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Simple Summary: In this paper, we present an artificial Intelligence (AI) based automatic detection
of mitoses in Uterine Leiomyosarcoma. Mitotic count is one of the important biomarkers in the
field of histopathology. A dataset is also made available to research community which consists
of images having moitotically active region. These regions are labeled by a trained AI expert in
coordination with a senior histopathologist. Preliminary results show AI as promising solution for
detection of mitotically active regions in Uterine leiomyosarcoma cases and can be used as a second
opinion system.

Abstract: Uterine leiomyosarcoma (ULMS) is the most common sarcoma of the uterus, It is aggressive
and has poor prognosis. Its diagnosis is sometimes challenging owing to its resemblance by benign
smooth muscle neoplasms of the uterus. Pathologists diagnose and grade leiomyosarcoma based on
three standard criteria (i.e., mitosis count, necrosis, and nuclear atypia). Among these, mitosis count
is the most important and challenging biomarker. In general, pathologists use the traditional manual
counting method for the detection and counting of mitosis. This procedure is very time-consuming,
tedious, and subjective. To overcome these challenges, artificial intelligence (AI) based methods have
been developed that automatically detect mitosis. In this paper, we propose a new ULMS dataset and
an AI-based approach for mitosis detection. We collected our dataset from a local medical facility in
collaboration with highly trained pathologists. Preprocessing and annotations are performed using
standard procedures, and a deep learning-based method is applied to provide baseline accuracies.
The experimental results showed 0.7462 precision, 0.8981 recall, and 0.8151 F1-score. For research
and development, the code and dataset have been made publicly available.

Keywords: leiomyosarcoma diagnosis; mitosis identification; deep learning; YOLOv4; medical
image processing

1. Introduction

Uterine leiomyosarcoma (ULMS) is a type of rare cancer among malignant gynecologic
tumors that arises from the smooth muscle of the uterine wall [1]. It is an aggressive cancer
with a high risk of recurrence and death. It is challenging due to its high resistance to
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therapy. Women in their perimenopausal years are mostly affected by this cancer. Although
most patients do not have predisposing factors for ULMS development, potential risks
can include radiation therapy to the pelvis regions, long-term tamoxifen, and inherited
genetic syndromes [2,3]. Histopathological examinations are performed for the diagnosis
of ULMS. In histopathology, tissue samples are studied under high-resolution microscopes.
Tissue samples are collected using biopsy [4] or hysterectomy [5] procedures. Benign and
malignant ULMS are differentiated based on cytological atypia, mitotic rate, and tumor cell
necrosis existence. Bell et al. proposed the Standford criteria which include two factors:
mitotic cell count and tumor cell necrosis [6].

Mitosis is an important biomarker widely used for the diagnosis of different cancers
including ULMS [7]. Mitosis is a cell division process that has a direct connection with
the prognosis of tumors [8]. In histopathological examinations, it is usually detected via
visual inspections of histopathology slide images under high-resolution microscopes. This
procedure is time-consuming and tedious. The skills and expertise of a pathologist also
play a key role in manual inspections. Less experienced pathologist may miss mitoses
figures resulting in diagnostic errors. Recently, artificial intelligence-based techniques revo-
lutionized the world and are used in multiple applications in healthcare. The researchers
proposed various methods for different healthcare applications which includes diabetic
and hypertensive retinopathy detection [9], mitosis detection [10], and breast cancer detec-
tion [11]. Mitosis detection in ULMS is studied for the first time in our study. To the best of
our knowledge, no publicly available datasets are available for research and development.

Digital pathology is the study of digitized specimen slides using computer-based
technologies. In true cut and incisional biopsy [4], tissues are collected from the body
using a fine needle, framed into a glass slide, and stains such as eosin and hematoxylin are
applied over it. These slides are then passed through a scanning machine, which produces
digital slides which can be viewed through a computer monitor or software. As mentioned
above, the histological diagnosis of ULMS is subjective and dependent on the knowledge
and hard work of the histopathologist. Moreover, the mitotic activity varies from region
to region in the same tumor, and therefore it is important to identify the most mitotically
active areas and count mitoses in these areas. Sometimes, a small mitosis can easily be
missed by a pathologist if it is present focally or when the pathologist has to screen out
many slides routinely in a short period [12]. Sometimes smooth muscle neoplasms exhibit
very low mitotic activity in the early stages and are diagnosed as benign cases, later they
shows high mitotic activity. Digital pathology should be adopted as it can be used as a
second opinion system and can acclerate the diagnosis process.

