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Abstract

Maternal-offspring communication and care are essential for offspring survival. Oxytocin

(OXT) is known for its role in initiation of maternal care, but whether OXT can rapidly influ-

ence maternal behavior or ultrasonic vocalizations (USVs; above 50 kHz) has not been

examined. To test for rapid effects of OXT, California mouse mothers were administered an

acute intranasal (IN) dose of OXT (0.8 IU/kg) or saline followed by a separation test with

three phases: habituation with pups in a new testing chamber, separation via a wire mesh,

and finally reunion with pups. We measured maternal care, maternal USVs, and pup USVs.

In mothers, we primarily observed simple sweep USVs, a short downward sweeping call

around 50 kHz, and in pups we only observed pup whines, a long call with multiple harmon-

ics ranging from 20 kHz to 50 kHz. We found that IN OXT rapidly and selectively enhanced

the normal increase in maternal simple sweep USVs when mothers had physical access to

pups (habituation and reunion), but not when mothers were physically separated from pups.

Frequency of mothers’ and pups’ USVs were correlated upon reunion, but IN OXT did not

influence this correlation. Finally, mothers given IN OXT showed more efficient pup

retrieval/carrying and greater total maternal care upon reunion. Behavioral changes were

specific to maternal behaviors (e.g. retrievals) as mothers given IN OXT did not differ from

controls in stress-related behaviors (e.g. freezing). Overall, these findings highlight the rapid

effects and context-dependent effect a single treatment with IN OXT has on both maternal

USV production and offspring care.

Introduction

Quality of maternal care has significant impacts on offspring survival outcomes across many

mammalian species [1–5]. These studies underscore the importance of maternal behavior

from an evolutionary perspective. However, the proximate mechanisms that reinforce mater-

nal care remain more elusive. Several studies in rodents illustrate that pup whines, high energy

calls produced by pups, quickly and reliably elicit maternal care [6–11]. Other studies,
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however, show that mothers are more apt to exhibit care in response to stressful events or dis-

turbances and that pup calls do not influence their care above and beyond the disturbance

[12]. It has also been shown that female house mice prefer calls from their own pups and can

locate their own faster than alien pups [13]. These studies show that pup whines can elicit

changes in maternal behavior. However, the role of maternal vocalizations in this relationship

has not been studied. Adult rats, including mothers, make spontaneous vocalizations that typi-

cally occur above 50 kHz when presented with drug and social [14, 15]. The association of

reward with these calls in rats is interpreted as an indicator of a positive internal state. In

mothers, USVs may indicate maternal motivation but could also reinforce maternal care and

the mother-offspring bond [16, 17] or reduce maternal anxiety [18].

Complementing the stimulus of maternal and pup vocalizations, the neuropeptide hormone

oxytocin (OXT) plays an important role in processing and producing behaviors that support

maternal care. OXT modulates many social behaviors including bonding and parental care [19–

23]. During mammalian birth, OXT increases to stimulate parturition and milk let-down in

mothers; this increase was likely co-opted during evolution to also facilitate maternal care [24–

27]. Immediately after parturition, rising levels of peripheral estrogen [28] prime the neural sub-

strates that respond to OXT to initiate maternal behaviors in rats [26]. Additionally, OXT

knockout mice have greater latency to onset of maternal behaviors [29]. In the brain, OXT

antagonists blocked maternal behavior after natural delivery in pregnant rats [30]. This reveals

that central OXT is important for initiating maternal care in rodents. Acute activation of mater-

nal care by OXT is indirectly supported by an optogenetics study in which dopamine neurons

were activated in the anteroventral periventricular nucleus (AVPV) that monosynaptically con-

nects to and activates OXT neurons in the paraventricular nucleus (PVN), resulting in

enhanced maternal care [31]. OXT receptor densities are also important. In rats genetically

selected for differences in maternal care, high grooming compared to low grooming females

had more OXT receptors in the bed nucleus of the stria terminalis, medial preoptic area, central

nucleus of the amygdala, and these differences were observed in maternally-experienced females

that were either non-lactating and lactating [32, 33]. Collectively, these studies provide strong

evidence that OXT plays an important role in activating and coordinating maternal care.

OXT also plays a role in the production and perception of vocalizations. In mice and other

rodents, the majority of vocalizations occur above 20 kHz and are called ultrasonic vocaliza-

tions (USVs) [34–37]. In OXT knockout mice, OXT null pups emit fewer USVs in response to

separation from their mother compared to wildtype mice [38]. This suggests that OXT may

enhance pup communication with their mother. OXT can also improve the signal-to-noise

ratio in mothers responding to pup calls via mediation of temporal inhibition and excitation

in the left auditory cortex of female mice, leading to increased pup retrievals [39]. These data

provide evidence that OXT is changing the perception and social salience of pup calls, leading

to increased maternal care. Furthermore, in humans, the OXT receptor has a polymorphism

(rs53576) with functional significance. The genotype GG (presumably produces more OXTRs

compared to AG or AA genotypes) is associated with better ability to discriminate content of

language under noisy conditions [40]. This suggests that across taxa, OXT may play an impor-

tant neuromodulatory role in promoting sensory processing and behavioral response to social

auditory information.

