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Depression is one of the most common mood disorders with a high rate of relapse.
Accumulating evidence suggests that the transcription factor Kelch-like erythroid
cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-Nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) system plays a key role in inflammation which is
involved in depression. Preclinical studies demonstrated that the protein expressions
of Keap1 and Nrf2 in the prefrontal cortex (PFC), CA3 and dentate gyrus (DG) of
hippocampus in mice with depression-like phenotype were lower than control mice. In
the learned helplessness paradigm, the protein levels of Keap1 and Nrf2 in the PFC
and DG of hippocampus from rats with depression-like phenotype were also lower
than control and resilient rats. Furthermore, rodents with depression-like phenotype
have higher levels of pro-inflammatory cytokines. Interestingly, Nrf2 knock-out (KO)
mice exhibit depression-like phenotype, and higher serum levels of pro-inflammatory
cytokines compared with wild-type mice. Furthermore, Nrf2 KO mice have lower
expression of brain-derived neurotrophic factor (BDNF) in the PFC, and CA3 and DG
of hippocampus compared to wild-type mice. 7,8-Dihydroxyflavone, a TrkB agonist,
showed antidepressant effects in Nrf2 KO mice, by stimulating BDNF-TrkB in the PFC,
CA3, and DG. Pretreatment with sulforaphane, a naturally occurring Nrf2 activator,
prevented depression-like phenotype in mice after inflammation, or chronic social
defeat stress. Interestingly, dietary intake of 0.1% glucoraphanin (a precursor of
sulforaphane) containing food during juvenile and adolescent stages of mice could
prevent depression-like phenotype in adulthood after chronic social defeat stress.
Moreover, the protein expressions of Keap1 and Nrf2 in the parietal cortex from major
depressive disorder and bipolar disorder were lower than controls. These findings
suggest that Keap1-Nrf2 system plays a key role in the stress resilience which is involved
in the pathophysiology of mood disorders. It is, therefore, possible that dietary intake
of cruciferous vegetables including glucoraphanin (or SFN) may prevent or minimize
relapse from remission, induced by stress and/or inflammation in depressed patients.
In the review, the author would like to discuss the role of Keap1-Nrf2 system in mood
disorders.

Keywords: brain-derived neurotrophic factor, glucoraphanin, keap1, Nrf2, nutrition, stress resilience,
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INTRODUCTION

Depression, one of the most common psychiatric disorders
in the world, is a mood disorder with a high rate of
relapse. The World Health Organization (WHO) estimates that
more than 320 million individuals of all ages suffer from
depression, highlighting this disease as a major contributor
to the global burden of disease (World Health Organization
[WHO], 2017). Although the precise mechanisms underlying
the pathophysiology of depression are currently unknown,
accumulating evidence implicate inflammatory processes in the
pathophysiology of depression (Dantzer et al., 2008; Hashimoto,
2009; Miller et al., 2009; Raison et al., 2010; Hashimoto, 2015;
Mechawar and Savitz, 2016; Miller and Raison, 2016; Zhang et al.,
2016; Miller et al., 2017). Meta-analysis demonstrated higher
levels of pro-inflammatory cytokines in the blood of drug-free
or medicated depressed patients compared to healthy controls
(Dowlati et al., 2010; Young et al., 2014; Haapakoski et al.,
2015; Köhler et al., 2018). Studies demonstrated elevated gene
expression of pro-inflammatory cytokines in the postmortem
brain samples from patients with a history of depression (Dean
et al., 2010; Shelton et al., 2011). Collectively, it is likely
that inflammation plays a key role in the pathophysiology of
depression.

Over the past decade, there has been increasing interest in
the potential benefits of early intervention for mood disorders.
Several lines of evidence suggest that nutrition has a high impact
on the development of depression (Lin et al., 2010; Murakami and
Sasaki, 2010; Bazinet and Layé, 2014; Mello et al., 2014; El-Behadli
et al., 2015; Opie et al., 2015; Lin et al., 2017; Hsu et al., 2018;
Wang et al., 2018). Recent meta-analyses demonstrated that high
intake of fruit, vegetables, fish, and whole grains are associated
with a lower risk of depression (Lai et al., 2014; Liu et al., 2016;
Saghafian et al., 2018).