In recent years, technological innovations and new image analysis systems have
offered new, reliable, and accurate approaches for a more objective assessment of tumor
aggressiveness. Artificial intelligence (AI) is increasingly being used for the automatic
counting of mitotic figures [10,12–14]. Motivated by these AI-based studies, we aimed to
use deep-learning architecture to automate the process of ULMS diagnosis. The objective
was to design a deep-learning system capable of detecting the mitotically active regions in
microscopic images of leiomyosarcoma. A deep learning model was trained to learn the
patterns of mitosis. Microscopic images of uterine leiomyosarcoma cases were captured
and used as an input to the deep learning model for training. One such microscopic
image is shown in Figure 1 where four different mitotic regions are highlighted in red.
In conventional practice, a histopathologist observes the microscopic image and marks
these regions manually. Accuracy in such conventional practice is solely dependent on the
experience and skill of the pathologist. A trained deep-learning model on the other hand
automatically highlights the mitotically active regions.
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• An end-to-end framework for the detection of mitosis in ULMS, describing the data 
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niques such as artificial neural networks [15], support vector machines (SVM) [16], etc. 
Irshad et al. proposed a mitosis detection technique [17] for breast cancer histopathology 
images using morphological, and multi-channel statistics features and a decision tree [18] 
as a classification algorithm. Mahmood et al. [16] used statistical, shape, and color-based 
features with SVM as a classification algorithm. Although, for our proposed dataset, no 
handcrafted techniques are applied in literature, in general handcrafted features-based 
techniques have low detection performance and often lack robustness. Deep features-

Figure 1. The microscopic image of a leiomyosarcoma (LMS) case with red highlighted areas showing
the mitosis region.

The contributions of our work are as follows:

• Release of 150 annotated bounding box dataset for uterine leiomyosarcoma histopathol-
ogy and a baseline method for mitosis detection. To the best of our knowledge, this
is the first study on leiomyosarcoma histopathology where a dataset and automated
method for mitosis detection is provided. As stated earlier, the proposed method
obviates the need for manually annotating that further reduces human errors.

• Benchmarks for the provided dataset using the YOLOv4 detection technique are
provided. Moreover, standard computer vision metrics such as precision, recall, and
F1-score are used for comparison with possible future work.

• An end-to-end framework for the detection of mitosis in ULMS, describing the data
capturing, annotations, and detection, is provided.

• For research and development, the code and dataset are made publicly available.
• The rest of the manuscript is organized as follows: Section 2 presents the related work,

Section 3 discusses the associated materials and methods, Section 4 describes results
and, finally, Sections 5 and 6, respectively, present the discussion and conclusions of
our research work.

2. Related Work

Hematoxylin-and-eosin-stained biopsy images are broadly studied in the literature.
We can categorize the previous method into two categories: handcrafted features-based
and deep features-based methods.

2.1. Handcrafted Features-Based

Researchers proposed various handcrafted feature-based methods where features such
as texture, morphological, or color are extracted followed by machine learning techniques
such as artificial neural networks [15], support vector machines (SVM) [16], etc. Irshad
et al. proposed a mitosis detection technique [17] for breast cancer histopathology images
using morphological, and multi-channel statistics features and a decision tree [18] as a
classification algorithm. Mahmood et al. [16] used statistical, shape, and color-based
features with SVM as a classification algorithm. Although, for our proposed dataset, no
handcrafted techniques are applied in literature, in general handcrafted features-based
techniques have low detection performance and often lack robustness. Deep features-based
methods are the preferred approach to adopt for mitosis detection in ULMS owing to their
outstanding performance in state-of-the-art tasks.
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2.2. Deep Features-Based

Deep features methods perform better than the handcrafted-based features owing
to the automatic features extraction process during the training of the deep learning
model. Recently, various deep features-based methods are proposed for mitosis detection
in histopathology images. Chen et al. proposed a two stage-solution [19] in which objects
are first segmented in stage 1, followed by classification in stage 2. Li et. Al. proposed a
region-based approach, in which the first faster region convolutional neural network (Faster
R-CNN) [20] detects mitosis objects, which are further refined using residual network
(Resnet)-50 [21]. Cai et al. proposed method [22] is based on the modified Faster R-
CNN including ResNet-101 as a features extraction network. Dodballapur et al. in their
proposed method [23] used additional Resnet-50 and Xception network [24] for false
positives reduction. The pherformance is better than the previous method, but it is only
limited to mitosis detection in breast cancer histopathology.

