admitted to the intensive care units (ICUs) at NYU Langone
Health from March 10th to May 10th, 2020 with a nasal swab con�rmed diagnosis of SARS-CoV-2
infection by reverse transcriptase polymerase chain reaction (RT-PCR) assay and respiratory failure
requiring invasive mechanical ventilation. Samples were obtained during clinically indicated
bronchoscopy performed for airway clearance or for percutaneous tracheostomy placement. Surviving
subjects signed informed consent to participate in this study. Samples and metadata from subjects who
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died or were incapacitated were de-identi�ed and included in this study. Comprehensive demographic and
clinical data were collected. We also collected longitudinal data on clinical laboratory culture results and
treatment. Supplementary �gure 1 shows the distribution of subjects and sampling strategy used for this
study. The study protocol was approved by the Institutional Review Board of New York University.

Lower airway bronchoscopic sampling procedure

Both background and supraglottic (buccal) samples were obtained prior to the procedure, as previously
described64. The background samples were obtained by passing sterile saline through the suctioning
channel of the bronchoscope prior to the procedure. Bronchoalveolar lavage (BAL) samples were
obtained from one lung segment as per discretion of the treating physician as clinically indicated.
Samples were then transferred to a BSL3 laboratory for processing. Once there, 2 mL of whole BAL was
stored in a tube pre�lled with 2 mL of Zymo Research’s DNA/RNA Shield™ (R1100-250,
https://www.zymoresearch.com/pages/covid-19-efforts) for RNA/DNA preservation and virus
inactivation. In addition, background control samples (saline passed through the bronchoscope prior to
bronchoscopy) and supraglottic aspirates were stored in the same RNA/DNA shield. A subset of samples
underwent BAL cell separation by centrifugation and cells were cryopreserved in DMSO while acellular
BAL �uid was aliquoted for cytokine measurements. A paired blood sample was also obtained in EDTA
tubes (Becton Dickinson, ref# 366450) and PAXgene Blood RNA tubes (PreAnalytiX) ref# 762165).

Viral load detection targeting the N gene

SARS-CoV-2 viral load was measured by quantitative real-time reverse transcription polymerase chain
reaction (rRT-PCR) targeting the SARS-CoV-2 nucleocapsid (N) gene and an additional primer/probe set to
detect the human RNase P gene (RP). Assays were performed using Thermo Fisher Scienti�c (Waltham,
MA) TaqPath 1-Step RT-qPCR Master Mix, CG (catalog number A15299) on the Applied Biosystems
(Foster City, CA) 7500 Fast Dx RealTime PCR Instrument. Using the positive controls provided by the CDC,
which are normalized to 1000 copies/mL, we converted the different Ct positive to copies/mL. This was
done using the DDCT method, applying the formula: Power [2, (CT (sample, N1 gene) - CT (PC, N1 gene)]
– [CT (sample, RP gene) - CT (PC, RP gene)]*1000.

SARS-CoV-2 viral viability through measurement of subgenomic transcripts

Viral subgenomic mRNA (sgRNA) is transcribed in infected cells and is not packaged into virions. Thus,
presence of sgRNA is indicative of active infection of a mammalian cell in samples. We therefore
measure sgRNA in all BAL samples obtained targeting the E gene as previously described.21,22 Brie�y, �ve
µl RNA was used in a one-step real-time RT-PCR assay to sgRNA (forward primer 5’-
CGATCTCTTGTAGATCTGTTCTC-3'; reverse primer 5’- ATATTGCAGCAGTACGCACACA-3'; probe 5’-FAM-
ACACTAGCCATCCTTACTGCGCTTCG-ZEN-IBHQ-3') and using the Quantifast Probe RT-PCR kit (Qiagen)
according to instructions of the manufacturer. In each run, standard dilutions of counted RNA standards
were run in parallel to calculate copy numbers in the samples.

https://www.zymoresearch.com/pages/covid-19-efforts
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DNA/RNA isolation, library preparation and sequencing