In the review, the author would like to discuss the role
of Keap1 [Kelch-like erythroid cell-derived protein with CNC
homology [ECH]-associated protein 1)]-Nrf2 [Nuclear factor
(erythroid 2-derived)-like 2] system in the pathophysiology
of depression since Keap1-Nrf2 system plays a key role

in inflammation. Furthermore, we also refer to the clinical
significance of natural Nrf2 activator sulforaphane (SFN) as
nutritional intervention for mood disorders.

Keap1-Nrf2 SYSTEM

Nrf2 is the transcription factor with a key role in cellular
defense against oxidative stress. It binds to the antioxidant
response elements (ARE) located in the promoter region of genes
encoding many phase II detoxifying or antioxidant enzymes
and related stress-responsive proteins (Kobayashi et al., 2013;
Ma, 2013; Suzuki et al., 2013a; Suzuki and Yamamoto, 2015;
Yamamoto et al., 2018). Under normal conditions, Nrf2 is
repressed by Keap1, which is an adaptor protein for the
degradation of Nrf2 (Suzuki et al., 2013a; Suzuki and Yamamoto,
2015). During oxidative stress, Nrf2 is de-repressed and activates
the transcription of protective genes (Suzuki et al., 2013a;
Suzuki and Yamamoto, 2015). Importantly, the Keap1-Nrf2
system plays a role in inflammation-associated pathogenesis
(Kobayashi et al., 2013; Suzuki et al., 2013a; O’Connell and
Hayes, 2015; Suzuki and Yamamoto, 2015; Wardyn et al.,
2015; Yamamoto et al., 2018). In cancer cells, Nrf2 activation
is beneficial and deleterious for the cancer-bearing host,
depending on the time (initiation, promotion, and metastasis)
and place (cancer cells or microenvironment) (Yamamoto et al.,
2018).

Nrf2 ACTIVATORS

Based on the role of Nrf2 in the prevention of a wide
variety of pathological conditions, great efforts have been
made to isolate from natural sources or develop potent
and specific Nrf2 activators (Yamamoto et al., 2018). The
potent anti-inflammatory and naturally occurring compound
sulforaphane (SFN: 1-isothiocyanato-4-methylsulfinylbutane) is
an organosulfur compound derived from a glucosinolate
precursor glucoraphanin (a glucosinolate, or β-thioglucoside-N-
hydroxysulfate) (Figure 1) found in cruciferous vegetables, such

FIGURE 1 | Chemical structure of sulphoraphane (SFN) and its precursor glucoraphanin. Cruciferous vegetables contain glucoraphanin, a glucosinolate derivative of
sulforaphane (SFN).
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as broccoli sprout (Zhang et al., 1992; Fahey et al., 1997; Kwak
and Kensler, 2010; Kensler et al., 2013; Fahey et al., 2015). It is
well known that glucoraphanin can be converted to SFN by the
endogenous enzyme, myrosinase (Fahey et al., 2015). Beneficial
effect by SFN is thought to be mediated via activation of the Nrf2
pathway with subsequent up-regulation of phase II detoxification
enzymes and antioxidant proteins, through ARE (Suzuki et al.,
2013a; Suzuki and Yamamoto, 2015).

TBE-31 [(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-
3,7-dioxo-3,4b,7,8,8a,9,10,10a-octahydrophenanthrene-2,6-
dicarbonitrile] and MCE-1 [(±)-3-ethynyl-3-methyl-6-
oxocyclohexa-1,4-dienecarbonitrile] are the novel Nrf2 activators
(Honda et al., 2007; Dinkova-Kostova et al., 2010; Honda et al.,
2011; Kostov et al., 2015; Figure 2). Dimethyl fumarate (Figure 2)
is a new oral drug for the treatment of multiple sclerosis, and has
neuroprotective effects via Nrf2-dependent antioxidant response
(Al-Jaderi and Maghazachi, 2016; Mills et al., 2018). Bardoxolone
methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-
dien-28-oic acid (CDDO) known as CDDO-Me (Figure 2), is one
of the derivatives of synthetic triterpenoids. Bardoxolone methyl

has been used for the treatment of cancer (including leukemia
and solid tumors), chronic kidney disease, and other diseases
(Wang et al., 2014). Clinical trial of bardoxolone methyl is
undergoing for diabetic nephropathy in Japan (Yamamoto et al.,
2018), although its development was paused in the United States
due to the occurrence of cardiac complications in patients with
end-stage renal disease (Pergola et al., 2011; de Zeeuw et al.,
2013).