In the case of ULMS, the mitosis detection process is manual by using high-resolution
microscopes. Pathologist manually examines glass slides, which is a tedious and time-
consuming procedure and need automation. Also, there is no public dataset as well as a
baseline method for mitosis detection in ULMS. Therefore, we propose a public dataset
along with the baseline method for researchers. Our proposed work on ULMS opens new
doors for research in mitosis detection.

3. Materials and Methods
3.1. Overview of the Proposed Method

Figure 2 presents the overall framework of the proposed method. The proposed
method is divided into four blocks named the data capturing block, data preprocessing
block, dataset creation block, and deep learning-based detection block. In the first block,
samples are collected from patients, processed in the laboratory, and studied under high-
resolution microscopes for capturing mitosis-rich regions. All of the samples are collected
and sent to the second block for preprocessing and annotations. With the help of a deep
learning engineer, the dataset is cleaned and annotations are performed (which are then
validated by other pathologists). In the third block, the dataset is divided into two split (i.e.,
training and testing). Training data are augmented using various traditional augmentation
techniques to increase the size of training data for successful training. In the final block, the
baseline method YOLOV4 [25] is applied and performance is evaluated.

3.2. Dataset Acquisition, Preprocessing, and Labeling

In this study, a supervised learning-based method is used. We obtained a rich dataset
under the supervision of highly trained medical staff. The dataset was collected at Atia
Hospital, Karachi Pakistan under the IRB# AGH/IRB/2021/01. Histopathological digital
images of Leiomyosarcoma cases were analyzed by a pathologist “A” under the Best
Scope (model# BS2030BD), and mitosis-rich patches were selected. After this, our team of
expert pathologists and a deep learning engineer did annotations of all mitosis. In total,
150 patches of size 1280 × 720 are extracted by the pathologist. In the manuscript, we
have used the term “images” for representing the patches extracted by the pathologist. For
annotation purposes, we have used the roboflow annotation tool [26]. The pathologists
were trained to use the annotation tool. During the annotations, deep learning engineer
and pathologist “A” performed annotations of all 150 images. To validate pathologist
“A” findings, all selected images, and their annotations were independently analyzed by
pathologists “B” and “C”. In case of disagreement on any object, the entire image or object
was discarded after mutual consent. At the end of the annotation process, there were a total
of 348 mitoses in 150 images. Training and testing splits are defined after annotations. We
kept 100 images (240 mitoses) for training and 50 images (108 mitoses) for testing purposes.
Figure 3 shows the example of dataset images with annotation.
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3.3. Baseline Models

Deep learning-based computer vision technology has a wide range of applications
and its range of applicability is continuously increasing [27,28]. Consequently, it has shown
its footprints in the field of medical diagnostics as well. Deep learning can either be used to
classify or to detect and localize objects in images. In classification, an image as a whole is
classified into one of the many input classes whereas, in detection/localization, different
objects within an image are recognized. Our architecture requires an algorithm to detect
and localize the mitotically active region within the image. Few deep-learning architectures
are currently available for the detection and localization of objects within the image (for
example, region-based convolutional neural network (RCNN) and faster-RCNN [20], single
shot multi-box detector (SSD) [29] and you only look once (YOLO)) [30]. We performed
experiments on all object detection algorithms and provided YOLOv4 as a baseline method
due to its performance. YOLOv4 has already been used in many applications [31–33] and
its performance is better than other object detection algorithms.

