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Abstract

Background: Nowadays, molecular techniques are widespread tools for the identification of biological entities. However,
until very few years ago, their application to taxonomy provoked intense debates between traditional and molecular
taxonomists. To prevent every kind of disagreement, it is essential to standardize taxonomic definitions. Along these lines,
we introduced the concept of Integrated Operational Taxonomic Unit (IOTU). IOTUs come from the concept of Operational
Taxonomic Unit (OTU) and paralleled the Molecular Operational Taxonomic Unit (MOTU). The latter is largely used as
a standard in many molecular-based works (even if not always explicitly formalized). However, while MOTUs are assigned
solely on molecular variation criteria, IOTUs are identified from patterns of molecular variation that are supported by at least
one more taxonomic characteristic.

Methodology/Principal Findings: We tested the use of IOTUs on the widest DNA barcoding dataset of Italian echolocating
bats species ever assembled (i.e. 31 species, 209 samples). We identified 31 molecular entities, 26 of which corresponded to
the morphologically assigned species, two MOTUs and three IOTUs. Interestingly, we found three IOTUs in Myotis nattereri,
one of which is a newly described lineage found only in central and southern Italy. In addition, we found a level of molecular
variability within four vespertilionid species deserving further analyses. According to our scheme two of them (i.e.
M. bechsteinii and Plecotus auritus) should be ranked as unconfirmed candidate species (UCS).

Conclusions/Significance: From a systematic point of view, IOTUs are more informative than the general concept of OTUs
and the more recent MOTUs. According to information content, IOTUs are closer to species, although it is important to
underline that IOTUs are not species. Overall, the use of a more precise panel of taxonomic entities increases the clarity in
the systematic field and has the potential to fill the gaps between modern and traditional taxonomy.
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Introduction

Taxonomy is an old discipline that underwent several upgrades

in its about 250 years. In the last decades, biological classification

schemes have been revised with the inclusion of two relevant

innovations: molecularization (i.e. the investigation of variability in

molecular markers used as a discriminator) and computerization

(i.e. the not redundant transposition of the data using informatics

supports) [1]. In modern taxonomy, it remains sometimes

controversial whether to include both molecular and morpholog-

ical characters in the same classification scheme [2–5]. Since the

advent of molecular-based taxonomy, many studies contributed to

define a plethora of new taxonomic entities. In molecular

approaches, one of the most relevant entities is the Operational

Taxonomic Unit (OTU) [6] that was first defined in a non-

molecular context. In its original use, the OTU is defined using as

much characters as possible, even without knowing the ‘‘real’’

taxonomic value of each character. In such a context, DNA

sequences are the typical data that can be used to define OTUs,

because each sequence can be considered as a group of characters,

not a priori weighted. Afterwards, [7] introduced the concept of

Molecular Operational Taxonomic Unit (MOTU) to define those

entities identified in a molecular context. In a strict sense MOTU

is a subset of an OTU that represents the more comprehensive

assemblage. Even if the term MOTU is not completely in-

dependent from the concept of OTU, we believe that its
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introduction is valuable giving promptly information on the origin

of the data supporting the entity.

Nowadays, one of the most widely used molecular approaches

in species identification is DNA barcoding [8]. Following a strict

operational workflow, this technique reveals sequence variation

among taxa at short specific genomic regions [8–13]. In DNA

barcoding literature, the designation MOTU has been widely used

to describe ‘‘clusters of sequences (that act as representatives of the

genomes from which they are derived) generated by an explicit

algorithm’’ [7,14]. Using a clustering algorithm, MOTUs can be

defined by different approaches among which the use of specific

cut-off values based on sequences similarity. In DNA barcoding

literature MOTU can designate different situations that we here

interpreted as belonging to three distinct groupings: (M1) a group

of unidentified organisms sharing similar sequences (see for

example [7]); (M2) a group of organisms within a species that

are distinct at the molecular level from other members of the

species (see for example [15]); and (M3) a group of organisms from

different species that are similar at the molecular level (see for

example [16]).