A key social behavior that has previously not been measured is maternal vocalizations. We

speculated that mothers modulate vocalization quantity or type when interacting with their

offspring and that maternal vocalizations would be associated with maternal care. Moreover,

we predicted that OXT would modulating these vocalizations.

The California mouse (Peromyscus californicus) is a strictly monogamous, biparental rodent

species well-suited to examine how OXT modulates auditory sensory processing, vocal
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production, and social behavior. California mice have a diverse, well-characterized repertoire

of ultrasonic vocalizations (USVs) including simple sweeps, complex sweeps, syllable vocaliza-

tions, barks, and pup whines [41–44]. Previous recordings between mothers and pups indi-

cated that the primary call types from mothers were maternal simple sweeps and the primary

call type from pups were pup whines. While this suggests that these two call types are impor-

tant in mother-pup contexts, both maternal simple sweeps and pup whines have also been

recorded in other social contexts [43, 45, 46].

In the current study, we aimed to address the gaps in our understanding of proximate

mechanisms that contribute to maternal care by determining the association between maternal

vocalizations and maternal care and whether an acute dose of IN OXT in primiparous female

California mice could rapidly increase both maternal vocalizations and care. Previous studies

have shown that IN OXT alters behavior within five minutes of administration [47] and can

have behavioral effects that can persist for 30–50 min after administration [48]. As we were

not manipulating the OXT system in the pups, we did not expect to see an effect of OXT on

pup whine USVs. We hypothesized that 1) maternal care would be associated with maternal

USVs and that 2) IN OXT would have a positive effect on maternal care. Specifically, we pre-

dicted that during our behavioral paradigm, IN OXT would increase maternal care, increase

maternal USV production, and enhance the correlation between pup USVs and maternal

USVs and that physical separation would disrupt the pro-social effects of IN OXT.

Methods

Animals

University of Wisconsin-Madison Institutional Animal Care and Use Committee approved

this research. We used 24 primiparous postpartum female P. californicus aged 5–10 months

because of ages of previously unpaired females available within our colony. Females across this

age range also show equivalent corticosterone responses to corticotrophin releasing hormone

and dexamethasone challenge [49], suggesting that females within this age range have compa-

rable glucocorticoid responsiveness. Females were pair-housed (1 female, 1 male, and 1–3

pups per cage; 48 × 27 × 16 cm) under a 14L: 10D light cycle. Animals were maintained in

accordance with the National Institute of Health Guide for the Care and Use of Laboratory

Animals. Female and male mice were randomly paired to an unrelated mouse and were

housed in their home cage. After females were visibly pregnant, cages were checked once daily

for pups and gave birth in the home cages. Mothers were randomly assigned to either the

saline control group (N = 11) or the IN OXT group (N = 13). The mode of pups per litter was

two, and there was a range of pups per litter (1–3). Number of pups was considered for use as a

covariate, but in the statistical models, including this variable a) did not explain additional var-

iance and b) reduced the power of the statistical comparison. Pup number across treatments

was very similar—average number of pups for mothers in the saline condition was 2.11, and

average number of pups for mothers in the OXT condition was 1.91.

Intranasal oxytocin preparation

Mothers were infused intranasally with either sterile saline control or IN OXT (0.8 IU/kg)

(Bachem, Torrance, California). The IN OXT dose was equivalent to doses used in other

rodent species [50–52] and similar to weight-adjusted doses used in clinical studies examining

the effects of IN OXT on social deficits in autism [47]. IN OXT was dissolved in saline and pre-

pared in one batch that was aliquoted into small plastic tubes and frozen at 20˚C. IN OXT was

defrosted just prior to administration. A blunt cannula needle (33-gauge, 2.8 mm length; Plas-

tics One, Roanoke, Virginia) was attached to cannula tubing, flushed, and filled with the
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compound, then attached to an airtight Hamilton syringe (Bachem, Torrance, California). The

animal was scruffed and 25 uL of compound was expelled dropwise through the cannula nee-

dle, alternating between left and right nostrils for each mouse. Rodents are obligate nose-

breathers and thus the solution was quickly absorbed into the nasal mucosa (~10seconds).

One person conducted all IN OXT administrations throughout the entire procedure to main-

tain consistency in handling and IN OXT infusion.

We chose to use the method of intranasal administration of IN OXT for two primary rea-

sons. (1) IN OXT is used in clinical studies and is less invasive, does not require special trans-

porters for the molecule, and is presumed to be less stressful compared to

intracerebroventricular [53]. (2) IN OXT shows similar behavioral effects as centrally adminis-

tered OXT, increases CSF and plasma concentrations of OXT, and reaches the relevant brain

areas in both humans and animal models [54–58]. Several studies have also shown changes in

plasma OXT concentrations that peak between 15 to 30 min post-administration [59, 60].

These results suggest IN OXT passes through the blood-brain barrier to exert central effects

with minimal stress on the animal. In California mice, behavioral effects of IN OXT are consis-

tent with the outcomes of central OXT manipulations suggesting that IN OXT is reaching the

brain [61, 62]. Other studies indicate that some of the effects of IN OXT are acting through

peripheral mechanisms [63–65]. Regardless of whether IN OXT is directly targeting the brain,

is acting through peripheral mechanisms, or a combination of both, IN OXT has been shown

to rapidly alter social behavior in adult California mice [66].