To implement any deep learning architecture, extensive hardware resources are re-
quired. GPUs, CPUs, IoT devices, and embedded computers are required, which makes the
practical implementation of ULMS detection difficult. To cope with this challenge, YOLOv4
is implemented in Darknet [34] which is an open framework written in C language. Unlike
other high-level languages such as Python and MATLAB, Darknet-based implementation
with C gives the programmers slightly more control over the hardware resources. In ad-
dition, we used, compute unified device architecture (CUDA) [35] for parallel processing.
CUDA is capable of allowing different graphical operations to be carried out in parallel.
Since YOLOv4 performs convolution operations, parallel processing will greatly reduce the
computation time. YOLOv4 is written in C language along with CUDA and provides a low
latency system in comparison to a faster RCNN and SSD architecture. Important features
of the YOLOv4 are as follows:

• Simple: YOLO is available in many libraries as an in-built example.
• Fast to set up: Unlike faster RCNN where first regions are divided and then classifica-

tion is performed, YOLO performs the detection of region and classification all simulta-
neously. With CNN and RCNN, all of the potential regions need separate classification.

• Supports both GPUs and CPUs: In case the hardware does not have a GPU, only the
CPU is capable of running the YOLO network.

The aforementioned capability of detecting regions and classifying the regions simul-
taneously makes YOLOv4 a preferred choice over RCNN, faster RCNN, and SSD. YOLOv4
network uses CSPDarknet53 for feature extraction and training. A path aggregation net-
work (PANet) was applied as a neck network to improve the fusion of the extracted features,
and the YOLOv4 head was utilized to detect objects (mitotic figures). Our input to the
YOLO architecture was the microscopic images of LMS with mitotically active regions
inside it. Figure 4 shows the architecture of YOLOv4 with the detected mitoses in the
given image. Broadly, the overall architecture can be summarized as follows: (1) take the
input; (2) extract features and perform classification; and (3) show the detected output with
highlighted mitotically active regions.

The key modules of the proposed YOLOv4-based detection model shown in Figure 4 are:

• CBL: Convolution, batch normalization, and leaky-ReLU module made up by combin-
ing the convolution layer, a batch normalization layer, and a leaky-ReLU activation
function. The convolution layer was the main heart of this network where the input
images convolved with a filter to find the output for the next convolution layer. The
operation of the convolution layer is shown in Figure 5. The batch normalization block
normalized the data to minimize the outlier’s effects on the data. A rectified linear
unit (ReLU) was used as an activation function.

• CBM: As expressed in Figure 4b the CBM blocks shown in the figure performs
convolution, batch normalization, and MISH, which serves as a non-monotonic
activation function.
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• Concatenation: This block simply concatenates the output of different intermediate
layers to form the input for the next layer.
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In this architecture, the CBM and CBL modules extract the convolutional features from
the images. Our proposed architecture is based on the traditional CNN architecture. How-
ever, by splitting low-level features into two sections and then fusing cross-level features,
the CSP (center and scale prediction) module could improve CNN’s learning ability.

4. Results
4.1. Training

Since we were only required to detect the mitotically active regions in the input
microscopic image only, the problem had only one class. In short, the detection of mitosis is
considered a one-class classifier. The batch size, learning rate, number of classes, mini-batch
size, and the number of convolutional kernels in the previous layers are modified. For the
detection of an object, the network input size was set to 416 × 416, the learning rate set to
0.00065, batch size to 64, mini-batch size to 16, the step size to 6400–7200, filters to 18 (before
each YOLO layer), and momentum and decay rate to 0.949 and 0.0005, respectively. At
every 10,000 steps, the training process produced several models. The best model fit was
used in our hold-out testing process. The training was performed on a Windows 10 Pro
Intel® Core i9 10th generation, 3.30 GHz processor with 256 GB RAM and RTX-3090 (trained
on 4 GPUs).

4.2. Performance Evaluations Metrics

The standard computer vision evaluation metrics for object detection are used for
performance evaluation such as precision, recall, and F1-score. Since our objective is to
diagnose ULMS by finding mitotically active regions in the microscopic input image of the
uterus and provide a baseline for future methods, the above metrics are selected. Overall,
the performance evaluation metrics are as follows:

1. True Positive (TP): When our model correctly predicts mitosis.
2. False Positive (FP): When there is no mitosis in the input image and the proposed

algorithm still detects the mitosis.
3. False Negative (FN): When there is mitosis in the input image and the proposed

algorithm miss detects the mitosis.
4. Confidence: The confidence score shows how confident the YOLO is regarding the

presence of the mitosis region.
5. Precision: It shows how much positive detection of the mitosis is actually correct.