EFFECTS OF Nrf2 ACTIVATORS ON
NEURITE OUTGROWTH

The neuronal plasticity, including neurite outgrowth and
neuroprotection, plays crucial role in the beneficial effect of
therapeutic drugs in cellular level (Lu and Dwyer, 2005; Williams
and Dwyer, 2009). Yao et al. (2016b) reported that SFN increased
the number of cell with neurite outgrowth in PC12 cells.
Furthermore, the potentiating effects of SFN on NGF-induced
neurite outgrowth were blocked by treatment with Nrf2 siRNA,

FIGURE 2 | Chemical structure of Nrf2 activators (TBE-31, MCE-1, dimethyl fumarate, bardoxolone methyl).
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but not the negative control (Yao et al., 2016b), suggesting
that SFN can potentiate NGF-induced neurite outgrowth via
activation of Nrf2.

Yao et al. (2016a) reported that TBE-31 and MCE-1 also
potentiated NGF-induced neurite outgrowth in PC12 cells. The
Nrf2 siRNA blocked the potentiating effects of TBE-31 and
MCE-1 on neurite outgrowth in PC12 cells. Astragaloside IV
is also reported to attenuate lead-induced inhibition of neurite
outgrowth through activation of Akt-dependent Nrf2 pathway
(Yu et al., 2017). Collectively, it is likely that Nrf2 activators can
promote neurite outgrowth through Nrf2 activation (Yang et al.,
2015c; Yao et al., 2016a,b).

ALTERATIONS IN Keap1-Nrf2
SIGNALING IN RODENTS WITH
DEPRESSION-LIKE PHENOTYPE

Chronic social defeat stress (CSDS) model has been used widely
as an animal model of depression (Krishnan and Nestler, 2008;
Nestler and Hyman, 2010; Golden et al., 2011). Susceptible mice
with depression-like phenotype after CSDS have higher blood
levels of pro-inflammatory cytokines [e.g., tumor necrosis factor
(TNF)-α, interleukin (IL)-6, IL-10, and IL-1β] (Zhang et al.,
2017a).

Western blot analysis showed that protein levels of Keap1 and
Nrf2 in the CA3, DG, and PFC from mice with depression-like
phenotype were significantly lower than those of control mice
(Yao et al., 2016b). In contrast, protein levels of Keap1 and Nrf2
in the CA1 and NAc were not different compared to control
(Yao et al., 2016b). These findings suggest that lower levels of
Keap1 and Nrf2 in the CA3, DG, and PFC may be involved in
depression-like phenotypes after CSDS.

Learned helplessness (LH) model has been also used as an
animal model of depression (Krishnan and Nestler, 2008). In
the LH paradigm, approximately 20–40% rats are resilient to
inescapable stress (Yang et al., 2015a,b; Yang et al., 2016). LH
(susceptible) rats have higher blood levels of IL-6 than control
and resilient rats (Yang et al., 2015a), suggesting that peripheral
inflammation may contribute to resilience versus susceptibility
to stress. Protein levels of Keap1 and Nrf2 in the PFC and DG
of hippocampus from LH (susceptible) rats were lower than
control and non-LH (resilient) rats (Zhang et al., 2018). These
results suggest that Keap1-Nrf2 signaling may contribute to stress
resilience which is involved in the pathophysiology of major
psychiatric disorders (Zhang et al., 2018).

ALTERATIONS IN Keap1-Nrf2
SIGNALING IN SAMPLES FROM
PATIENTS WITH MAJOR DEPRESSIVE
DISORDER

Major depressive disorder (MDD) patients (n = 30) exhibited
higher levels of Nrf2 and its regulator Keap1, as well as
NF-κB in the cytoplasm of peripheral blood mononuclear cells

compared to healthy controls (n = 35), suggesting that depression
may be characterized by up-regulation of the transcription
factor Keap1-Nrf2 (Lukic et al., 2014). Using genome-wide
transcriptional profiling and promoter-based bioinformatic
strategies, Mellon et al. (2016) measured leukocyte transcription
factor (TF) activity in leukocytes from un-medicated MDD
subjects (n = 20) versus age- and sex-matched healthy controls
(n = 20). In leukocytes from un-medicated MDD subjects,
the bioinformatic analysis showed an increased transcriptional
activity of cAMP response element-binding/activating TF
(CREB/ATF) and increased activity of TFs associated with
Nrf2. Antidepressant therapy for 8 weeks was associated with
significant reductions in depressive symptoms and reduced
activity of Nrf2, but not in CREB/ATF activity. By contrast,
other transcriptional regulation pathways, including nuclear
factor kappa-B cells (NF-κB), early growth response proteins 1-4
(EGR1-4), the glucocorticoid receptor, and interferon-responsive
TFs, showed either no difference as a function of disease
or treatment. These results suggest that Nrf2 signaling may
contribute to MDD by activating immune cell transcriptome
dynamics that ultimately may influence motivational and
affective processes via circulating mediators (Mellon et al.,
2016).