DNA and RNA were isolated in parallel using zymoBIOMICS™ DNA/RNA Miniprep Kit (Cat: R2002) as per
manufacturer's instructions. DNA was then used for whole genome shotgun (WGS) sequencing using it
as input into the NexteraXT library preparation kit following the manufacturer’s protocol. Libraries were
puri�ed using the Agencourt AMPure XP beads (Beckman Coulter, Inc.) to remove fragments below 200
bp. The puri�ed libraries were quanti�ed using the Qubit dsDNA High Sensitivity Assay kit (Invitrogen)
and the average fragment length for each library was determined using a High Sensitivity D1000
ScreenTape Assay (Agilent). Samples were added in an equimolar manner to form two sequencing pools.
The sequencing pools were quanti�ed using the KAPA Library Quanti�cation Kit for Illumina platforms.
The pools were then sequenced on the Illumina Novaseq 6000 in one single run. For RNA sequencing,
RNA quantity and integrity were tested with a BioAnalyzer 2100 (Agilent). Among bronchoscope control
(BKG) samples, only 5 yielded RNA with su�cient quality and quantity to undergo library preparation and
sequencing. The automated Nugen Ovation Trio Low Input RNA method was used for library prep with
3ng total RNA input of each sample. After 6 ampli�cation cycles, samples were sequenced using 2x
Novaseq 6000 S4 200 cycle Flowcells using PE100 sequencing.

Microbial community characterization using whole genome shotgun sequencing (WGS) and RNA
metatranscriptome

For all metagenomic and metatranscriptomic reads, Trimmomatic v0.3684, with leading and trailing
values set to 3 and minimum length set to 36, was used to remove adaptor sequences. All rRNA reads
were then removed from the metatranscriptomic reads using SortMeRNA v4.2.085 with default settings.
Metagenomic and �ltered metatranscriptomic reads were mapped to the human genome using Bowtie2
v2.3.4.186 with default settings and all mapping reads were excluded from subsequent microbiome,
mycobiome, and virome metagenomic and metatranscriptomic analysis. Technical replicates for each
biological sample were pooled together for subsequent analyses. Taxonomic pro�les for all metagenomic
and metatranscriptomic samples were generated using Kraken v2.0.787 and Bracken v2.5
[https://doi.org/10.7717/peerj-cs.104] run with default settings. The database used for quantifying
taxonomic pro�les was generated using a combined database containing human, bacterial, fungal,
archaeal, and viral genomes downloaded from NCBI RefSeq on January 8, 2021. Additionally, genomes
for Candida auris (Genbank: GCA_003013715.2, GCA_008275145.1) and Pneumocystic jirovecii
(Genbank: GCA_001477535.1) were manually added to the database. Differentially abundant bacterial
and viral taxa were identi�ed for the BAL and UA samples groups individually using DESeq2 v1.28.188

with the three group clinical outcome meta-data readouts set as the sample groupings. Signi�cantly
differentially abundant taxa contained at a minimum an aggregate of 5 reads across samples and had
an FDR <0.289,90.

For functional microbial pro�ling, processed sequencing reads were further depleted of human-mapping
reads by removing all reads classi�ed as human by Kraken v2.0.787 using KrakenTools v0.1-alpha
(https://github.com/jenniferlu717/KrakenTools). FMAP v0.1591 was run on both the metagenomic and

https://github.com/jenniferlu717/KrakenTools
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metatranscriptomic reads to pro�le the metabolic pathways present in each sample. FMAP_mapping.pl
paired with diamond v0.9.2492 and FMAP_quanti�cation.pl were used with default settings to identify
and quantify proteins in the Uniref90 database. Using DESeq2 v1.28.188, differentially expressed genes
were identi�ed for the BAL samples individually using the three group clinical outcome-metadata
readouts for all genes that had an aggregate 5 reads across all samples.

Antibiotic resistance genes were quanti�ed in all metagenome and metatranscriptome samples using
Salmon v1.3.093 run with --keepDuplicates for indexing and --libtype A --allowDovetail --meta for
quanti�cation. Genes were �ltered such that only genes that actively conferred antibiotic resistance were
kept. To assess differentially expressed classes of antibiotic resistance genes, gene counts for individual
antibiotic resistance genes were collapsed by their conferred antibiotic resistance.

Supplementary Figure 1 shows a summary of depth achieved with the parallel WGS and
metatranscriptome approach across sample types and the number of reads assigned to different
microbial subfractions (bacteria, fungi, DNA viruses, RNA viruses and phages). Further analysis was also
done to identify possible contaminants in the metatranscriptome and metagenome datasets. To this end,
we compared the relative abundance of taxa between background bronchoscope control and BAL
samples. Taxa with median relative abundance greater in background than in BAL were identi�ed as
probably contaminant and listed in Supplementary Table 4). None of the taxa identi�ed as possible
contaminants were removed from the analyzed data but are shown for comparison with signatures
identi�ed in the rest of the analyses.