Here, we propose a synergistic synthesis of classical taxonomic

approaches (e.g. morphology, biogeography) and molecular

characteristics called Integrated Operational Taxonomic Units

(IOTUs). Like MOTUs, IOTUs describe organisms that are

similar at the molecular level (i.e. share a DNA barcode), but,

unlike MOTUs (considered in its original definition), they also

share at least one other characteristic from the ‘taxonomic circle’

[2]. In other words, based on [2] first proposal, we define IOTUs

as groups of organisms confirmed by at least two approaches, one

of which is molecular-based. It is noteworthy that IOTUs are

identified on a molecular base, but the molecular definition is

reinforced by diagnostic at other biological characteristics giving to

IOTUs higher information content and a stronger taxonomic

support.

This IOTU definition has to be set in the framework of

Unconfirmed Candidate Species (UCS), Deep Conspecific Line-

age (DCL), and Confirmed Candidate Species (CCS), which are

intermediate states between individuals and species that were

introduced by [17] and implemented by [18]. According to both

studies, UCSs are conspecifics that are separated by ‘‘some’’ (not

better definable) genetic distances. In this sense, UCSs are

synonymous with MOTU M2 concept and deserve to be further

investigated with other approaches in order to clarify their

effective taxonomic status. DCLs are UCSs or MOTUs that

cannot be further differentiated by additional taxonomic data. By

contrast, CCSs have additional taxonomic data confirming that

the divergent lineages are true species, but they require a formal

description by a taxonomic expert to be accepted and named.

Individuals, morphotypes, MOTUs, UCSs, DCLs, IOTUs, CCS,

and species are entities that can be ranked in order of increasing

information content (Figure 1). The ranking of these entities is the

first and essential step to fill the gap between molecular and

traditional taxonomists. Indeed, species should be identified and

described from as many taxonomic characteristics as possible.

Relying on a single approach to define a species can be misleading

[19]. For example, the African elephant Loxodonta africana was

considered a single species mainly on the basis on morphological

data but has been reclassified as two species with the inclusion of

molecular data [20].

To evaluate this integrated taxonomic approach and to

underpin the definition and use of IOTUs, we focused on Italian

echolocating bats. As a Mediterranean peninsula, Italy has a high

degree of biodiversity [21]. This situation was generated by

mountain ranges, such as the Alps and the Apennines, which acted

as geographical barriers to dispersal during Pleistocene climatic

fluctuations [22–27]. As a consequence, a lot of cryptic species

have been identified for a wide range of taxa, including bats [22–

30].

Nowadays, Italy is home to 34 bat species [30–33] but, as

a general condition for this group of mammals, many taxa are

nearly or completely indistinguishable morphologically, acousti-

cally or biometrically [11,34–37]. Although identification keys

based on morphological characters and biometric measurements

are available for European bats [35], correct use of these keys

requires considerable training and experience. With the in-

tegration of molecular data into taxonomic studies, the number

of molecular lineages within bats has increased significantly at the

global scale [19,31,38]. In the case of European populations,

molecular techniques led to the identification of at least seven new

cryptic vespertilionid species [30–32].

Vespertilionidae is the most species-rich family in Europe and

Italy and is characterized by high levels of cryptic diversity. Four

cryptic species have been identified in this family (Pipistrellus

pygmaeus, Myotis alcathoe, M. punicus, and Plecotus macrobullaris) from

Italy or its neighbouring countries [39–47]. This family also

includes Plecotus sardus, which is the only known bat species

endemic to Italy [48].

Overall, Italian bat populations have been poorly investigated

and require more attention [27,33]. Moreover, as has been

observed across Europe, Italian bat populations have declined and

now require monitoring to implement conservation measures [49].

Successful monitoring requires that species be correctly identified

to map occurrences and estimate population sizes. With no

morphological criteria for identification, cryptic species are lost in

these conservation efforts.