Equation (1) shows the precision:

Precision =
TP

TP + FP
(1)

6. Recall: From the correct mitosis, what portion is detected successfully. Equation (2),
shows the recall:

Recall =
TP

TP + FN
(2)

7. F1-Score: The F1-score is calculated based on precision and recall. The higher the F-1
score the better the algorithm. Equation (3) represents the F1-score as follows:

F1 − score = (2 ∗ precision ∗ recall) / (precision + recall) (3)

4.3. Overall Performance Evaluation

In the proposed dataset, the hold-out test set has a total of 50 histopathology images
with 108 mitosis objects. The trained YOLOv4 model is applied to the test set and its
performance is evaluated. Among the total 108 mitosis objects, 97 objects are detected
correctly (TP = 97), 11 mitoses are missed (FN = 11), and 33 extra objects are detected as
mitosis (FP = 33). The overall confidence score of the detection on average is 87%. The
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precision, recall, and F1-score of the baseline method on the test set are 0.7462, 0.8981, and
0.8151, respectively. Table 1 presents the summary of the performance evaluation on the
test set.

Table 1. The performance of the baseline model (YOLOv4) on the test set.

Parameter Value

True Positive (TP) 97

False Positive (FP) 33

False Negative (FN) 11

Precision 0.7462

Recall 0.8981

F1-Score 0.8151

4.4. Statistical Significance Tests

Statistical significance tests are performed to check the validity of the results. For this
purpose, we evaluated the model 10 times. For each evaluation instance, TP, FP, and FN
were calculated to compute the accuracy, precision, recall, and F1-Score. Afterward, the
statistical analysis was performed, and the corresponding results are presented in Table 2.
Accuracy along with the other statistical parameters mentioned in Table 2 shows that the
trained model has a higher mean value and lower standard deviation values. Consequently,
it can be said that the performance of mitosis detection model is uniform throughout the
available dataset.

Table 2. Statistical significance test results.

Measure Mean Value Standard Deviation

Precision 0.7462 ±0.041

Recall 0.8981 ±0.038

F1-Score 0.8151 ±0.035

Accuracy 0.6879 ±0.053

4.5. Visualization of Results

Figure 6 shows the detected mitotically active regions of four different images. The
regions highlighted in purple show the detected output along with the confidence score.
As shown in Figure 6, each of the mitotically active regions was successfully detected with
a high confidence score. By looking at the image shown in Figure 6, medical technologists
without any prior knowledge can detect mitosis.

4.6. Comparison with the State-of-the-Art Methods

To show the effectiveness of the proposed model, we compared our baseline model
with other state-of-the-art object detection algorithms. The YOLOv4 outperform other
object detection models as shown in Table 3. The results reported in Table 3 suggest that the
YOLOv4-based uterine mitotic region detector outperforms other object detection models.
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Table 3. Comparison of the baseline method (YOLOv4) with the SSD model and Faster R-CNN model
on the test dataset of the proposed method.

Method Precision Recall F1-Score

SSD 0.7037 0.8796 0.7819

Faster R-CNN 0.7287 0.8704 0.7932

YOLOv4 (Baseline method) 0.7462 0.8981 0.8151

5. Discussion

This work presents an automated mitosis detection framework for uterine leiomyosar-
comas which is the most common uterine sarcomas. Manual procedures for mitosis
detection can be replaced by AI-based methods, which can be used as a second opinion
system. The key observations from this work are as follows:

• The development of AI-based methods is decreasing the gap between pathologists and
computers. With the advent of technology, the trust level of stakeholders is increasing.

• In the case of ULMS, significant variations are observed among the mitosis objects as
compared to other tumors. These variations increase the difficulty level of the mitosis
detection task.

• It is crucial to carefully assess the morphological characteristics of the mitosis objects
owing to the strong resemblance between leiomyoma, STUMP, and leiomyosarcoma.
The leiomyomas are usually multiple and mostly do not show increased cellularity,
significant nuclear atypia, or mitotic activity. However, cellular variants as well as
variants with bizarre nuclei and those which are mitotically active are sometimes seen.