Anti-Spike SARS-CoV-2 antibody pro�ling in BAL

BAL samples were heat-treated at 56°C for one hour, and centrifuged at 14000g for 5 min. The
supernatant was collected and diluted 50-fold in PBST containing 1% skim milk. The diluted samples
were incubated at room temperature (R.T.) for 30 min with QBeads DevScreen: SAv (Streptavidin)
(Sartorius 90792) that had been loaded with biotinylated Spike, biotinylated RBD or biotin (negative
control) in wells of a 96 well HTS �lter plate (MSHVN4550). As positive controls, we used CR3022
antibody, that recognizes SARS-CoV-2 Spike and RBD, in human IgG, IgA and IgM formats (Absolute
Antibody). After washing the beads, bound antibodies were labeled with anti IgG-DyLight488, anti IgA-PE
and anti IgM-PECy7, and the �uorescence intensities were measured in Intellicyt IQue3 (Sartorius). The
acquired data [median �uorescence intensity (MFI)] were normalized using the MFI values of the CR3022
antibodies to compensate for variations across plates. Supplementary Figure 10 shows that the levels of
these antibodies were higher in BAL samples of patients with SARS-CoV-2 than in BAL samples from 10
uninfected healthy smokers recruited for research bronchoscopy. Details of method development and
validation will be described elsewhere (Koide et al. in preparation).

SARS-CoV-2 preparation and neutralization assay

icSARS-CoV-2-mNG (isolate USA/WA/1/2020, obtained from the UTMB World Reference Center for
Emerging Viruses and Arboviruses) was ampli�ed once in Vero E6 cells (P1 from the original stock).
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Brie�y, 90-95% con�uent T175 �ask (Thomas Scienti�c) of Vero E6 (1x107 cells) was inoculated with 50
μL of icSARS-CoV-2-mNG in 5 mL of infection media (DMEM, 2% FBS, 1% NEAA, and 10 mM HEPES) for
1 hour. After 1 hour, 20 mL of infection media was added to the inoculum and cells were incubated 72
hours at 37 °C and 5% CO2. After 72 hours, the supernatant was collected and the monolayer was frozen
and thawed once. Both supernatant and cellular fractions were combined, centrifuged for 5 min at 1200
rpm, and �ltered using a 0.22 μm Steri�ip (Millipore). Viral titers were determined by plaque assay in Vero
E6 cells. In brief, 220,000 Vero E6 cells/well were seeded in a 24 well plate, 24 hours before inoculation.
Ten-fold dilutions of the virus in DMEM (Corning) were added to the Vero E6 monolayers for 1 hour at 37
°C. Following incubation, cells were overlaid with 0.8% agarose in DMEM containing 2% FBS (Atlanta
biologicals) and incubated at 37 °C for 72 h. The cells were �xed with 10% formalin, the agarose plug
removed, and plaques visualized by crystal violet staining. All procedures including icSARS-CoV-2-mNG
virus were performed using Biosafety Level 3 laboratory conditions.

For SARS-CoV-2 neutralization assays, Vero E6 cells (30,000 cells/well) were seeded in a 96 well plate 24
h before infection. Two-fold serial dilutions of BAL lysates were mixed with mixed 1:1 (vol/vol) with
SARS-CoV-2 mNG virus (multiplicity of infection, MOI 0.5), and incubated for 1 h at 37 °C. After
incubation, 100 μL of the mixtures of the antibody and SARS-CoV-2 mNG were added to the Vero E6
monolayers, and cells were incubated at 37°C. After 20 h, cells were �xed with 4 % formaldehyde (Electron
Microscopy Sciences) at room temperature for 1 h. After �xation, cells were washed twice with PBS and
permeabilized with 0.25% triton-100, stained with DAPI (Thermo), and quanti�ed on a CellInsight CX7
High-content microscope (Thermo) using a cut-off for three standard deviations from negative to be
scored as an infected cell.