Behavioral testing and USV recording

In order to test the effects of IN OXT on acute maternal care, we conducted this experiment in

a novel recording chamber where mothers and pups could be briefly isolated from the father.

Separation from the mate may be a mild stressor but would occur in natural populations in

response to competing demands such as pup care, foraging and defending territories. More-

over, California mice do not exhibit a change in short- or long-term paternal care in response

to corticosterone [67], show limited correlations between individual baseline corticosterone

levels and behavior [68], parents exhibit blunted behavioral response to predator odor stress

[69], and diel corticosterone cycle between single mothers and paired mothers does not differ

[70]. While we cannot exclude an effect of a baseline level of stress, it is both a normal experi-

ence for these mice in the wild, and we do not expect corticosterone to influence the results of

our current experiment above and beyond our IN OXT manipulation.

On postnatal day (PND) two to three, fathers were temporarily removed from the home

cage, and the home cage with the mother and her pups was transferred to a behavioral testing

room. In the behavioral testing room, mothers were randomly selected to receive 25 microli-

ters of either 0.8 IU/kg IN OXT or saline control intranasally. Immediately after dosing, moth-

ers and pups were placed into one side of a partitioned two-chambered apparatus (45.0

cm × 30.0 cm × 30.0 cm) that contained a circular opening (3.8 cm in diameter, center of

opening 7 cm from the side wall) covered by a wire mesh (Fig 1A). This apparatus, like their

home cages, had approximately 1/2 inch of aspen shavings covering the entire floor. Micro-

phones sensitive to ultrasonic frequencies (described below) were placed on each side of the

divider, such that the microphones were far enough apart to identify the source (chamber) of

the calls [71] (Fig 1A).

For each test, there were always two researchers present who coordinated activation of

the audio software and the video camera at the same time using visual cues. This coordi-

nation allowed us to subsequently compare USVs and behavior with temporal precision.

The test consisted of three phases that occurred in immediate succession: habituation,
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separation, and reunion. During the five-min habituation phase mothers and pups were

placed together on the right side of the chamber with the partition down and allowed to

freely interact with each other. During the three-minute separation phase, the pups were

removed from the mother and placed on the other side of the partitioned divider. Moth-

ers remained in the right-most chamber and pups were isolated in the left-most chamber.

This setup allowed visual, auditory, and olfactory communication between pups and

their mother, but restricted physical contact between individuals until the mesh wire was

removed. Lastly, during the five-minute reunion phase, the mesh divider was lifted, and

mothers could retrieve and interact with their pups. USVs and video were recorded for

the entire 13-minute period. We chose a five-minute initial mother-pup interaction time

to allow mothers time to adjust to the chamber and to mirror the time in the reunion

Fig 1. (A) Schematic for experimental design. Mother and pup (PND 2–3) groups were temporarily removed from their home cage and placed

in the right side of two-chambered apparatus (five min) to habituate to the testing arena. Next, pups were moved from the right chamber and

placed into the left chamber (three min). Lastly, the researchers lifted the mesh gate separating the right and left chambers, allowing mother-pup

interactions (five min). Animals not to scale in diagram. (B) Ultrasonic vocalizations (USVs) on a spectrogram. Pup whines have multiple

harmonics, a peak frequency around 20 kHz, and downward modulation at the end of the call that distinguish these calls from adult syllable

vocalizations. Maternal simple sweeps have short downward-sweeping vocalizations that sweep through multiple frequencies, typically between

80 kHz and 40 kHz.

https://doi.org/10.1371/journal.pone.0244033.g001
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phase where we measured latency to enter the chamber. This time period is important

because it is the first time that the mothers and her pups are removed from the home

cage and the father, so this time period served as an initial measure of behavior. Results

from a pilot study measuring maternal retrievals indicates that five-minutes allowed

most mothers to enter the chamber, approach the pups, and engage in maternal behav-

iors. We shortened the separation phase to three minutes because it was still sufficient to

see signs of maternal distress but minimized the time that the pups were away from their

mother.

Behavior quantification

All behavioral videos were scored in random order and by an independent observer blind to

treatment. During each video, maternal behaviors (licking and grooming, huddling, and

retrieving/carrying) were quantified. Of note, unlike house mice and rats that show several dif-

ferent types of nursing and huddling behavior, California mouse mothers do not show arched

back nursing [72, 73]. The definitions of behaviors measured are detailed in an ethogram (S1

Fig). To gain insights into the correlations between maternal behavior and maternal and pup

USVs, videos were coded by the exact time that mothers were huddling, licking and grooming,

and retrieving/carrying. Huddling was counted when mothers were physically over their pups’

bodies [74]. Retrieving/carrying was counted when mothers picked up their pups and trans-

ferred them to a different location. Using the precise times that mothers engaged in different

types of maternal care (or none at all) throughout the 13-minute testing window, we counted

the maternal USVs within those windows. This allowed us to determine how maternal behav-

ior was related to maternal USV production.

Ultrasonic vocalization analysis

Techniques used for recording were similar to those previously used in our laboratory [44, 46].