Postmortem tissue from patients with psychiatric disorders
is an underutilized substance that may be used to translate
genetic and/or preclinical studies (Hashimoto et al., 2007;
McCullumsmith et al., 2013; Mechawar and Savitz, 2016; Yang
et al., 2017). A study using postmortem brain samples showed
decreased expressions of Keap1 and Nrf2 in the parietal cortex
from patients with MDD and bipolar disorder compared to
control group (Zhang et al., 2018). A recent study showed the
reduced (-21%) expression of Nrf2 in the dorsolateral prefrontal
cortex from MDD patients (Martín-Hernández et al., 2018).
These results suggest that decreased Keap1-Nrf2 signaling plays a
key role in the pathophysiology of mood disorders such as MDD
and bipolar disorder (Zhang et al., 2018).

SINGLE NUCLEOTIDE
POLYMORPHISMS IN THE NRF2
PROMOTER GENE IN HUMANS

The NRF2 activity in humans is regulated through protein
stabilization, primarily by KEAP1, but is also regulated at the
transcriptional level (Yamamoto et al., 2018). In humans, a NRF2
promotor single nucleotide polymorphism (SNP: rs6721961)
located 617 bp by upstream from the transcription start site
lowers the level of NRF2 transcription (Yamamoto et al., 2006;
Yamamoto et al., 2018; Figure 3). Luciferase assays showed
that polymorphism at position -617 (C to A) affect basal levels
of NRF2, thereby resulting in attenuation of ARE-mediated
gene transcription (Marzec et al., 2007; Figure 3). Interestingly,
subjects who possess this SNP are more susceptible to acute lung
injury and related diseases (Marzec et al., 2007), and this SNP
is also found to correlate with the incidence of non-small cell
lung cancer (Suzuki et al., 2013b). In addition, ethnic difference
of this SNP is also reported (Marzec et al., 2007). Therefore, it is
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FIGURE 3 | SNP (rs6721961) in the promotor region of NRF2 gene. The SNP
(rs6721961) in the promotor of NRF2 gene alters the transcription level of
NRF2 gene, resulting in alterations in the expression of NRF2 target genes.
The NRF2/sMAF (small MAF) protein complex regulates the oxidative stress
response by occupying cis-acting enhancers containing an antioxidant
response element (ARE). A slight modification of Yamamoto et al. (2018).

of interest to study whether this SNP can affect susceptibility to
mood disorders.

DEPRESSION-LIKE PHENOTYPES IN
Nrf2 KO MICE

Serum levels of TNF-α, IL-6, IL-10, and IL-1β in the Nrf2 KO
mice were significantly higher than those of wild-type (WT) mice,
suggesting that Nrf2 KO mice have inflammation (Yao et al.,
2016b). In the tail-suspension test (TST) and forced swimming
test (FST), the immobility times of TST and FST in Nrf2 KO
mice were higher than those of WT mice. In the 1% sucrose
preference test (SPT), the sucrose preference of Nrf2 KO mice
was lower than that of WT mice, suggesting that Nrf2 KO
mice have anhedonia. Furthermore, brain-derived neurotrophic
factor (BDNF) and its receptor TrkB signaling in the CA3,
DG and PFC of Nrf2 KO mice were lower than those of WT
mice. Moreover, protein levels of AMPA receptor 1 (GluA1)
and postsynaptic density protein 95 (PSD-95) in the CA3, DG,
and PFC of KO mice were lower than those of WT mice.
Interestingly, 7,8-dihydroxyflavone (a TrkB agonist) produced
antidepressant effects in Nrf2 KO mice, by stimulating TrkB
in the PFC, CA3, and DG (Yao et al., 2016b). Furthermore,
the anti-inflammatory drug rofecoxib reversed depression-like
behaviors in Nrf2 KO mice (Martín-de-Saavedra et al., 2013). In
addition, chronic treatment with the selective serotonin reuptake
inhibitor (SSRI) fluoxetine increased BDNF in cortex and
hippocampus of corticosterone-treated Nrf2 KO mice (Mendez-
David et al., 2015), suggesting that Nrf2 signaling contributes to
fluoxetine-induced neuroprotection. These all findings suggest
that Nrf2 plays a key role in the depression-like phenotypes in
rodents through potent anti-inflammatory action. Collectively,
it is likely that Nrf2 KO mice show depression-like phenotypes
through inflammation, decreased BDNF-TrkB signaling and
synaptogenesis (Figure 5; Yao et al., 2016b).

