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Abstract: Sandwich panel structures (SPSs) with lattice cores can considerably lower material con-
sumption while simultaneously maintaining adequate mechanical properties. Compared with
extruded lattice types, triply periodic minimal surface (TPMS) lattices have light weight but better
controllable mechanical properties. In this study, the different types of TPMS lattices inside an
SPS were analysed comprehensively. Each SPS comprised two face sheets and a core filled with
20 × 5 × 1 TPMS lattices. The types of TPMS lattices considered included the Schwarz primitive
(SP), Scherk’s surface type 2 (S2), Schoen I-graph-wrapped package (I-WP), and Schoen face-centred
cubic rhombic dodecahedron (F-RD). The finite element method was applied to determine the me-
chanical performance of different TPMS lattices at different relative densities inside the SPS under a
three-point bending test, and the results were compared with the values calculated from analytical
equations. The results showed a difference of less than 21% between the analytical and numerical
results for the deformation. SP had the smallest deformation among the TPMS lattices, and F-RD can
withstand the highest allowable load. Different failure modes were proposed to predict potential
failure mechanisms. The results indicated that the mechanical performances of the TPMS lattices
were mainly influenced by the lattice geometry and relative density.

Keywords: failure mode; finite element analysis; relative density; sandwich panel structure; three-
point bending test; triply periodic minimal surface

1. Introduction

Triply periodic minimal surfaces (TPMSs) were originally discovered and described by
Schwarz in 1865 [1]. However, fabricating these surfaces is still a challenge due to conven-
tional technical limitations. The development of additive manufacturing (AM), particularly
3D printing, has made the fabrication of TPMSs possible. To increase the strength of AM
products while reducing material consumption, the sandwich panel structure (SPS) was
developed, which is a lattice-based cellular pattern enclosed by two face sheets. SPSs are
widely applied in engineering and industry for aerospace, thermal systems, packaging and
medical implants [2–4]. A wide range of lattice patterns can be used, such as honeycombs,
tri-/quadri-grids, and TPMSs.

SPSs are commonly observed in nature, such as in human skulls, butterflies, and drag-
onflies [5]. SPSs provide an outstanding stiffness/strength-to-weight ratio and excellent
energy absorption because of their very high moments of inertia [6]. When external load
is applied on the face sheets, the force is dispersed to the lattice by decomposition. The
force undertaken by the lattice causes the lattice structure to deform, and strain energy
is absorbed in the lattice. SPSs also provide an efficient framework for resisting buckling
and bending loads. Mahmoud and Elbestawi [7] found that SPSs can be used to develop
artificial orthopaedic implants with a similar porosity to that of human bones. The porous
structure allows bone to easily grow inside and strengthens the bond between the implant
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and host bone. Gibson and Ashby [3] showed that SPSs can be observed not only in
biological structures and plants but also in many weight-saving products.

An SPS contains a lattice core. Several struct-based cellular geometries are possible,
such as the cubic primitive, body-centred cubic, face-centred cubic, and octet truss [8–10].
Another existing family of geometries that offer similar advantages are TPMSs. Three major
factors influence the mechanical properties of a structure: the shape, size, and relative
density [11–13]. Cao et al. [14] conducted an experiment on P-lattice structures, which is
a nature-inspired TPMS commonly seen in butterfly wings. Their results indicated that
the P-lattice structure is an optimal version of the original Schwarz primitive (SP) and has
exceptional mechanical properties compared with regular lattice patterns such as triangles,
hexagons, and diamonds. Abueidda et al. [15] compared four TPMSs and showed that
different shapes can affect the mechanical properties under compressive loading. Among
the types of TPMSs considered, the Neovius surface type was found to have the highest
compressive strength and absorption capability. Many studies [16–18] have examined
the mechanical properties of a single TPMS. For a given relative density, the Schoen face-
centred cubic rhombic dodecahedron (F-RD) appears to have the highest elasticity, followed
by SP, Schwarz diamond, Schoen I-graph-wrapped package (I-WP), and gyroid types.