USVs were collected using two Emkay/Knowles FG series microphones capable of detecting

broadband sound (10–120 kHz). Microphones were placed at the far ends of each of the two

chambers. Microphone channels were calibrated to equal gain (− 60 dB noise floor). We used

RECORDER software (Avisoft Bioacoustics) to produce triggered WAV file recordings (each

with a duration of 0.5 s) upon the onset of a sound event that surpassed a set threshold of 5%

energy change [36]. Recordings were collected at a 250 kHz sampling rate with a 16-bit resolu-

tion. Spectrograms were produced with a 512 FFT (Fast Fourier Transform) using Avisoft-

SASLab Pro sound analysis software (Avisoft Bioacoustics). The only USVs found in these

recordings were pup whines and maternal simple sweeps. Pup whines have a peak frequency

around 20 kHz [75, 76] and the typical downward modulation at the end of the call often dis-

tinguishes these calls from adult syllable vocalizations (Nathaniel Rieger, Jose Hernandez, &

Catherine Marler, unpublished) (Fig 1B). The lower frequencies in the pup whine can also be

heard by human ears (below the ultrasonic range). Maternal simple sweeps were categorized

by short downward-sweeping vocalizations that sweep through multiple frequencies, typically

between 80 kHz and 40 kHz [77] (Fig 1B). It is extremely rare for pups to produce simple

sweep USVs during PND 0–4 (Rieger, N. S., Hernandez, J. B., and Marler, C. M., unpublished).

When young pups do produce simple sweeps, they are produced much quicker, and present

completely vertical on the spectrogram [75]. This makes these rare pup simple sweeps easy to

distinguish from the slower adult simple sweep USVs (Fig 1B). Because of their different spec-

trogram and acoustic properties, all USVs could be categorized and counted by combined

visual and auditory inspections of the WAV files (sampling rate reduced to 11,025 kHz, corre-

sponding to 4% of real-time playback speed).
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Data analysis

Statistical analyses were conducted using the program R. Significance level was set at p<0.05

for all analyses and all tests were two-tailed. All reported p-values were corrected using Benja-

mini-Hochberg false discovery rate corrections to control for multiple comparisons when

effect of an X variable was tested for a relationship with multiple Y variables‥ Grubb’s outlier

test was performed, and outliers for maternal vocalizations and freezing were removed from

all analyses. Two mice (one control and one IN OXT-treated mouse) were Grubb’s outliers

(p<0.05) for freezing (likely due to train noise during the test). One control mouse was a

Grubb’s outlier (p<0.05) for both maternal and pup USVs. All analyses used a generalized lin-

ear mixed model (GLMM). Treatment condition was used in all models as each female was

given one treatment (between-subjects design). Thus, when a relationship between two vari-

ables was significant, treatment was left as a moderator in the model even if not significant.

Effects of IN OXT on vocalizations. To assess differences in total USV production across

testing conditions, a within-subjects two-way ANOVA was used. To correct for differences in

total time of the three testing phases, average number of USVs/second during each phase for

each animal was calculated and used to compare the five-minute versus three-minute trials. To

assess main effects of treatment, Student’s t-test was used in each of the three time points.

To examine the effects of IN OXT in the relationships between maternal simple sweep

USVs and pup whine USVs, an interactive multivariate model was used (e.g. [Maternal
behavior] ~ [Maternal USV] + [treatment]). Factor included in all models was

treatment condition.

Effects of IN OXT on maternal and non-maternal behaviors. For maternal and non-

maternal behavioral analysis, behavioral changes after the separation event, were calculated to

examine reunion behaviors with and without OXT administration. To examine changes in

behavior over time and after the separation challenge with and without OXT, the scores from

total duration of each behavior in the reunion phase were subtracted by total duration of each

behavior in the habituation phase (Reunion-Habituation). Thus, positive scores indicate more

of the behavior was observed during the reunion phase and negative scores indicate more of

the behavior was observed during the habituation phase. To compare main effects of IN OXT

and saline control on maternal behavior, Students t-tests were used to assess behavioral out-

comes (Fig 3). To calculate total maternal behavior, amount of time spent huddling and

amount of time spent retrieving were summed. To calculate total non-maternal behavior,

amount of time spent autogrooming, rearing, and freezing were summed.

Correlations between maternal care and maternal USVs and maternal care and pup

USVs. To assess for mediation by IN OXT in the relationships between (a) maternal USVs

and maternal behavior and (b) maternal behavior and pup USVs, a multivariate comparison

was used. Factors included in the model were treatment condition and the interaction between

treatment and maternal behavior.

Results

Effects of IN OXT on vocalizations

To determine how testing conditions affected vocal production in mothers and pups, we first

assessed number of maternal and pup USVs per second across the habituation, separation, and

reunion phases, and in response to IN OXT versus saline. Controlling for within subject analy-

ses and treatment effects, mothers made fewer simple sweeps/second during the separation

phase compared to the habituation or reunion phases (F2,20 = 13.00, p<0.00001). (Fig 2A). In

the habituation phase, IN OXT mothers produced more simple sweeps than control mothers
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(F2,20 = 5.83, p<0.03, ΔR2 = 0.23) (Fig 2A). In the separation phase, IN OXT and control

mothers did not differ in number of simple sweeps produced (F2,20 = 1.86, p = 0.19, ΔR2 =

0.09) (Fig 2A). Similar to the habituation phase, in the reunion phase, IN OXT mothers

showed a nonsignificant trend for producing more simple sweeps than control mothers (F2,20

= 3.13, p = 0.08, ΔR2 = 0.15) (Fig 2A).