In contrast, Bouvier et al. (2017) reported that Nrf2 KO
mice did not display a depression-like phenotype although

the KO mice were characterized by oxidative stress and by
anatomical alterations in hippocampal CA3 pyramidal cells.
However, when exposed to 3 weeks of chronic mild stress,
Nrf2 KO mice developed depression-like phenotypes which were
prevented by pretreatment with antioxidant (Bouvier et al.,
2017). This study also suggests the role of Nrf2-dependent
persistent oxidative stress in stress-induced vulnerability to
depression.

ANTIDEPRESSANT EFFECTS OF Nrf2
ACTIVATORS IN THE RODENT MODELS
OF DEPRESSION

When lipopolysaccharide (LPS), the bacterial endotoxin, is
administered to rodents, depression-like behaviors are observed
24 h after inflammation (Dantzer et al., 2008; O’Connor et al.,
2009; Zhang et al., 2014; Zhang et al., 2016). Pretreatment with
antidepressants, such as SSRIs and serotonin and norepinephrine
reuptake inhibitors (SNRIs), can prevent depression-like
behavior and alterations in serum pro-inflammatory cytokines,
such as TNF-α, induced by LPS administration (Ohgi et al.,
2013; Yao et al., 2015; Dong et al., 2016). These all findings
suggest that inflammation is associated with depression, and that
anti-inflammatory drugs could ameliorate depressive symptoms
in patients with depression.

Pretreatment with SFN significantly blocked an increase in
the serum TNF-α level after a single administration of LPS
(Zhang et al., 2017b). Furthermore, SFN significantly potentiated
increased serum levels of IL-10 after LPS administration. SFN
attenuated an increase of the immobility time of TST and FST
after LPS administration. In addition, SFN recovered to control
levels for LPS-induced alterations in the proteins such as BDNF,
PSD-95 and GluA1, and dendritic spine density in the brain
regions (Zhang et al., 2017b). Furthermore, TBE-31 or MCE-
1 attenuated an increase in serum levels of TNF-α after LPS
administration. Administration of TBE-31 or MCE-1 attenuated
an increase in the immobility time of TST and FST after LPS
administration (Yao et al., 2016a).

Pretreatment with SFN attenuated the decreased social
avoidance time and sucrose preference in CSDS model.
Furthermore, SFN could attenuate the decreased levels of Nrf2
and Keap1 proteins in the PFC and hippocampus of mice
with depression-like phenotype (Yao et al., 2016b). Li et al.
(2018) reported that decreased Keap1-Nrf2 signaling in the PFC,
hippocampus and skeletal muscle may contribute to anhedonia
susceptibility after spared nerve injury (SNI), and that SFN
exerts beneficial effects in SNI rats by normalization of decreased
Keap1-Nrf2 signaling. These results suggest that Keap1-Nrf2
signaling plays a role in depression, and that SFN is prophylactic
compound which can stimulate Keap1-Nrf2 signaling pathway
(Yao et al., 2016b; Zhang et al., 2017b; Li et al., 2018). Taken all
together, it is likely that the Nrf2 activators such as SFN, TBE-31,
and MCE-1 might be potential prophylactic or therapeutic
drugs for inflammation (or stress)-related depression (Yao et al.,
2016a,b; Zhang et al., 2016, 2017b; Li et al., 2018).
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FIGURE 4 | Chemical structure of Nrf2 inhibitors (brustal, halofuginone, ML-385).