To evaluate a new integrated approach for taxonomic schemes,

we assembled a reference coxI dataset from samples representing

31 of the 34 Italian bat species. Observed variation in coxI was

then combined with morphological taxonomic assignment made

by experienced bat specialists. With this methodological approach

we aimed to: i) evaluate how the concepts of MOTU and IOTU

are related, ii) describe the genetic differences between sampled

taxa and determine how well these differences correspond to

morphological-based taxonomy, iii) evaluate how well the in-

tegrated approach can be useful in identifying samples belonging

to the main cryptic taxa, and iv) investigate intraspecific molecular

variation of the DNA barcode region to detect divergent lineages

within species that are widespread distributed in the Italian

peninsula.

Materials and Methods

Collection and Identification of Samples
We sampled 209 individuals from 31 bat species at 43 sites

across the Italian peninsula and in Sardinia (Table S1). Nyctalus

lasiopterus and Vespertilio murinus were excluded due to their rarity in

the peninsula [33]. To maximize the chance to observe in-

traspecific geographic variation, conspecifics were sampled from

distant sites. All experiments, procedures and ethical issues were

conformed to the competent national ethical bodies: most samples

were obtained from field-caught bats in mist-nets or bat-boxes

under license from the Italian authorities (Protocol n. 004612/T-A

31 of February 3, 2009 released by the Institute for Environmental

Protection and Research, and approved by the Italian Ministry for

Environment, Territory and Sea). The remaining samples were

specimens in the collection of the Natural History Museum of

Florence University (Zoological Section ‘‘La Specola’’; MZUF). In

most cases, individual bats examined in the field were mostly
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recognized to species level by taking standard linear measurements

with a 0.1 mm precision digital caliper and/or assessing the

species-specific occurrence of diagnostic criteria following the most

updated identification keys [35]. The application of such standard

criteria is widespread among bat researchers in Europe and

validated both in Italy and in the rest of the Europe: they are thus

well known to confidently separate most European species.

Forty-one samples came from cryptic species of Myotis, Plecotus,

and Pipistrellus, and overlapping morphological characters between

congeners made specific identification impossible. As far as the

Myotis mystacinus group was concerned, although M. brandtii was

diagnosed based on tooth morphology and penis shape [35], we

made no a priori distinction between Myotis mystacinus and Myotis

alcathoe whose morphological discrimination may not be obvious.

For cryptic Pipistrellus pipistrellus/P. pygmaeus, to obtain a further

piece of diagnostic information we also recorded echolocation calls

on release with a Pettersson D1000X detector in the direct

ultrasound sampling mode (sampling rate was 500000 Hz). At

least three echolocation calls/sequences were analyzed with

BatSound rel. 4: we generated spectrograms and power spectra

(1024 pt. FFT size, 98% window overlap) to take end frequency

and frequency of maximum energy to help separate such species as

done in previous studies regarding the Italian territory [36,43].

Using a biopsy punch, a 3-mm diameter sample was taken from

each wing membrane for genetic analysis. For museum samples,

50 mg of muscular tissue was stored in 99% ethanol. Following the

protocol specified by the Biorepositories Initiative (http://www.

biorepositories.org), all samples were catalogued as MIB:zpl.