Across the three phases, pup USVs showed no effect of IN OXT but did show changes in

vocal production frequency across the testing phases. Controlling for within-subject analyses,

pups made more whines during the habituation phase than the separation and reunion phases

(F2,20 = 25.26, p<0.0000001) (Fig 2B). Pups with IN OXT and control mothers did not differ

in number of USVs produced in the habituation phase (F1,20 = 0.35, p = 0.56, ΔR2 = 0.02), sepa-

ration phase (F1,20 = 1.64, p = 0.22, ΔR2 = 0.08) or the reunion phase (F1,20 = 0.68, p = 0.42,

ΔR2 = 0.04) (Fig 2B).

Next, we examined the relationship between number of maternal simple sweeps and pup

whines using a model with treatment as a covariate. There were no significant correlations

between maternal and pup USVs in either the habituation (F1,20 = 1.63, p = 0.22) (Fig 2C) or

the separation phase (F1,20 = 0.03, p = 0.86) (Fig 2D). However, during the reunion phase,

maternal simple sweeps and pup whines positively correlated (F1,20 = 7.51, p<0.02, ΔR2 =

Fig 2. Rapid effects of IN OXT on USV production in mothers and pups. (A) All mothers made more simple sweeps when given free access to

their pups (during the habituation and reunion phases). Importantly, IN OXT mothers made more simple sweeps when given free access to their

pups during habituation and reunion, but not when they were physically apart from pups during separation. (B) All pups made more whines when

first placed into the chamber during the habituation phase. There were no effects of maternal IN OXT on pup USVs. Pups made more whines

during the habituation phase than the separation and reunion phases. There was no effect of IN OXT treatment on pup whines during habituation,

separation or reunion. Mediation analysis of the relationship between maternal USVs, pup USVs and treatment in (C) the habituation phase

showed no simple effects of maternal USVs, no simple effects of treatment, but IN OXT showed a nonsignificant trend for the two-way interaction

between maternal simple sweep USVs and treatment. (D) The separation phase showed no simple effects of maternal USVs, no simple effects of

treatment, and no effect of interaction. (E) The reunion phase showed a significant positive correlation between maternal simple sweeps and pup

whines, no simple effect of treatment, and no effect of interaction. Correlation line in black is the average slope across treatment groups; magenta

and teal lines are the slopes for the saline and OXT treatments, respectively. ◆ p<0.05 for differences across time conditions; �p<0.05 for

differences between control and OXT; #p<0.10 for differences between control and OXT.

https://doi.org/10.1371/journal.pone.0244033.g002
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0.21). For each pup whine, there were approximately 1.17 maternal simple sweeps (Fig 2E).

There were no simple effects of OXT on the correlation between maternal-pup USVs: habitua-

tion (F1,20 = 0.25, p = 0.62) (Fig 2C), separation (F1,20 = 1.27, p = 0.27) (Fig 2D), reunion (F1,20

= 0.15, p = 0.69) (Fig 2E). Finally, our model also assessed the two-way interaction between

maternal simple sweep USVs and treatment. IN OXT showed a nonsignificant trend for the

two-way interaction between maternal simple sweep USVs and treatment, with IN OXT ani-

mals having a more positive slope (non-significant trend) than controls (F1,20 = 3.71,

p = 0.069) (Fig 2C). Slope for IN OXT-treated mothers did not differ from controls in either

the separation (F1,20 = 0.07, p = 0.79) (Fig 2D) or reunion (F1,20 = 2.90, p = 0.10) (Fig 2E)

phases.

Effects of IN OXT on maternal and non-maternal behaviors

To assess the impact of IN OXT on maternal care following separation from pups, we assessed

latency to enter the chamber with pups and then calculated change in maternal care from

habituation to reunion to measure changes in other types of maternal behavior. This allowed

us to determine how IN OXT affected response to pup separation above and beyond any initial

effects of IN OXT observed in the habituation phase. In the beginning of the reunion phase,

IN OXT mothers showed a non-significant trend for a shorter latency to approach pups (F1,20

= 3.63, p = 0.10, ΔR2 = 0.16) (Fig 3A). We also tested for main effects of IN OXT in several

maternal and non-maternal behaviors. Negative scores mean that the behavior occurred more

frequently during habituation and positive scores mean that the behavior occurred more fre-

quently during reunion. Mothers tended to retrieve/carry more during the habituation phase

and huddle more during the reunion phase. Mothers given IN OXT did not show any differ-

ences in huddling from controls (F1,20 = 0.62, p = 0.44) (Fig 3B). However, mothers given IN

OXT showed a significantly more positive change in retrieval/carrying behavior from the

Fig 3. Rapid effects of OXT on change in maternal and non-maternal behavior from habituation to reunion. Maternal behaviors: (A)

There was a non-significant trend for mothers given IN OXT to have a shorter pup approach latency. (B) There were no treatment differences

for maternal huddling. (C) Mothers given IN OXT showed a significantly greater decrease in retrieval/carrying behavior from the habituation

to the reunion phase. (D) IN OXT had a net positive effect on total maternal care relative to controls from the habituation to reunion phases.