The most significant structural characteristic of a lattice pattern is the relative density
(ρ∗c /ρs) [19], where ρ∗c and ρs are the densities of the lattice and solid materials, respectively.
According to Chen et al. [20], increasing the relative density of a hybrid cellular lattice can
be correlated with tremendous increases in the Young’s modulus, bulk modulus, shear
modulus and total stiffness. Kladovasilakis et al. [21] tested three TPMSs at different
relative densities under compressive loading, and their results revealed that SP has a higher
energy absorption rate than the gyroid and Schwarz diamond for a wide range of relative
density. However, the energy absorption of SP at the relative density of 10% is lower than
that at 20% and 30% because of buckling on the face sheets. In addition, even though the
gyroid absorbed less energy in the elastic region than SP, it still provided extraordinary
energy absorption at all relative densities because of its high yield strength. Although
the Schwarz diamond had the lowest energy absorption, it had the highest compressive
strength. Maskery et al. [22] and Lee et al. [23] indicated that the relative density of SP
can be altered by adjusting the thickness of the shell structure. Both studies concluded
that the shear modulus, shear yield strength, bulk modulus, and hydrostatic yield strength
scale linearly with the relative density of the SPS. The mechanical properties can be further
improved by modifying the plastic compositions and processes [24,25].

Simsek et al. [26] numerically analysed different mesh types for TPMSs to determine
the suitable modelling mesh. Results revealed that the shell model is appropriate for meshes
with thin and uniform wall thickness. Madenci and Guven [27] and İrsel [27,28] investigated
the difference between theoretical and numerical results with different meshes and showed
that the difference between the theoretical and numerical analysed displacements was
~1.32% with a shell model under the same loading conditions. Alternatively, the difference
was much greater at ~11.84% with a solid model. The results illustrated that shell elements
are more suitable than solid elements for analysing thin to moderately thick wall thickness
structures, which are characteristic of TPMSs.

TPMSs under compressive loading and sandwich beams with a 3D truss cell/foam
core under three-point bending have been studied extensively [29–32]. In this study, the
objective was to compare the total deformation and stress distribution of SPSs containing
TPMS lattice cores with different relative densities. Both numerical and theoretical analyses
were performed for the comparison. The results were used to determine the maximum
allowable load before yielding and the failure mode of the SPSs.

2. Theoretical Background
2.1. Cellular Structures and Modelling Procedure of Different TPMSs

A minimal surface is defined as the surface of the minimal area between any given
boundaries. When a minimal surface repeats itself by rotating, mirroring or replicating
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in three dimensions, it is defined as a TPMS [33]. TPMSs have complex shapes; therefore,
generating these surfaces in the computer-aided design software is difficult. Mathematically,
TPMSs can be expressed through different approaches, such as the parametric, implicit and
boundary methods [34]. In this study, four types of TPMSs were considered, as shown in
Figure 1: SP, S2, I-WP and F-RD. The implicit expressions are listed in Equations (1)–(4). All
expressions are based on three coordinate variables each in the range of [–π, π] [21,22,35,36].
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Figure 1. Cell geometries of different TPMSs: (a) SP, (b) S2, (c) I-WP and (d) F-RD.

SP:
fSP = cos(x) + cos(y) + cos(z) = 0 (1)

S2:
fScherk = sin

(
z +

π

2

)
− sinh(x)× sinh(y) = 0 (2)

I-WP:

f IWP = 2 × [cos(x)× cos(y) + cos(z)× cos(x) + cos(y)× cos(z)]− [cos(2 × x) + cos(2 × y) + cos(2 × z)] = 0 (3)

F-RD:

fFRD = cos(x)× cos(y)× cos(z)− 0.1 × [cos(2x)× cos(2y)× cos(2z)] + 0.1 × [cos(2x)× cos(2y)× cos(2z)
+ cos(2z)× cos(2x) = 0

(4)

2.2. Deformation of Conventional SPSs
2.2.1. Total Deformation

Various studies have performed intensive experiments on sandwich beams with
extruded lattices or foam inside the core under three-point bending loads [3,37,38]. The
extruded lattice typically has a triangular, quadrilateral or honeycomb structure. The
foam in the core can be polymer, metallic, ceramic or glass. Gibson and Ashby’s [3]
solution for the total deformation of extruded lattices and foam can be extended to this
study because three-dimensional TPMSs has the same periodic and symmetric features as
extruded lattices.