DNA Extraction, PCR Conditions, DNA Sequencing and
Alignment

We extracted total genomic DNA from a single ‘punch’ or

25 mg of muscular tissue using guanidinium thiocyanate and

diatomaceous earth [50]. To amplify the 658 bp target region of

coxI, we used primers VF1d (59-TTCTCAACCAACCACAAR

GAYATYGG-39) and VR1d (59-TAGACTTCTGGGTGGC-

CRAARAAYCA-39) [51] in a 20-ml PCR containing 1X

MasterTaq buffer with 1.5 mM MgCl2 (Eppendorf AG, Ham-

burg, Germany), 0.2 mM of each dNTP, 1 mM of each primer,

1 U of MasterTaq DNA polymerase (Eppendorf AG, Hamburg,

Germany) and 1–10 ng of template DNA. The PCR used the

following cycling conditions: 1 min at 94uC, followed by 5 cycles

of 30 s at 94uC, 40 s at 50uC, and 1 min at 72uC, followed by 35

Figure 1. Taxonomic ranks and their relationships in a molecular-based taxonomic study. In this schematic view the taxonomic ranks can
be grouped in four different areas discriminated by their information content: individuals lie in the less informative level; a single taxonomic approach
identifies morphotypes, MOTU and UCS; integration of data allows the definition of DCL, IOTU and CCS; the last and more informative level contains
species. Individuals represent the first level of observation (1). These organisms are grouped on the basis of morphological similarities (2), in a classical
taxonomic approach, which may lead to the identification of a species (2a), but can also be one of the inputs of the IOTU (2b). Molecular variability
observed among individuals can lead to the definition of MOTUs (3) that, with the addition of more data, can be elevated to the level of DCL (3a) or
IOTU (3b). However, in many published works MOTUs are identified within nominal species without additional taxonomic data (3c), being in this
sense synonyms of UCS. As a consequence, the information content of MOTU and UCS is variable as identified by the dotted arrows between them.
UCS is identified within a species (4), if further taxonomic data are provided it can be elevated to a DCL (4a) or an IOTU (4b). When two or more
nominal species are similar at the molecular level for the chosen marker we call this situation Multi Taxa - Molecular Operational Taxonomic Units
(MT-MOTUs) (4c). IOTU is the rank reached by a biological entity defined by molecular data coherently coupled with other source of information.
When IOTU has reached a sufficient level of information it can be elevated to the rank of a CCS (5), which following a formal description will become
species (6). The ‘‘+’’ in the left up corner of each box indicates that within each taxonomic rank, more than a single entity belonging to that rank can
occur. MOTU is defined according to [7]; UCS, DCL and CCS are defined according to [17,18].
doi:10.1371/journal.pone.0040122.g001
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cycles of 30 s at 94uC, 40 s at 55uC, and 1 min at 72uC, and

ending with 10 min at 72uC [11]. PCR products were gel-purified

using the Perfectprep Gel Cleanup (Eppendorf AG, Hamburg,

Germany) and sequenced directly on an ABI3730XL automated

sequencer (Macrogen Inc., Korea) with both PCR amplification

primers.

Sequences were checked by eye and edited manually with

BioEdit sequence alignment editor (version 7.0.5 [52]), and

trimmed to yield the same length for all entries in the final

alignment.

To avoid the inclusion of coxI nuclear pseudogenes of

mitochondrial origin (i.e. NUMTs [53]), we followed the guide-

lines proposed in [54] and [55]. Sequences were deposited into the

EMBL Data Library under the accession numbers [EMBL:

FR856638 - FR856846] (Table S1).

A different treatment was adopted for the investigation of

M. nattereri samples. Although easily differentiated from its

congenerics [35], recent genetic studies conducted on Western

Palearctic populations have reported the occurrence of at least

four deeply divergent intraspecific lineages for M. nattereri

[30,56,57]. Except for M. escalerai [58] that has been recently split

as a different species, the other lineages (one of which is distributed

in northern Italy) lack of a detailed taxonomic assessment.

Moreover, any molecular study conducted on this taxon was

performed with a standardized DNA barcoding approach and

very few data are available for M. nattereri populations of southern

Italy. Given these assumptions, we decided to compare sequences

from morphologically recognized M. nattereri of northern and

southern Italian populations with closely related lineages, in-

cluding M. escalerai, from other sites in the Western Palearctic

(Table S2). To do this, due to the scarce presence in GenBank of

coxI data for the M. nattereri complex, we amplified portions of

mitochondrial ND1 and cyt b using published PCR conditions

[30]. Sequences were deposited into the EMBL Data Library

under the accession numbers [EMBL: FR856847 - FR856854].

These loci had been previously sequenced in M. nattereri and related

taxa from outside of Italy.