• Mitotically active leiomyomas often have more than 10 mitoses per 10 high power
fields (HPF) but typically lack nuclear atypia or tumor necrosis. Uterine tumors labeled
as STUMP may show focal or multifocal to diffuse, moderate to severe atypia, and
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mitotic count <10 (mean 3 to 4) per 10 HPF. Tumor necrosis is absent. Still, other cases
show no atypia.

• AI-based techniques automatically detect mitotically active cells in the histopathology
images (thereby accelerating the diagnosis) and are time efficient.

• This study opens a new door by providing a dataset and a baseline. However, its limi-
tation is the size of the dataset used. In the future, the dataset size should be increased.

6. Conclusions

In this paper, we presented an AI-based automated method for mitosis detection
in uterine leiomyosarcoma (ULMS) histopathology images. ULMS is the most common
sarcoma of the uterus and is diagnosed by manual examination of the histopathology
images under high-resolution microscopes. Pathologists have used different biomarkers
for the grading of ULMS. Among these biomarkers, mitosis detection is the most important
and challenging one. Here, various AI-based methods are proposed for mitosis detection.
However, there is no public dataset available for ULMS. In our work, we collected a
dataset from the local hospital, preprocessed it, and followed it with annotations with the
collaboration of expert pathologists. The deep learning method YOLOv4 is applied to
set a benchmark for future methods. The dataset is made publicly available for research
and development purposes. In the future, we have a plan to increase the dataset size and
accuracies of the automatic method.

Author Contributions: Medical data collection and processing, T.Z., M.S., B.A.S. and Z.A.; Method-
ology, S.A. (Sharjeel Anjum), T.M. and T.Z. Review and Editing, S.A. (Shahzad Ahmed) and T.M.;
Overall supervision and project compilation, S.A. (Shahzad Ahmed) and N.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research is funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R321), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: The human study protocol was approved by the Institutional
Review Board of Atia General Hospital (AGH), Karachi, Pakistan (IRB Number: AGH/IRB/2021/01).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: This paper discloses a public image dataset that can be accessed
by email to the corresponding authors and following the guidelines provided at the link https:
//github.com/sharjeelanjum/Leiomoiosarcoma_mitosis (accessed on 20 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roberts, M.E.; Aynardi, J.T.; Chu, C.S. Uterine Leiomyosarcoma: A Review of the Literature and Update on Management Options.

Gynecol. Oncol. 2018, 151, 562–572. [CrossRef] [PubMed]
2. George, S.; Serrano, C.; Hensley, M.L.; Ray-Coquard, I. Soft Tissue and Uterine Leiomyosarcoma. J. Clin. Oncol. 2018, 36, 144–150.

[CrossRef] [PubMed]
3. Kaur, K.; Kaur, P.; Kaur, A.; Singla, A. Uterine Leiomyosarcoma: A Case Report. J. Midlife Health 2014, 5, 202–204. [CrossRef]

[PubMed]
4. Maclean, A.; Kamal, A.; Adishesh, M.; Alnafakh, R.; Tempest, N.; Hapangama, D.K. Human Uterine Biopsy: Research Value and

Common Pitfalls. Int. J. Reprod. Med. 2020, 2020, e9275360. [CrossRef] [PubMed]
5. Selvanathan, S.; Acharya, N.; Singhal, S. Quality of Life after Hysterectomy and Uterus-Sparing Hysteroscopic Management of

Abnormal Uterine Bleeding or Heavy Menstrual Bleeding. J. Midlife Health 2019, 10, 63–69. [CrossRef] [PubMed]
6. Bell, S.W.; Kempson, R.L.; Hendrickson, M.R. Problematic Uterine Smooth Muscle Neoplasms: A Clinicopathologic Study of 213

Cases. Am. J. Surg. Pathol. 1994, 18, 535–558. [CrossRef]
7. Chapel, D.B.; Sharma, A.; Lastra, R.R.; Maccio, L.; Bragantini, E.; Zannoni, G.F.; George, S.; Quade, B.J.; Parra-Herran, C.;

Nucci, M.R. A Novel Morphology-Based Risk Stratification Model for Stage I Uterine Leiomyosarcoma: An Analysis of 203 Cases.
Mod. Pathol. 2022, 35, 794–807. [CrossRef]