Deformation occurs when the SPS is loaded and reaches equilibrium. The total
deformation includes the bending component δb and shear component δs. Figure 2 shows a
schematic of an SPS under a three-point bending load.
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Figure 2. SPS under a three-point bending load.

The total deformation, δ, can be calculated as follows:

δ = δb + δs =
pl3

B1(EI)eq
+

pl
B2(AG)eq

(5)

p Load along the vertical direction.
l The length of the SPS beam.
(EI)eq Equivalent flexural rigidity, as shown Equation (6).
(AG)eq Equivalent shear rigidity, as shown Equation (7).
B1 and B2 Constants of proportionality which depend on the geometry of loading, as

listed in Table 1 [3].

(EI)eq =
E f bt3

6
+

E∗
c bc3

12
+

E f btd2

2
(6)

(AG)eq =
bd2G∗

c
c

(7)

where E∗
c is the Young’s modulus of the lattice core, Ef is the Young’s modulus of the solid

material making up the face sheets, and G∗
c is the shear modulus of the lattice core. Both E∗

c
and G∗

c are functions of the relative density ρ∗c /ρs:

E∗
c = C1Es(

ρ∗c
ρs

)
2

(8)

G∗
c = C2Es(

ρ∗c
ρs

)
2

(9)

where Es is the Young’s modulus of the lattice material, ρ∗c is the density of the lattice core,
ρs is the density of the solid material and C1 and C2 are constants of proportionality that
depend on the loading geometry, as listed in Table 1 [3].

Table 1. Constants for the three-point bending testing [3].

Loading Mode C1 C2 B1 B2

E∗
c = C1Es(

ρ∗c
ρs
)

2
G∗

c = C2Es(
ρ∗c
ρs
)

2
δb =

pl3

B1(EI)eq
δs =

pl
B2(AG)eq

Three-point
bending, loading

at the centre
1 0.4 48 8

Figure 3 shows a schematic of the relationship between the bounding box and lattice
volume for an SPS. The porosity is the fraction of pore space in the bounding box and is
obtained from (1 − ρ∗c /ρs). The relative density is given by:

Relative density =
Lattice cellular structure mass/Bounding box volume

Density o f solid
(10)
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2.2.2. Weight of the SPS

The total weight of the SPS W can be written as

W = 2ρ f gblt + ρ∗c gblc (11)

where g is the standard gravity of Earth.

2.3. Failure Modes of Sandwich Beams

Previous studies [3,13,39] have shown that four different failure modes need to be
considered for SPSs: face yielding, face wrinkling, core failure and bond failure. All these
failure modes must be considered because any failure mode can occur when the geometry
or the loading changes.

3. Numerical Approach
3.1. Geometry Design

In this study, Grasshopper and computer codes developed in house were used to
generate single cells of TPMSs. The single cells were generated in an 8 mm × 8 mm× 8 mm
cubic box and patternised to generate 20 × 5 × 1 lattices to serve as the SPS cores, as shown
in Figure 4. SPSs were built with two flat layers fused to the top and bottom of each core.
The overall dimensions of each SPS core were 160 mm × 40 mm × 8 mm, as given in
Figure 4 and Table 2. All dimensions for the exterior geometry except the span length
followed the ASTM D790 standard [40].

Table 2. SPS parameters.

Geometric Parameter Definition Value Unit

b * Width of the sandwich beam 40 mm
c Core thickness of the sandwich beam 8 mm
d Distance between centroids of the upper and lower face sheets 9 mm
l Total length of the sandwich beam 160 mm
S Span length 80 mm
t Thickness of a face sheet 1 mm

* Refer to Figure 2 for the definitions of the geometric parameters.