DNA Barcoding Datasets, Optimum Threshold (OT)
Calculation, and Designation of Taxonomic Ranks

To evaluate how well DNA barcoding distinguishes named

Italian bat species, we measured the correlation between

morphologically identified species and the coxI genetic divergence

for each species. Pairwise evolutionary distances were calculated

by the Kimura 2-Parameter (K2P) method [59] in MEGA 4.0

[60]. The extent of genetic differentiation between and within

species was calculated by averaging pairwise comparisons of

sequence divergence across samples as described in [38].

We generated two datasets with the coxI sequences: the

reference dataset and the comprehensive dataset. The former

was an alignment of coxI sequences from individuals that were

classified to the species level in the field and 14 coxI sequences from

seven European vespertilionid species from GenBank marked as

‘barcode standard’ (Table S1; see also [61]). We excluded

M. nattereri because of taxonomic uncertainties regarding this

taxon [30,56].

The second dataset (i.e. comprehensive dataset) encompassed all

the coxI sequences amplified for this study, including those in the

reference dataset, the 22 M. nattereri sequences, and 41 sequences

from morphologically unidentified specimens from Myotis, Plecotus

and Pipistrellus.

With the reference dataset, we evaluated how well the

morphological identification and molecular variations were

correlated. Using this dataset, we calculated the Optimum

Threshold (OT) using a PERL script developed by [16]. OT is

a value of molecular divergence, directly deriving from the whole

range of molecular variability in the reference dataset. This

threshold value maximizes the coherence between the morpho-

logical-based identification and the molecular variability in the

barcode region minimizing, at the same time, the total amount of

identification mismatches that could occur when data obtained

with the two approaches are compared. Identification mismatches

could include Type I errors (i.e. when molecular variability values

higher than OT are found among conspecifics) and Type II errors

(i.e. when different species, show values of molecular variability

lower than OT). The lower is OT, the higher is the probability to

deal with Type I errors, while high values of OT generally

correspond to a high percentage of Type II errors. The sum of

both error contributions represents the so-called ‘‘cumulative

error’’ (CE), and when the minimum cumulative error value

(MCE) is reached the OT is found.

Using a DNA barcoding approach, we categorized the Italian

bat species into the ranks depicted in Figure 1 (e.g. MOTUs,

IOTUs, UCS).

Identification of Unclassified Samples and Detection of
Cryptic Lineages

We analyzed the K2P distance matrix from the comprehensive

dataset to perform two different analyses. First, we classified the 41

morphologically unidentified samples into species groups (i.e.

DNA barcoding) by comparing their barcode sequences with those

included in the reference dataset. Then, we compared these

identification results with those obtained using the Identification

Engine tool (IDS) in the Barcode of Life Data System (BOLD:

http://www.barcodinglife.org/; Species Level Barcode Records

database), which returns unique species assignments based on

$99% sequence similarity at the barcode sequence [62]. Second,

we used the K2P distance matrix to reveal geographic lineages or

new cryptic taxa (i.e. DNA taxonomy). Following [63,64], we

investigated if any single morphologically identified species

included multiple molecular lineages separated by a mean K2P

distance greater than 2%. This criterion was first developed by

[63,64] to uncover hidden biodiversity within mammals (and

especially bats) adopting a genetic species concept. Although this

approach was initially based on the analysis of variation in the

mitochondrial cyt b, some recent works reprised the assumptions of

[63,64] transposing them to the study of the variability in the

barcode marker coxI among Neotropical and Southeast Asian bats

populations [19,38,65].

We generated a neighbour-joining (NJ) phenetic tree based on

comprehensive dataset in MEGA 4.0 [60]. The options used were:

tree inference method: neighbour-joining; phylogeny test and

options: bootstrap (1000 replicates); gaps/missing data: pairwise

deletion; codon positions: 1st +2nd +3rd + non-coding; sub-

stitution model: K2P; substitutions to include: transitions +
transversions; pattern among lineages: same (homogeneous); rates

among sites: uniform rates. Although more sophisticated tree-

building methods are available for deep branch resolution, we

assumed that in a DNA barcoding context this approach was

sufficient to resolve relationships at branch terminals.