8. Li, C.; Wang, X.; Liu, W.; Latecki, L.J. DeepMitosis: Mitosis Detection via Deep Detection, Verification and Segmentation Networks.
Med. Image Anal. 2018, 45, 121–133. [CrossRef]

https://github.com/sharjeelanjum/Leiomoiosarcoma_mitosis
https://github.com/sharjeelanjum/Leiomoiosarcoma_mitosis
http://doi.org/10.1016/j.ygyno.2018.09.010
http://www.ncbi.nlm.nih.gov/pubmed/30244960
http://doi.org/10.1200/JCO.2017.75.9845
http://www.ncbi.nlm.nih.gov/pubmed/29220301
http://doi.org/10.4103/0976-7800.145175
http://www.ncbi.nlm.nih.gov/pubmed/25540573
http://doi.org/10.1155/2020/9275360
http://www.ncbi.nlm.nih.gov/pubmed/32411783
http://doi.org/10.4103/jmh.JMH_15_19
http://www.ncbi.nlm.nih.gov/pubmed/31391754
http://doi.org/10.1097/00000478-199406000-00001
http://doi.org/10.1038/s41379-022-01011-z
http://doi.org/10.1016/j.media.2017.12.002


Cancers 2022, 14, 3785 12 of 12

9. Arsalan, M.; Owais, M.; Mahmood, T.; Cho, S.W.; Park, K.R. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy
Using Artificial Intelligence-Based Semantic Segmentation. J. Clin. Med. 2019, 8, 1446. [CrossRef]

10. Mahmood, T.; Arsalan, M.; Owais, M.; Lee, M.B.; Park, K.R. Artificial Intelligence-Based Mitosis Detection in Breast Cancer
Histopathology Images Using Faster R-CNN and Deep CNNs. J. Clin. Med. 2020, 9, 749. [CrossRef]

11. Sheikh, T.S.; Lee, Y.; Cho, M. Histopathological Classification of Breast Cancer Images Using a Multi-Scale Input and Multi-Feature
Network. Cancers 2020, 12, 2031. [CrossRef] [PubMed]

12. Deep Learning Assisted Mitotic Counting for Breast Cancer|Laboratory Investigation. Available online: https://www.nature.
com/articles/s41374-019-0275-0 (accessed on 23 June 2022).

13. Wang, M.; Aung, P.P.; Prieto, V.G. Standardized Method for Defining a 1-Mm2 Region of Interest for Calculation of Mitotic Rate
on Melanoma Whole Slide Images. Arch. Pathol. Lab. Med. 2021, 145, 1255–1263. [CrossRef] [PubMed]

14. Tabata, K.; Uraoka, N.; Benhamida, J.; Hanna, M.G.; Sirintrapun, S.J.; Gallas, B.D.; Gong, Q.; Aly, R.G.; Emoto, K.; Matsuda, K.M.;
et al. Validation of Mitotic Cell Quantification via Microscopy and Multiple Whole-Slide Scanners. Diagn. Pathol. 2019, 14, 65.
[CrossRef] [PubMed]

15. Khalil, A.J.; Barhoom, A.M.; Abu-Nasser, B.S.; Musleh, M.M.; Abu-Naser, S.S. Energy Efficiency Prediction Using Artificial Neural
Network. Int. J. Acad. Pedagog. Res. 2019, 3, 1–7.

16. Mahmood, T.; Ziauddin, S.; Shahid, A.R.; Safi, A. Mitosis Detection in Breast Cancer Histopathology Images Using Statistical,
Color and Shape-Based Features. J. Med. Imaging Health Inform. 2018, 8, 932–938. [CrossRef]

17. Irshad, H. Automated Mitosis Detection in Histopathology Using Morphological and Multi-Channel Statistics Features. J. Pathol.
Inform. 2013, 4, 10. [CrossRef] [PubMed]

18. Rizvi, S.; Rienties, B.; Khoja, S.A. The Role of Demographics in Online Learning; A Decision Tree Based Approach. Comput. Educ.
2019, 137, 32–47. [CrossRef]

19. Chen, H.; Dou, Q.; Wang, X.; Qin, J.; Heng, P.-A. Mitosis Detection in Breast Cancer Histology Images via Deep Cascaded
Networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12 February 2016;
pp. 1160–1166.