EFFECTS OF DIETARY INTAKE OF SFN
PRECURSOR IN THE CSDS MODEL OF
DEPRESSION

SFN is produced in the body from its precursor glucoraphanin
which is involved in cruciferous vegetables. Previously, we
demonstrated that dietary intake of 0.1% glucoraphanin –
rich food during juvenile and adolescence prevented
phencyclidine-induced cognitive deficits and loss of parvalbumin
(PV)-positive cells in the PFC at adulthood (Shirai et al., 2015).
Furthermore, we also reported that dietary intake of 0.1%
glucoraphanin –rich food during juvenile and adolescence
prevented the onset of psychosis in the adult offspring after
maternal immune activation (Matsuura et al., 2018). These
findings suggest that dietary-intake of glucoraphanin-rich
vegetables in high-risk psychosis subjects might prevent the
transition to psychosis in young adulthood (Hashimoto, 2014;
Shirai et al., 2015; Matsuura et al., 2018).

Interestingly, dietary intake of 0.1% glucoraphanin containing
food during juvenile and adolescent stages could prevent
the depression-like phenotype in adulthood after CSDS (Yao
et al., 2016b). Thus, the dietary intake of 0.1% glucoraphanin
containing food during juvenile and adolescent periods could
confer stress resilience in adulthood.

CLINICAL STUDY OF SFN IN PATIENTS
WITH HEALTHY SUBJECTS, AND
NEURODEVELOPMENTAL DISORDERS

Sedlak et al. (2018) reported that SFN increased blood glutathione
(GSH) levels in healthy human subjects following 7 days of
daily oral administration. Furthermore, a significant positive
correlation between blood and thalamic GSH post- and pre-SFN
treatment ratios was observed, in addition to a consistent
increase in brain GSH levels in response to treatment. This study
suggests the value of exploring relationships between peripheral
GSH and clinical/neuropsychological measures, as well as the
influences SFN has on functional measures that are altered in
neuropsychiatric disorders.

A randomized, double-blinded, placebo-controlled study
showed that SFN-rich broccoli sprout extract could improve
social interaction, abnormal behavior and verbal communication
in young male subjects with autism spectrum disorder (Singh
et al., 2014; Lynch et al., 2017). In addition, a pilot study showed
that supplementation with glucoraphanin-rich broccoli sprout
extract for 8 weeks was effective in treating cognitive impairment
in medicated patients with schizophrenia (Shiina et al., 2015).
Collectively, it is likely that SFN would be potential therapeutic
compound for neurodevelopmental disorders.
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FIGURE 5 | Proposed hypothesis of role of Keap1-Nrf2 system in depression. Inflammation causes decreases of Keap1 and Nrf2 expression in the prefrontal cortex
and hippocampus. Subsequently, inflammation-induced decreases in Keap1 and Nrf2 proteins can cause the decreased BDNF-TrkB signaling and synaptogenesis,
resulting in depression-like phenotype. TrkB agonists might have antidepressant actions. Dietary intake of glucoraphanin (or SFN) in cruciferous vegetables during
early adolescence may confer to stress resilience at adulthood whereas poor nutrition may play a role in the onset of depression by stress or inflammation.

ROLE OF Nrf2 IN THE MECHANISMS OF
ANTIDEPRESSANT ACTION FOR OTHER
POTENTIAL COMPOUNDS

Cilostazol is used in the treatment of the symptoms of
intermittent claudication in patients with peripheral vascular
disease. In the chronic restraint stress (CRS) model, cilostazol
prevented depressive-like behaviors (Abuelezz and Hendawy,
2018). Furthermore, cilostazol modulated the Nrf2 protein and
heme oxygenase-1 and NAD(P)H: quinone oxidoreductase-1
gene expression in the hippocampus of CRS rats. These findings
suggest that cilostazol has the prophylactic antidepressant effect
by preventing oxidative stress by stimulation of redox defense
mechanisms mediated through the Nrf2 pathway (Abuelezz and
Hendawy, 2018).

Dl-3-n-Butylphthalide (NBP), a small molecule compound
extracted from the seeds of Apium graveolens, was approved by
the State Food and Drug Administration of China for treating
ischemic stroke (Abdoulaye and Yi, 2016). NBP attenuated
the depression-like behaviors and increased expression of
pro-inflammatory cytokines (e.g., IL-1β and IL-6) in rats.
In addition with the anti-inflammation action, NBP reduced
LPS-induced oxidative stress reactions in the hippocampus and
enhanced Nrf2-targeted signals (Yang et al., 2018).