No additional coxI sequences [30,57] were available to improve

the resolution in the M. nattereri complex. Therefore, to resolve

known taxonomic inconsistencies in M. nattereri [30,56,57], we

investigated the genetic structure of Italian M. nattereri and closely

related congeners with two additional mitochondrial markers.

These two molecular datasets (Table S2) included 21 cyt

b sequences and 16 ND1 sequences, of which, 19 and 10

respectively from previously published works [i.e. 30,57]. The

Integrated Operational Taxonomic Units in Bats
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sequences at these loci came from different individuals of Western

Palearctic, so we treated the data as two distinct datasets instead of

a single concatenated dataset. Based on the two datasets, we

produced two NJ trees. Following [15,63,64], we used a NJ

clustering method to identify different lineages and to flag

potentially cryptic taxa that had mean K2P distances .2.0%

with a bootstrap support greater than 95%. M. myotis ND1

(GenBank DQ120800) and cyt b (GenBank: AF246241) were used

as the outgroups.

Results

Alignment Characteristics and DNA Barcoding Datasets
We amplified coxI fragments from all 209 samples and due to

sequencing problems for oldest samples, we trimmed our barcode

sequences to the same final length of 556 bp. No sequence

contained insertion/deletions (indels), stop codons, or were biased

by NUMT interference. Alignment analysis revealed average base

frequencies as pA = 0.256, pC = 0.250, pG = 0.166 and pT = 0.328.

The reference dataset included 182 coxI sequences (168 sequenced

in this study and 14 from GenBank) that belonged to 30 of 34

Italian bat species from ten genera and four families (Table S1).

For 23 echolocating bat species, the coxI sequences produced in

this study were the first barcode entries ever deposited in

GenBank. The average number of barcoded specimens per

species was 5.84 (standard deviation = 4.44; range: 1–22). The

minimum cumulative error, MCE (0.08%) occurred at OT = 4.4%

(Figure S2). As shown in K2P distance graph (Figure S1), using the

OT no overlap of intraspecific and interspecific nucleotide K2P

distance occurred at values greater than the threshold, therefore

excluding the presence of type I errors. By contrast, because some

interspecific divergences were as low as 0%, type II errors [16]

occurred when interspecific K2P distance was less than the OT.

Using this DNA barcoding method, we grouped samples

nominally from the same species into coherent units for all but

four taxa in the reference dataset (Figure S3). These four taxa were

two pairs of closely related taxa that had observable morphological

differences but had mean K2P distances lower than OT (M. myotis

and M. blythii mean K2P distance = 1.5660.31%; Eptesicus serotinus

and E. nilsonii mean K2P distance = 0.9160.38%). These type II

errors caused the total cumulative error at the chosen threshold

(i.e. OT) and led to the inclusion of these pairs of species into the

same MOTUs. Among vespertilionids, average interspecific K2P

distances were greater than OT. This allowed to successfully

discriminating between the most problematic cryptic species pairs

(i.e. 7.63% between Pipistrellus pipistrellus and P. pygmaeus, 14.90%

between Plecotus auritus and P. macrobullaris, and 15.82% between

M. mystacinus and M. alcathoe).

Considering all the coxI sequences obtained for the 31 Italian

bats species investigated in this study, the mean6standard error

K2P distance within a species was 0.4460.78% (range: 0%–

9.61%) and the mean6standard error K2P distance between

species was 21.2063.53% (range: 0%–28.64%). The overall mean

diversity was 19.4661.36%. Most species had low levels of

intraspecific molecular diversity (,2%). By contrast, high in-

traspecific diversity levels observed in morphological-identified

M. nattereri were the result of three divergent molecular lineages.

This high diversity supports the exclusion of M. nattereri from the

calculation of OT.