Transcriptome of BAL cells

RNA-Seq was performed on bronchial epithelial cells obtained by airway brushing, as described94-96,
using the Hi-seq/Illumina platform at the NYU Langone Genomic Technology Center (data available at
Sequence Read Archive: # PRJNA592149). KEGG97,98 annotation was summarized at levels 1 to 3. Genes
with an FDR-corrected adjusted p-value <0.25 were considered signi�cantly differentiated, unless
otherwise speci�ed. Pathway analysis using differentially regulated genes (FDR<0.25) was done using
Ingenuity Pathway Analysis, RRID:SCR_0- at least 1 count per million in at least two samples were
retained. For digital cytometry with CIBERSORTx, a signature matrix derived from single-cell transcriptome
of BAL cells collected from patients with COVID-1933 was �rst generated with the “Create Signature
Matrix” module in the CIBERSORTx online tool. A maximum of 10 cells per cell type per patient were
initially sampled from the original data and 20 cells per cell type were then used to build the single-cell
reference with the default parameters. Then the “Impute Cell Fractions” module was used to estimate the
absolute cell fraction score of different cell types in bulk transcriptomes using the single-cell signatures
with “S-mode” batch correction and 100 permutations in the absolute mode. Bulk transcriptomes with a
signi�cant deconvolution p-value (≤0.05) were retained. For xCell cell type signature enrichment analysis,
the enrichment scores were inferred with built-in signature of cell types detected in the BAL samples as
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reported previously 33. The two-tailed Wilcoxon rank sum test with Benjamini-Hochberg correction were
computed between groups of samples for comparison.

Microbial and Host predictive modeling

Cox proportional hazards model was used for investigating the association between the time to death
and the relative abundance of each taxon quanti�ed using metatranscriptomic and metagenomic data
separately. We �rst performed the univariate screening test to identify signi�cant features associated with
the time to death using the Cox proportion hazards regression model for the relative abundance of taxa
from the RNA and DNA data, and log-transformed count of host transcriptome data, respectively. Within
each type of data, given the p-value cutoff, the features with a p-value less than the cutoff were selected
and integrated as a sub-community. For the RNA and DNA data, the alpha diversity (Shannon index) was
calculated for each sample on the selected sub-community and the negative of the value was de�ned as
the microbial risk score, because high alpha diversity indicates low risk of death. For the host
transcriptome data, the log-transformed total count of all selected candidate transcriptome for each
sample was de�ned as the risk score, since most selected candidate transcriptomes increased the risk of
death. The leave-one-out cross-validation (LOOCV) was used for the predictions. The p value cutoff was
set at the value which produces the largest AUC (area under the receiver operating characteristic curve) in
predicting the death/survival status using the risk score we constructed over these features. The additive
model was used to integrate when more than one scores are used for the prediction.

Multiscale and co-expression network analyses

Raw counts from the human transcriptome were normalized and converted to log2-counts per million
using limma99/voom100 (v3.44.1 with R v4.0.0) with standard parameters. Microbiome abundance
information was converted to relative abundance. Low abundance taxa were removed based on average
abundance across all samples to yield a minimum of 1000 taxa for each metatranscriptome dataset. All
datasets were batch adjusted. Differentially expressed genes (DEGs) and differentially abundant taxa
were called using the DESeq2 package88 (v1.28.1), based on the negative binomial (i.e. Gamma-Poisson)
distribution. According to the recommendation by the authors, we used non-normalized data (i.e. raw
gene counts and abundance data), as DESeq2 internally corrects data and performs normalization steps.
For this purpose, raw microbiome abundance data were converted to DESeq2 dds objects using the
phyloseq R library (V1.32.0). Contrasts are based on outcome groups (≤ 28 days MV, > 28 days MV or
death). Differentially expressed genes and differentially abundant tax with FDR of 0.2 or less are
considered signi�cant.

Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) 34 was performed to identify host
modules of highly co-expressed genes in SARS-CoV-2 infection. The MEGENA work�ow comprises four
major steps: 1) Fast Planar Filtered Network construction (FPFNC), 2) Multiscale Clustering Analysis
(MCA), 3) Multiscale Hub Analysis (MHA), 4) and Cluster-Trait Association Analysis (CTA). The total
relevance of each module to SARS-CoV-2 infection was calculated by using the Product of Rank method
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with the combined enrichment of the differentially expressed gene (DEG) signatures as implemented: ,
where, is the relevance of a consensus j to a signature i; and is de�ned as , where is the ranking order of
the signi�cance level of the overlap between the module j and the signature.

To functionally annotate gene signatures and gene modules derived from the host transcriptome data, we
performed an enrichment analysis of the established pathways and signatures¾including the gene
ontology (GO) categories and MSigDB. The hub genes in each subnetwork were identi�ed using the
adopted Fisher’s inverse Chi-square approach in MEGENA; Bonferroni-corrected p-values smaller than
0.05 were set as the threshold to identify signi�cant hubs. The correlation between modules, modules
and clinical traits as well as modules and individual taxa were performed using Spearman correlation.
Other correlation measures, such as Pearson correlation or the Maximal Information Coe�cient (MIC)101

proved to be inferior for this task. Categorical trait data was converted to numerical values as suitable.