Non-maternal behaviors: (E) There were no treatment effects for change in autogrooming, (F) rearing, or (G) freezing. (H) There was no net

change in non-maternal behaviors from the habituation to reunion. Correlation line collapsing across treatment groups. �p<0.05; #p<0.10.

https://doi.org/10.1371/journal.pone.0244033.g003
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habituation to the reunion phase (F1,20 = 6.71, p<0.05, ΔR2 = 0.26) (Fig 3C). This is driven by

high rates of retrieval in control mothers during habituation. High rates of retrieval are associ-

ated with less efficient maternal care in mother rats in home and novel environments [78–80]

and virgin and mother mice in novel environments [81, 82]. Thus, the IN OXT mothers are

likely more efficient at maintaining offspring care during this disruption. While mothers from

both groups increased huddling behavior post-separation from pups, control mothers

decreased retrieval/carrying behavior while IN OXT mothers maintained a consistent level of

retrieval/carrying behavior. The net increase in maternal care for IN OXT mothers from habit-

uation to reunion (F1,20 = 6.6, p<0.02, ΔR2 = 0.26) (Fig 3D) is therefore largely due to changes

in retrieval behavior.

In order to determine if IN OXT was acting on neural systems that were specific to mater-

nal care, we also tested for main effects of IN OXT on measures of activity (autogrooming,

rearing) and stress/anxiety (freezing). From habituation to reunion, there were treatment dif-

ferences in autogrooming (F1,20 = 0.32, p = 0.58) (Fig 3E), rearing (F1,20 = 1.23, p = 0.28) (Fig

3F), or freezing (F1,20 = 0.03, p = 0.85) (Fig 3G). When summing all activity and stress-related

behaviors, there was no net effect on non-maternal behaviors from habituation to reunion

(F1,20 = 1.94, p = 0.18) (Fig 3H). In this context, IN OXT is not influencing general, non-

maternal behaviors in response to an offspring separation event. The individual means and

SEMs for each behavior in each phase are also reported in S1 Table.

Correlations of maternal care with maternal USVs and pup USVs

To determine whether maternal simple sweeps were associated with specific maternal and

investigative behaviors during each of the three testing phases, we correlated number of mater-

nal USVs, which were always simple sweeps, during each phase with the corresponding behav-

ior while controlling for moderation by IN OXT administration. In the habituation phase,

maternal simple sweeps positively correlated with licking behavior (F2,20 = 12.04, p<0.007,

ΔR2 = 0.34) (Fig 4B). There was also a nonsignificant trend for a correlation between maternal

simple sweeps and huddling (F2,20 = 4.48, p = 0.072, ΔR2 = 0.18) (Fig 4A), and no effect associ-

ated with retrieving/carrying (F2,20 = 0.44, p = 0.51, ΔR2 = 0.02) (Fig 4C). There was also, how-

ever, a significant moderation by IN OXT in the relationship between maternal retrievals and

maternal simple sweeps. During habituation, mothers given IN OXT carried/retrieved pups

less than mothers given saline (F2,20 = 9.95, p<0.005, ΔR2 = 0.33) (Fig 4C) but note that overall,

IN OXT mothers had consistent retrieval levels across the test (Fig 2B). In the separation

phase, there was no correlation between time the mother spent at the mesh divider and mater-

nal simple sweep USVs (F2,20 = 1.2, p = 0.58, ΔR2 = 0.058) (Fig 4D). Other maternal behaviors

could not be assessed because of the mesh divider between mothers and pups. In the reunion

phase, maternal simple sweeps positively correlated with maternal retrievals/carrying (F1,20 =

7.65, p<0.037, ΔR2 = 0.26) (Fig 4G). Other maternal behaviors did not correlate with maternal

simple sweeps in this phase: huddling (F1,20 = 0.48, p = 0.99, ΔR2 = 0.02) (Fig 4E) and licking

(F1,20 = 0.001, p = 0.98, ΔR2 = 0.00) (Fig 4F). Thus, overall, there were associations between

maternal simple sweeps and maternal care, but the maternal behavior that correlated with

maternal simple sweeps varied depending on context.

Next, we correlated pup whine USVs with specific types of maternal behavior to see if these

pup calls were associated with a specific maternal response. During the habituation phase,

there was a significant positive correlation between pup whines and maternal huddling (F1,20 =

8.93, p<0.024, ΔR2 = 0.30) (Fig 5A), but not with maternal licking (F1,20 = 3.26, p = 0.174, ΔR2

= 0.13) (Fig 5B) or retrieval/carrying behavior (F1,20 = 1.14, p = 0.26, ΔR2 = 0.04) (Fig 5C).