Identification of Unclassified Samples through DNA
Barcoding

Using the BOLD-IDS tool on the comprehensive dataset, 14 of

41 (34.1%) morphologically unidentified samples were successfully

assigned to a known species (Table 1). All Plecotus samples were

assigned to P. auritus or P. macrobullaris. By contrast, only 4 of 17

Myotis and 3 of 17 Pipistrellus samples were assigned to a species.

The remaining 27 samples returned similarity matches higher than

99% with more than one species, thus the system cannot provide

a clear specific assignment.

Using our reference dataset as a comparison, all 41 morpho-

logically unidentified bats were unequivocally assigned to a known

species. In all cases, each queried barcode sequence showed values

of K2P distance lower than OT with each corresponding species

included in the reference dataset (Table 1). Morphologically

unrecognized samples were assigned to six cryptic species:

M. mystacinus, M. alcathoe, Plecotus auritus, P. macrobullaris, Pipistrellus

pygmaeus and P. pipistrellus (Figure S3). All assignments agreed with

those from the BOLD-IDS tool.

Detection of New Cryptic Lineages and Assignation to
Intermediate Taxonomic Categories

Based on DNA barcoding data, morphological data, and

preliminary data on geographic structure, we classified samples

into ranks according to the information content of the groupings

(Figure 2). For the 31 bat species in the comprehensive dataset, the

OT cut-off revealed 31 molecular entities: 26 corresponding to

morphologically assigned species, two MOTUs that each included

two species, and three IOTUs that came from a single nominal

species (Figure S3). Each of the two MOTUs was comprised of

a pair of morphologically distinct species (E. serotinus–E. nilsonii and

M. myotis–M. blythii). The three IOTUS were three divergent

molecular lineages in M. nattereri.

In addition, at least 5 of the 31 morphologically identified

species had multiple molecular lineages that had mean K2P

distances .2% with high bootstrap support in the NJ re-

construction (Table 2; Figure S3).

In particular, for the lineages in Plecotus auritus and M. bechesteinii,

mean K2P distances higher than 2% but lower than OT

(calculated on our reference dataset) and lower than 5% (i.e. the

cut-off suggested by [64] as an indicative value for the occurrence

of cryptic species), might suggest the presence of geographic

structure, though no morphological variation was detected in the

field with respect to biometric ranges for European populations

published in [35] (data not shown). Given these assumptions, the

variability showed by these two species clearly falls into the

definition of UCS.

The DNA barcode sequences of M. myotis and M. blythii, which

made up a single MOTU, could be divided into two molecular

clusters separated by an average K2P distance of 3.5160.77%.

Both clusters contained samples from both morphological species

(Figure S3; Table 2). Samples in one cluster were restricted to

Northern Italy. The other cluster included individuals from all

regions in Italy, including collection sites in the north of the

peninsula where also the first lineage was observed (Table S1 and

Figure S3).

M. nattereri samples belonged to three distinct coxI lineages with

mean K2P distances greater than 2%, 5% and even OT (Figure

S3 and Table 2). Two lineages had distinct geographic origins: one

exclusively from northern Italy and the other from central and

southern Italy. This congruence of molecular and biogeographic

data designates them as IOTUs. This observed genetic structure

was not paralleled by morphology, as samples from the lineages

were morphologically similar. The average variability within these

lineages was very low: 0.3460.14% and 0.4060.15% for the

northern and central-southern lineages, respectively. The third

lineage came from a single DNA barcode sequence from an

English sample found in GenBank (GU270561). In addition to
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coxI, we investigated M. nattereri structure from cyt b (21 sequences,

768 bp long) and ND1 (17 sequences, 605 bp long) mtDNA genes.

NJ trees from these datasets revealed five major lineages: one in

North Africa (Myotis sp. B) and four in Europe (M. nattereri sensu

stricto, M. escalerai, Myotis sp. A, and Myotis sp. C). All groups

diverged for mean K2P distances of at least 7.8% and 7.6% for

ND1 and cyt b, respectively (Figure S4). Again, these values are

consistently higher than the limits proposed by [63,64] to identify

cryptic lineages in mammals deserving the rank of species if further

details are provided. In this context, a clear geographic distinction

of the lineages contributes to confirm this hypothesis. Northern

Italian samples belonged to the lineage that also included

Table 1. BOLD-IDS and OT identification of unknown samples.