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

21. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

22. Cai, D.; Sun, X.; Zhou, N.; Han, X.; Yao, J. Efficient Mitosis Detection in Breast Cancer Histology Images by RCNN. In Proceedings
of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 919–922.

23. Dodballapur, V.; Song, Y.; Huang, H.; Chen, M.; Chrzanowski, W.; Cai, W. Mask-Driven Mitosis Detection In Histopathology
Images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy,
8–11 April 2019; pp. 1855–1859.

24. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

25. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

26. Roboflow: Give Your Software the Power to See Objects in Images and Video. Available online: https://roboflow.com/ (accessed
on 23 June 2022).

27. Ahmed, S.; Khan, F.; Ghaffar, A.; Hussain, F.; Cho, S.H. Finger-Counting-Based Gesture Recognition within Cars Using Impulse
Radar with Convolutional Neural Network. Sensors 2019, 19, 1429. [CrossRef] [PubMed]

28. Mahmood, T.; Cho, S.W.; Park, K.R. DSRD-Net: Dual-Stream Residual Dense Network for Semantic Segmentation of Instruments
in Robot-Assisted Surgery. Expert Syst. Appl. 2022, 202, 117420. [CrossRef]

29. Wang, X.; Hua, X.; Xiao, F.; Li, Y.; Hu, X.; Sun, P. Multi-Object Detection in Traffic Scenes Based on Improved SSD. Electronics 2018,
7, 302. [CrossRef]

30. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
31. Kannadaguli, P. YOLO v4 Based Human Detection System Using Aerial Thermal Imaging for UAV Based Surveillance Applica-

tions. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain,
8–9 November 2020; pp. 1213–1219.

32. Nersisson, R.; Iyer, T.J.; Joseph Raj, A.N.; Rajangam, V. A Dermoscopic Skin Lesion Classification Technique Using YOLO-CNN
and Traditional Feature Model. Arab. J. Sci. Eng. 2021, 46, 9797–9808. [CrossRef]

33. Yu, J.; Zhang, W. Face Mask Wearing Detection Algorithm Based on Improved YOLO-V4. Sensors 2021, 21, 3263. [CrossRef]
[PubMed]

34. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet/ (accessed on 23 June 2022).
35. CUDA by Example. Available online: https://developer.nvidia.com/cuda-example (accessed on 23 June 2022).

http://doi.org/10.3390/jcm8091446
http://doi.org/10.3390/jcm9030749
http://doi.org/10.3390/cancers12082031
http://www.ncbi.nlm.nih.gov/pubmed/32722111
https://www.nature.com/articles/s41374-019-0275-0
https://www.nature.com/articles/s41374-019-0275-0
http://doi.org/10.5858/arpa.2020-0137-OA
http://www.ncbi.nlm.nih.gov/pubmed/33417687
http://doi.org/10.1186/s13000-019-0839-8
http://www.ncbi.nlm.nih.gov/pubmed/31238983
http://doi.org/10.1166/jmihi.2018.2382
http://doi.org/10.4103/2153-3539.112695
http://www.ncbi.nlm.nih.gov/pubmed/23858385
http://doi.org/10.1016/j.compedu.2019.04.001
https://roboflow.com/
http://doi.org/10.3390/s19061429
http://www.ncbi.nlm.nih.gov/pubmed/30909552
http://doi.org/10.1016/j.eswa.2022.117420
http://doi.org/10.3390/electronics7110302
http://doi.org/10.1007/s13369-021-05571-1
http://doi.org/10.3390/s21093263
http://www.ncbi.nlm.nih.gov/pubmed/34066802
https://pjreddie.com/darknet/
https://developer.nvidia.com/cuda-example

	Introduction 
	Related Work 
	Handcrafted Features-Based 
	Deep Features-Based 

	Materials and Methods 
	Overview of the Proposed Method 
	Dataset Acquisition, Preprocessing, and Labeling 
	Baseline Models 

	Results 
	Training 
	Performance Evaluations Metrics 
	Overall Performance Evaluation 
	Statistical Significance Tests 
	Visualization of Results 
	Comparison with the State-of-the-Art Methods 

	Discussion 
	Conclusions 
	References