During the separation phase, pup whines did not correlate with time that the mother spent at
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the mesh gate (F1,20 = 0.89, p = 0.36, ΔR2 = 0.04) (Fig 5D). Lastly, during the reunion phase,

pup USVs positively correlated with retrieving/carrying (F1,20 = 9.94, p = 0.016, ΔR2 = 0.34)

(Fig 5G) but was not correlated with either huddling (F1,20 = 0.05, p = 0.823, ΔR2 = 0.003) (Fig

5E) or licking (F1,20 = 0.893, p = 0.36, ΔR2 = 0.043) (Fig 5F). Across all correlations of USVs

and maternal care, significant correlations occurred, but neither maternal simple sweep USVs

nor pup whine USVs consistently correlated with a specific type of maternal care.

Discussion

Maternal care and communication have lifelong consequences for offspring [83–86]. There-

fore, it is important to elucidate the proximate hormonal mechanisms that increase maternal

care and communication. OXT is known for its potent role in maternal physiology, neuro-

physiology, and social behavior, but whether OXT could rapidly change vocal production and

behavior in mothers remained unknown. We aimed to fill these knowledge gaps by testing

Fig 4. Correlations between maternal simple sweep USVs and maternal care. (A-C) Habituation. (A) There was a nonsignificant trend

correlation between maternal simple sweeps and huddling. (B) Maternal simple sweeps positively correlated with licking behavior. (C) Maternal

simple sweeps did not correlate with retrieving/carrying. Mothers given IN OXT carried/retrieved pups less than mothers given saline. (D)

Separation. There was no correlation between time mothers spent at the mesh divider and maternal simple sweep USVs. (E-G) Reunion. (E)

Maternal simple sweeps did not correlate with huddling or (F) licking. (G) Maternal simple sweeps positively correlated with maternal retrievals.

Correlation line in black is the average slope across treatment groups; magenta and teal lines are the slopes for the saline and OXT treatments,

respectively. �p<0.05; #p<0.10.

https://doi.org/10.1371/journal.pone.0244033.g004
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maternal response and effects of IN OXT during a potentially challenging and stressful pup

separation paradigm.

We predicted that maternal care activity would be associated with vocal production and

that IN OXT would amplify this effect. We found support for this hypothesis as all mothers

produced more simple sweep USVs per second during both the habituation phase and reunion

phase when mothers had access to tactile pup experience. We speculate that maternal sweeps

decreased during the separation phase because mothers no longer had physical access to pups.

The relative reduction of maternal simple sweeps during the separation phase may suggest that

simple sweeps occur more frequently during social contact or may reflect a difference in inter-

nal state. In support of the social salience theory [87–91], IN OXT amplified the effect of the

tactile pup experience, leading to an increase above and beyond the observed increase in con-

trol mothers during the habituation phase (and a trend in reunion phase). To our knowledge,

this is the first study reporting context-dependent IN OXT-moderated changes in USV pro-

duction that were associated with physical access to a social stimulus [92].

Fig 5. Correlations between pup whine USVs and maternal care. (A-C) Habituation. (A) There was a significant positive correlation between

pup whines and maternal huddling. (B) There was no correlation between pup whines and maternal licking or (C) pup whines and maternal

retrieval/carrying behavior. (D) Separation. Pup whines did not correlate with time that the mother spent at the mesh gate. (E-G) Reunion. (E)

There was no correlation between pup whines and maternal huddling or (F) pup whines and maternal licking. (G) Pup USVs positively correlated

with maternal retrieving/carrying. Correlation line in black is the average slope across treatment groups; magenta and teal lines are the slopes for

the saline and OXT treatments, respectively. �p<0.05.

https://doi.org/10.1371/journal.pone.0244033.g005
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There are several possible functions for simple sweep USV production in the context of

maternal care. Increased simple sweep USVs during maternal care may result from a higher

state of arousal that is regulated by the autonomic nervous system [93]. This is supported by

evidence in prairie voles, where vocal features covary with heart rate—longer vocalizations

were associated with increased vagal tone and more calm behavior whereas shorter vocaliza-

tions were associated with decreased vagal tone and more anxious behavior [94]. Alternatively,

increases in simple sweep USVs may be associated with a positive affective state [95]. In rats,

50 kHz USVs (similar kHz as California mouse simple sweeps) have been associated with posi-

tive affective state [9], and in California mice, simple sweeps typically occur during affiliative

contexts [71]. This adds to a growing body of literature that aims to elucidate California mouse

call type with function. Complex sweeps predict pair mate social behavior [46]; syllable USVs

are associated with aggression (shorter calls) [44] and female preference (longer calls) [46];

both syllable USVs (shorter calls) and barks are associated with increased aggression [45]; pup

whines can also elicit paternal retrievals [96]. As expected, we did not observe any syllable

vocalizations or barks and only a handful of complex sweeps across all tests as these calls tend

to be associated with aggression or adult interactions. Because IN OXT increased maternal

simple sweep USVs, and in other studies, IN OXT has increased both vagal tone [97] and posi-

tive affective state [98–100], we suggest that maternal simple sweeps are most likely to be asso-

ciated with changes in affective state.

In contrast to mothers, we did not expect to see a treatment effect with regards to pup vocal-

izations because only the mothers were treated. As expected, we did not observe differences in

pup vocalizations between pup with control mothers and IN OXT mothers. This suggests that

effects of IN OXT on the mother do not directly and rapidly influence pup behavior. Overall,

pups called the most when first placed into the new chamber with their mothers at the rate of

0.94 whines per second, and then called at a steady rate of 0.33 whines per second during sepa-

ration and reunion. This suggests that pup vocal production does not vary by social contact in

the same way as maternal vocalizations. Instead, pup vocal production may be a function of

their thermal challenge, as indicted by previous studies on rat pup USVs demonstrating pups

increase USVs when first separated from their nest and given thermal challenges [101, 102].