A randomized, double-blind, placebo-controlled trial showed
that NBP showed greater effects than placebo on Alzheimer’s
disease assessment scale-cognitive subscale (ADAS-cog) and

clinician’s interview-based impression of change plus caregiver
input (CIBIC-plus). NBP-related adverse events were uncommon
and primarily consisted of mild gastrointestinal symptoms (Jia
et al., 2016). Therefore, it is of interest to examine whether NBP
can improve depressive symptoms in depressed patients.

Nrf2 INHIBITORS

Compared with Nrf2 activators, the development of Nrf2
inhibitors is in its infancy (Yamamoto et al., 2018). For
example, cancers with persistent activation of Nrf2 exhibit
high dependency on Nrf2 function for drug resistance and
cell proliferation (Yamamoto et al., 2018). The plant-based
product brusatol (Figure 4) decreases the protein levels
of Nrf2 and sensitizes cancer cells to chemotherapy and
radiotherapy (Ren et al., 2011). Another Nrf2 inhibitor
halofuginone (Figure 4) is a synthetic halogenated derivative
of febrifugine, a natural quinazolinone alkaloid which can be
found in the Chinese herb Dichroa febrifuga. Halofuginone
exerts a chemosensitizing effect on cancer cells exhibiting
constitutive Nrf2 stabilization (Tsuchida et al., 2017). In
addition, Singh et al. (2016) demonstrated that ML385
[N-[4-[2,3-dihydro-1-(2-methylbenzoyl)-1H-indol-5-yl]-5-
methyl-2-thiazolyl]-1,3-benzodioxole-5-acetamide] (Figure 4)
is a novel and specific Nrf2 inhibitor. Therefore, it is of interest
to study whether these Nrf2 inhibitors can affect depression-like
phenotypes in rodents.
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CONCLUSION REMARKS AND FUTURE
PERSPECTIVE

Rodents with depression-like phenotype have higher blood levels
of pro-inflammatory cytokines, suggesting that inflammation
plays a role in depression-like phenotype in rodents.
Furthermore, rodents with depression-like phenotype have
lower expression of Keap1 and Nrf2 in the PFC and
hippocampus (Yao et al., 2016b; Zhang et al., 2017b).
Interestingly, we found decreased expression of Keap1 and
Nrf2 in the parietal cortex from patients with MDD and
bipolar disorder (Zhang et al., 2018). Given the essential
role of BDNF-TrkB signaling in depression (Nestler et al.,
2002; Hashimoto et al., 2004; Duman and Monteggia, 2006;
Hashimoto, 2010; Zhang et al., 2016), inflammation (or
stress)-induced reduction of Keap1-Nrf2 system may contribute
to decreased BDNF-TrkB signaling and synaptogenesis,
resulting in depression-like phenotypes (Figure 5). It is
noteworthy that TrkB agonist 7,8-DHF has antidepressant
effects in Nrf2 KO mice (Yao et al., 2016b), LPS-treated
mice (Zhang et al., 2014) and CSDS susceptible mice (Zhang
et al., 2015), suggesting a possible link between Keap1-Nrf2
system and BDNF-TrkB signaling (Mendez-David et al.,
2015; Yao et al., 2016b; Zhang et al., 2017b; Li et al., 2018;
Figure 5).

Nutritional status during early adolescence stage might have a
great impact on the onset and severity of psychiatric diseases in
adulthood (Paus et al., 2008; O’Connor and Cryan, 2014). Over
the past decade, there has been increasing interest in the potential
benefits of early intervention for psychiatric disorders such as
depression (Paus et al., 2008; O’Connor and Cryan, 2014; Sarris
et al., 2015; Correll et al., 2018).

Preclinical findings suggest that dietary intake of
glucoraphanin during juvenile and adolescence can protect
against depression-like behaviors after CSDS or LPS
administration (Yao et al., 2016b; Zhang et al., 2017b), indicating
prophylactic effects of glucoraphanin for depression. Thus,
dietary intake of glucoraphanin (or SFN) during juvenile
and adolescence might confer stress resilience at adulthood
(Figure 5). Therefore, it is possible that dietary intake of
glucoraphanin (or SFN) during childhood and adolescence
stages could prevent the onset of depression in humans during
adulthood. Since patients with mood disorder have high relapse
rate, dietary intake of glucoraphanin (or SFN) may prevent
or minimize relapse from remission, induced by inflammation
and/or stress in depressed patients.
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