Data availability

Sequencing data are available in NCBI’s Sequence Read Archive under project numbers PRJNA688510
and PRJNA687506 (RNA and DNA sequencing, respectively). Codes used for the analyses presented in
the current manuscript are available at https://github.com/segalmicrobiomelab/SARS_CoV2.
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Figures

Figure 1

Associations between culture positivity and clinical outcome. Odds ratios and corresponding 95%
con�dence intervals for rates of culture positivity for the whole cohort (n=589) during the length of their
hospitalization (left) and during the �rst 2 weeks of hospitalization (right).
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Figure 2

SARS-CoV-2 viral load and virus metatranscriptome analyses. Copies of the SARS-CoV-2 N gene per ml,
normalized by the Human RNase P gene, comparing paired upper and lower airway samples (a) and
levels in BAL comparing clinical outcome groups (b, *= Mann–Whitney U p<0.05, **= Mann–Whitney U
p<0.01). (c) PCoA analysis based on Bray Curtis Dissimilarity index of BAL Metatranscriptome data
comparing clinical outcome (PERMANOVA p-value). Bubble plot showing DESeq results of RNA viruses
(d) and expressed DNA phages (e) enriched in each clinical outcome comparisons (bubble size based on
median relative abundance for those found statistically signi�cant).
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Figure 3

Bacteria load and taxonomic compositional analyses. (a) Bacterial load measured by ddPCR targeting
16S rRNA gene (**= Mann–Whitney U p<0.01). PCoA analysis based on Bray Curtis Dissimilarity index of
BAL Metagenome (b) and Metatranscriptome (c) data comparing clinical outcome (PERMANOVA p-
value). (d) Gene Set Enrichment Analysis (GSEA) was used to compare the taxonomic signatures
identi�ed in BAL metagenome (diamonds) and metatranscriptome (circles) as distinctly enriched for
comparisons between clinical outcome groups (differential enrichment performed based on DESeq2
analysis). (e) Bubble plot showing DESeq results of bacteria found concordantly differentially enriched
between clinical outcome groups (bubble size based on median relative abundance for those found
statistically signi�cant).



Page 39/42

Figure 4

Functional microbial compositional analyses. KOs were summarized to associated pathways and
differential expression was calculated based on DESeq2 analysis. (a) Gene Set Enrichment Analysis
(GSEA) was used to compare the functional signatures identi�ed in BAL metagenome and
metatranscriptome as distinctly enriched for comparisons between clinical outcome groups. (b) Bubble
plot showing DESeq results of microbial functions found concordantly differentially enriched between
clinical outcome groups (bubble size based on median relative abundance for those found statistically
signi�cant).
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Figure 5

Lower airway host immune pro�ling in severely ill COVID-19. (a) Levels of anti-SARS-CoV-2 Spike
antibodies in BAL (*= Mann–Whitney U p<0.05). (b) Heat-map of canonical pathway analysis based on
Ingenuity Pathway Analysis (IPA, RRID:SCR_008653) using the lower airway host transcriptome
comparing clinical outcome groups. Orange shows up-regulation of pathway, blue shows down-
regulation of pathway. (c) Cell type abundance quanti�cation plots. Comparison of abundance of mast
cells and neutrophils among outcome groups in the BAL �uids of critically ill patients with COVID-19. Cell
type abundance was estimated from the host transcriptome with CIBERSORTx. Each dot denotes the
quanti�cation score of a sample and boxes depict median and inter-quartile range (*= Mann–Whitney U
p<0.05).
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Figure 6

Mortality predictive power of metatranscriptome, metagenome and host transcriptome. (a) Area under the
curved median and con�dence interval for receiver operating characteristic curve analyses calculated
from each sequencing datasets as predictor and mortality as outcome. (b) Kaplan-meier survival
analyses based on a cutoff value estimated from features selected from each sequencing dataset. The
“High risk” and “Low risk” groups is the mean of predicted risk scores in all samples. (c) Scatterplot
among risk scores from metatranscriptome, metagenome, and host transcriptome. Dotted line denotes
the mean of the risk scores across all subjects, which is also the threshold for dividing the samples into
“High risk” and “Low risk” groups. (d) IPA analyses of host transcriptomic signatures identi�ed as most
predictive of mortality.
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