3.2. Finite Element Analysis
3.2.1. Model

Many studies have demonstrated that discretising the core surface as a shell rather
than a solid mesh produces superior results. This is because the thickness aspect ratio
is large, and the shell model can provide more accurate results [26–28]. To generate the
shell model, the software Rhino was used to generate TPMS geometries, which were then
exported to ANSYS for finite element analysis (FEA) of the structure. The thickness of each
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TPMS was calculated for different relative densities, as given in Table 3. Figure 5 shows
the shell models of SPSs with four different TPMS lattice cores. All numerical models are
1/2 symmetry. A vertical load of 500 N was applied to the centre of the top face sheet, and
total fixed conditions are assumed at both the end supports (Figure 2).

Polymers 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Patterns used to generate SPSs with different TPMS lattice cores: (a) SP, (b) S2, (c) I-WP 

and (d) F-RD. 

3.2. Finite Element Analysis 

3.2.1. Model 

Many studies have demonstrated that discretising the core surface as a shell rather 

than a solid mesh produces superior results. This is because the thickness aspect ratio is 

large, and the shell model can provide more accurate results [26–28]. To generate the shell 

model, the software Rhino was used to generate TPMS geometries, which were then ex-

ported to ANSYS for finite element analysis (FEA) of the structure. The thickness of each 

TPMS was calculated for different relative densities, as given in Table 3. Figure 5 shows 

the shell models of SPSs with four different TPMS lattice cores. All numerical models are 

1/2 symmetry. A vertical load of 500 N was applied to the centre of the top face sheet, and 

total fixed conditions are assumed at both the end supports (Figure 2). 

  
(a) (b) 

Figure 4. Patterns used to generate SPSs with different TPMS lattice cores: (a) SP, (b) S2, (c) I-WP and
(d) F-RD.

Table 3. Wall thicknesses of TPMS lattices at different relative densities.

Core Type
Thickness (mm)

10% 20% 30%

SP 0.34 0.68 1.00
S2 0.44 0.90 1.34

I-WP 0.23 0.45 0.68
F-RD 0.17 0.33 0.50

3.2.2. Materials

Acrylonitrile butadiene styrene (ABS) is a common thermoplastic polymer with nearly
constant elastic modulus and other mechanical properties under the operation temperature.
It has loads of advantages, such as great heat resistance, high tensile strength, and low cost.
Hence, ABS was selected as the material of the SPS specimens, and Table 4 presents its
mechanical properties.
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Table 4. Mechanical properties of ABS [41].

Property Face Sheets and Core

Density
(
kg/m3) 1040

Young’s modulus (GPa) 2.39
Poisson’s ratio 0.39

Tensile yield strength (MPa) 41.4
Tensile ultimate strength (MPa) 44.3

4. Results and Discussion

In this study, the mechanical performances of SPSs with four different TPMS lattice
cores were evaluated and compared. In addition, the calculation results based on the
equations presented in the ‘Theoretical background’ section were compared with the
numerical results obtained using the FEA approach.

4.1. Weight Difference

To compare the mechanical performance of SPS with different TPMS lattices, the total
weight of each SPS must be considered first. The weight calculated from Equation (11) and
the weight acquired from the FEA models are listed in Table 5. The difference was <3% for
all SPSs, which indicates that the geometry of the FEA model was sufficiently accurate and
that Equation (11) could precisely calculate the weight of the SPS. Furthermore, Table 5
indicates that the increase in the relative density can increase the total weight of the SPS.

4.2. Deformation

The total deformations of the SPSs with different TPMS lattices cores under a three-
point bending load calculated using Equation (5) were compared against the numerical
predictions obtained by FEA. Table 6 lists the calculated parameters, maximum total
deformation and the numerical predictions. The difference between the calculated results
and numerical predictions was 1%–21% at all relative densities, which indicates good
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agreement. For the SP lattice core SPS, the calculated values were 1.6%–17.5% higher than
the numerical prediction. F-RD lattice core SPS has the largest difference of approximately
20.7% at 10% relative density. It is because the F-RD lattice is the most complex structure
compared to other types of TPMS in this study. The meshing is highly complex on the
connecting mesh boundary, and the thickness of the F-RD lattice with 10% relative density
is the thinnest. This is considered to be the reason behind this highest difference. Figure 6
presents the comparison between the calculated and predicted maximum deformations
of SPSs with different TPMS lattice cores. The deformation decreases with increasing
relative density.