After losing a certain amount of heat energy, number of pup whines produced may decrease to

balance energy conservation and venous blood return to the heart.

We predicted a correlation between maternal simple sweeps and pup whines. We expected

that the correlation between mother-pup USVs would be driven by the mother’s vocalizations

and/or behavior, as the pups’ ear canals have not opened at PND 2–3, likely rendering them

deaf [103]. Mother and pup USVs did not correlate during habituation, possibly because pup

whine USVs were highest during this phase (Fig 2B) or possibly because the removal from the

home cage at the start of the test disrupted the coordination between mothers and pups. There

was also a nonsignificant trend for IN OXT to improve the correlation between mother and

pup USVs. If the removal from the home cage at the start of the test disrupted the coordination

between mothers and pups, IN OXT may be mediating this negative effect by increasing the

salience of pup whine stimuli [104], allowing mothers to more effectively and efficiently cope

with the challenge. During reunion, we found support for our initial prediction: maternal sim-

ple sweeps and pup whines positively correlated. Mothers may be more responsive to pup

whines during the reunion phase because the pups have been without care for a longer period

of time. An alternative explanation is that this synchrony occurred out of necessity because,

with the second chamber open, the mice had double the space in the reunion phase compared

to the habituation phase. In lambs and ewes, mother-offspring vocalizations have been shown

to be important for recognition and location purposes [105, 106] with young lambs only being

able to distinguish their mother via low frequency calls but using high frequency calls during
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vocal exchanges [107]. Mother-offspring vocalizations that are contingent on each other’s vocal-

izations have also been observed across cultures in humans [108]. To our knowledge, this is the

first reporting of correlations between maternal USVs and offspring USVs in an animal model.

We also wanted to explore whether maternal simple sweeps or pup whines are correlated

with specific types of maternal behavior. During habituation, USVs from both mothers and

pups were associated with greater maternal care but were not associated with the same mater-

nal behavior; maternal simple sweeps positively correlated with maternal licking behavior and

pup whines positively correlated with maternal huddling behavior. During reunion, we saw a

different relationship between USVs and maternal behavior, suggesting that if pup calls and

not maternal responsiveness are driving these correlations, the pup whines are not eliciting a

specific type of maternal care. During reunion, both maternal simple sweeps and pup whines

positively correlated with maternal retrieval/carrying behavior. This suggests that after a sepa-

ration event, pup whines may drive maternal retrieval/carrying behavior, similar to the finding

previously reported in fathers [96], and that maternal simple sweeps may be a reliable signal

supporting maternal responsiveness. Studies in the literature show support for this effect being

driven by maternal responsiveness in mice [109, 110] and other studies show that the effect

can also be driven by the pups [111, 112].

Finally, based on the prosocial effects of OXT, we predicted that an acute dose of IN OXT

would increase maternal care. Our results show that in the context of our paradigm, IN OXT

maintains maternal care rather than overtly increasing it. Mothers given IN OXT showed con-

sistent number of retrievals pre- and post-separation while control mothers significantly

decreased number of retrievals performed post-separation, leading to greater maintenance of

total maternal care for IN OXT mothers. These findings are consistent with other studies in the

literature in sheep [113], mice [114], rats [115, 116], and humans [117] but highlight that OXT

can also increase maternal behavior within minutes of administration. We did not find that IN

OXT led to a significant decrease in latency to approach pups after separation, but we found a

non-significant trend. This supports previous findings in the literature that OXT has been asso-

ciated with a reduction in the latency to retrieve or start maternal behavior [118, 119] though

several other studies have not reported an effect of OXT on latency to retrieve pups [114, 120,

121]. Notably, we did not find any simple effects of IN OXT on nonmaternal behaviors during

the habituation, separation, or reunion phases. This suggests that IN OXT specifically influences

maternal behavior and not general activity (autogrooming, rearing) or anxiety (freezing) in

female California mice. If IN OXT is dampening the stress/anxiety response, it is specific to

maternal anxiety. This is important to note because one hypothesis regarding the effects of IN

OXT is that it primarily functions as an anxiolytic agent versus a pro-social capacity across a

variety of contexts and species [122–124]. In certain contexts, OXT can also have anxiogenic

effects [62, 125]. However, we do not find that OXT is promoting anxiety in this context. Our

results suggest that in this context, IN OXT has a specific effect on maternal care behavior that

is not explained by differences in the non-maternal activities related to activity or stress.

In summary, these data are consistent with the concept that IN OXT rapidly and selectively

increases maternal vocalizations and maintains maternal care. This data also highlights the

importance of social contact for normal communication and care and enhancement by IN

OXT. Overall, we propose that higher levels of OXT in mothers function to increase efficiency

and maintain maternal care, particularly during challenges.

Supporting information

S1 Fig. Ethogram with description of behaviors measured.
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S1 Table. Means and SEMs of behaviors measured.
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