Table 5. Differences between the calculated weight and numerical prediction for each SPS.

Lattice Type
Relative Density Calculated Weight Weight Acquired by FEA Difference

(%) (g) (g) (%)

SP
10 18.3 18.6 1.6
20 23.5 23.9 1.7
30 28.4 28.9 1.7

S2
10 18.1 18.5 2.2
20 23.5 24.0 2.1
30 28.6 29.2 2.1

I-WP
10 18.3 18.7 2.2
20 23.4 23.8 1.7
30 28.7 29.2 1.7

F-RD
10 18.3 18.7 2.2
20 23.4 23.9 2.1
30 28.7 29.3 2.1

Table 6. Differences between the calculated weight and numerical prediction for each SPS.

Lattice Relative Density
(%) E*

c (MPa) G*
c (MPa) EI (MPa) AG (GPa) Calculated

δE (mm)
FEA

δFE, max (mm)
Difference

(%)

SP
10 23.95 9.57 4.86 4.79 1.29 1.27 1.6
20 95.79 38.32 4.98 19.15 0.96 0.88 8.7
30 216.00 86.40 5.19 43.20 0.87 0.73 17.5

S2
10 23.21 9.28 4.86 4.79 1.29 1.41 8.9
20 97.11 38.84 4.98 19.42 0.96 0.92 4.3
30 215.29 86.12 5.18 43.06 0.87 0.77 12.2

I-WP
10 24.73 9.89 4.86 4.95 1.28 1.49 15.2
20 94.67 37.87 4.98 18.93 0.96 0.99 3.1
30 216.18 86.47 5.19 43.24 0.87 0.78 10.9

F-RD
10 24.00 9.60 4.82 4.80 1.30 1.60 20.7
20 94.19 37.67 4.98 18.84 0.96 0.99 3.1
30 216.23 86.49 5.19 43.25 0.87 0.75 14.8

If the S2 lattice cell rotates from its original array direction (Figure 7a) along the vertical
axis (Figure 7b), the numerical prediction of the maximum deformation at different relative
densities will be altered. S2 with the rotated direction is designated as S290 in the followings.
Table 7 and Figure 8 show that the numerical results of maximum deformations of S290
at relative densities of 10% and 20% were extremely large compared to the calculated
results. This clearly indicates that the cell direction causes this extremely huge difference.
Other TPMS lattices considered in this study (i.e., SP, I-WP and F-RD) do not demonstrate
this difference because their cell rotation does not affect the array direction (Figure 4). In
addition, the maximum deformation decreased as the relative density increased.
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Table 7. Percentage difference between S2 and S290.

Relative Density
(%)

S2 S290
Difference between S2 and S290 (%)

δFE,max (mm) δFE,max (mm)

10 1.41 5.83 313.5
20 0.92 2.07 125.0
30 0.77 0.76 83.1

The above results show that the calculation method and parameters used for the
total deformation are not only adequate for TPMS structures but also can be used to
predict the structures’ mechanical performance. Moreover, the cell direction appears to
play an important role in the mechanical performance of the SPS with the S2 lattice core.
Generally, when the thickness of wall increases, which will increase the relative density
simultaneously, the weight of the SPS will correspondingly be increased and the total
deformation will decrease.
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4.3. Comparison of Maximum Deformation of Different TPMS Lattice Cores in the SPS

Figure 9 shows the deformation distribution of SPSs with different TPMS lattice cores
under three-point bending. The maximum deformation was at the mid-span and possessed
symmetry along the span. Therefore, the maximum deformation at the centre of the SPS
beam was considered to represent the total deformation. Figure 10 shows the numerical
prediction of the maximum deformations of the different TPMS lattices under three-point
bending. At the same loading force and relative density, the SP lattice resulted in the
smallest deformation. At the relative density of 10%, SP had the smallest deformation,
followed by S2, I-WP and F-RD; at 20% relative density, SP had the smallest deformation,
followed by S2, F-RD, and I-WP; as the relative density reached 30%, SP still maintained
the smallest deformation, followed by F-RD, S2 and I-WP. In general, the thicker the lattice
is, the stronger the SPS structure will be. The S2 lattice possesses the maximum thickness
in this study. However, the S2 lattice structure has many discontinuities on its geometry
boundary, and the shape is not as normalised as the SP surface. This gives rise to that the
stiffness of the SPS with SP lattices core is higher than the S2 lattice, and its maximum
deformation is the lowest when compared to the other types of TPMS. Moreover, the I-WP
lattice provides the lowest stiffness, even when the relative density is increased from 20%
to 30%. Results also indicate that the lattice geometry is a crucial factor for the mechanical
performance. Furthermore, Figure 10 also demonstrates that when the relative density
increases, the maximum deformation correspondingly decreases.
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Figure 10. Maximum deformations of SPSs with different TPMS lattice cores.

Because the numerical results were based on a three-point bending load, the defor-
mation in the loading direction was also considered. Table 8 and Figure 11 compare the
Z-axis deformations of the SPSs with different lattice cores. F-RD resulted in the smallest
Z-axis deformation, which is because the lattice was being twisted when subjected to
bending. The linear approximations of the total deformation error estimation, R2, of the
SPSs with different TPMS lattice cores versus the relative density are presented in Table 9
and Figure 10. R2 was close to 1 for all SPSs with the different lattice cores, which indicates
that the linear approximated total deformation from Equations (12)–(15) can reliably predict
the deformations of SPSs with different TPMS lattices.

Table 8. Deformation along the Z-axis.

Lattice
Relative Density (%)

10 20 30

SP 0.64 mm 0.55 mm 0.49 mm
S2 0.67 mm 0.58 mm 0.52 mm

I-WP 0.65 mm 0.56 mm 0.49 mm
F-RD 0.61 mm 0.53 mm 0.46 mm
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Table 9. Linear approximations of the deformation.

Lattice Equation

SP δSP = −0.2709t + 1.5012; R2 = 0.935 (12)
S2 δST = −0.3236t + 1.6817; R2 = 0.919 (13)

I-WP δIWP = −0.3551t + 1.7946; R2 = 0.945 (14)
F-RD δFRD = −0.4214t + 1.9577; R2 = 0.935 (15)

4.4. Comparison of Maximum Allowable Load of Different TPMS Lattice Cores in the SPS

The SPSs were made from ABS, and its maximum yield strength is about 45 MPa.
Thus, the maximum allowable load at different relative densities can be calculated by
numerical analysis. Figure 12 shows the results for SPSs with different TPMS lattice cores.
At relative densities of 10% and 20%, SP had the highest maximum allowable loads of
584 and 702 N, respectively. However, at a relative density of 30%, F-RD had the highest
maximum allowable load of 790 N, followed by I-WP, SP and S2. The maximum allowable
load increased with the relative density. These results are in good agreement with those of
Kladovasilakis et al. [21]. The cell direction of the S2 lattice core was again found to have a
significant influence. For the S2 lattice, the maximum allowable load consistently increased
with the relative density. In contrast, the maximum allowable load for the S290 lattice did
not increase when the relative density was increased from 20% to 30% but instead declined.
In addition, the maximum allowable load was generally lower for S290 than for S2. These
results demonstrate that the geometry and relative density of the lattice core are significant
to the structural performance. The maximum allowable load increased with the relative
density. The array direction of the lattice had a significant effect on the performance of S2,
which was the only TPMS in this research with different cell direction because of its two
openings in the geometry.
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Table 10 lists the von Mises stresses of the four TPMSs. Figure 13 shows the stress
distribution of the SP lattice core inside the SPS. The maximum stress was at the interface
between the lattice and face sheets. The maximum yield strength of the SPSs was about
45 MPa. Thus, the von Mises stress exceeded the yield strength for some of the TPMSs, and
plastic deformation occurred. Increasing the relative density decreased the von Mises stress
and improved the stiffness of the SPS.

4.5. Failure Mode

An SPS beam may fail according to several failure modes. All failure modes must
be considered to determine which is dominant. With regard to face yielding, plastic
deformation occurred once the stress on the face sheet was greater than the yield strength
of the face material. The face normal stress σf was calculated from Equation (16) to be
about 62.5 MPa. This value is greater than the yield strength of the material, which means
that face yielding would occur regardless of the TPMS lattice core inside the SPS.
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Table 10. von Mises stresses of the four TPMS lattices at different relative densities.

Lattice Pattern Relative Density (%) Von Mises Stress (MPa)

SP
10 51.65
20 33.77
30 30.88

S2
10 67.59
20 42.96
30 34.50

I-WP
10 86.46
20 57.27
30 45.21

F-RD
10 151.16
20 83.96
30 54.87
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The shear stress has the largest effect on the core tearing during the three-point bending
test [11,29,30]. The shear strength of ABS is taken as half of the yielding stress. Table 11
presents the shear stress τ at the SPS core predicted by FEA. For all TPMS lattice cores,
yielding occurred at a relative density of 10%. When the relative density was increased
to 20%, only the F-RD lattice core yielded. Face wrinkling was only observed for the SPS
with an S2 lattice core at a relative density of 10% relative density from Table 11. The bond
stress σb was calculated from Equation (17), and the results are presented in Table 12. Bond
failure was highly likely for all SPSs considered in this study, because the bond stresses
exceeded the yield strength.

In conclusion, the normal failure modes of the SPSs were face yielding and bond
failure because of the thinness of the face sheets. Between these two failure modes, face
yielding was the most severe because the stress greatly surpassed the yield strength of the
material. Other failure modes, such as face wrinkling and core failure, can be prevented
by increasing the relative density. These results agree with those of other studies [26,37]
showing that increasing the thickness of the face sheets or using a tougher material can
decrease the face normal stress and bond stress, which can prevent both failure modes.
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Table 11. Values of face normal stress under different relative densities.

Lattice Pattern Failure Mode
Relative Density (%)

10 20 30

SP
σf w (MPa) 38.48 32.05 30.88
τc f (MPa) 27.78 12.74 8.71

S2
σf w (MPa) 45.17 36.42 34.50
τc f (MPa) 27.53 11.97 9.28

I-WP
σf w (MPa) 41.51 33.35 30.07
τc f (MPa) 31.23 17.75 13.45

F-RD
σf w (MPa) 43.89 33.27 28.41
τc f (MPa) 31.23 26.19 16.04

Table 12. Maximum bond stresses.

Lattice Pattern
Relative Density (%)

10 20 30

SP
G

(
J/m2 ) 1029.5 1004.1 964.4

σb f (MPa) 49.71 49.09 48.11

S2
G

(
J/m2 ) 1029.5 1003.7 964.6

σb f (MPa) 49.71 49.08 48.12

I-WP
G

(
J/m2 ) 1029.2 1004.5 964.6

σb f (MPa) 49.70 49.10 48.11

F-RD
G

(
J/m2 ) 1038.2 1004.7 964.3

σb f (MPa) 49.92 49.10 48.11

Face stress:
σf =

Pl
4btc

(16)

Bond stress:

σb = (G ×
E f

t
)

1/2

(17)

Strain energy release rate:

G =
M2

2b(EI)eq
(18)

Moment:
M =

Pl
B3

(19)

5. Conclusions

In this study, the mechanical performances of SPSs with four types of TPMS lattice
cores at different relative densities were evaluated thoroughly. FEA results for the defor-
mation under the three-point bending test showed good agreement with the calculated
values, with a difference of less than 21%. The lattice geometry and relative density were
the primary factors affecting the mechanical performance. For a fixed relative density, the
SPS with the SP lattice core had the smallest deformation, and the F-RD lattice core had
the maximum allowable load before yielding. The cell direction had a significant effect
on the mechanical performance of the SPS with the S2 lattice core. The most dominant
failure mode was face yielding because the stress greatly surpassed the yield strength of
the material used in this study. Other failure modes such as face wrinkling and core failure
can be prevented by increasing the relative density. Increasing the total amount of the
lattice core or using different materials for the face sheets can improve the mechanical
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performance of SPSs, and the SPS can be optimised to meet the requirements for various
engineering applications.
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