Voucher Field identification OT identification BOLD identification Database BOLD scores

MIB:ZPL:01211 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01214 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01216 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01221 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01222 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01223 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01228 Myotis sp. mystacinus cf. aurascens - mystacinus 99.64 - 99.46

MIB:ZPL:01230 Myotis sp. alcathoe alcathoe 99.82

MIB:ZPL:01235 Myotis sp. mystacinus cf. aurascens - mystacinus 99.64 - 99.46

MIB:ZPL:01281 Myotis sp. alcathoe alcathoe 100

MIB:ZPL:01287 Myotis sp. alcathoe alcathoe 100

MIB:ZPL:01289 Myotis sp. alcathoe alcathoe 100

MIB:ZPL:01301 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01302 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01303 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01256 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01319 Myotis sp. mystacinus mystacinus - cf. aurascens 99.64 - 99.46

MIB:ZPL:01239 Pipistrellus sp. pipistrellus pipistrellus 99.64

MIB:ZPL:01241 Pipistrellus sp. pipistrellus pipistrellus 99.64

MIB:ZPL:02288 Pipistrellus sp. pipistrellus pipistrellus 98.73

MIB:ZPL:03815 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03816 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 100

MIB:ZPL:03817 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03818 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 99.82 - 99.82

MIB:ZPL:03819 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 99.82 - 99.64

MIB:ZPL:03820 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 99.82 - 99.82

MIB:ZPL:03821 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 100

MIB:ZPL:03822 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 100

MIB:ZPL:03823 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 100

MIB:ZPL:03824 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03825 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03826 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03827 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 100 - 99.82

MIB:ZPL:03828 Pipistrellus sp. pygmaeus pygmaeus - pipistrellus 99.82 - 99.82

MIB:ZPL:03414 Plecotus sp. macrobullaris macrobullaris 99.82

MIB:ZPL:00262 Plecotus sp. macrobullaris macrobullaris 99.82

MIB:ZPL:01189 Plecotus sp. macrobullaris macrobullaris 99.82

MIB:ZPL:00265 Plecotus sp. auritus auritus 99.64

MIB:ZPL:00268 Plecotus sp. auritus auritus 100

MIB:ZPL:00269 Plecotus sp. auritus auritus 100

MIB:ZPL:00270 Plecotus sp. auritus auritus 100

List of identification results for 41 unrecognized bats sampled in Italy. Identification was performed by the IDS (identification engine on BOLD System [12]) and OT [55]
approaches. Identity score and indecision cases returned by IDS are reported for each sample.
doi:10.1371/journal.pone.0040122.t001
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haplotypes from northern Iberia and Austria (Myotis sp. A). Both

ND1 and cyt b trees suggested that samples from central and

southern Italy represent a previously undescribed lineage (Myotis

sp. C). Both Italian lineages are consistently different from samples

belonging to M. nattereri sensu stricto (M. nattereri in Figure S4),

which was also observed in the coxI dataset (i.e. the specimen from

UK; Figure S3). Finally, all European lineages were distinct from

the North African lineage (Myotis sp. B) and the recently diverged

M. escalerai (Figure S4).

Discussion

DNA barcoding and other molecular methods are well-known

powerful tools for identifying morphologically ambiguous taxa and

revealing cryptic lineages within morphologically uniform taxa.

However, the utility of DNA barcoding within molecular

taxonomy remains controversial, and the debate is still open

concerning the taxonomic value of the identified entities (see for

example [66–68]). In an attempt to clarify molecular classification

schemes and eliminate confusion in specimen identification, we

introduced the concept of IOTU and tested its utility in the

molecular taxonomy of Italian echolocating bats.

Species Boundaries in Italian Bats
Our analyses provided strong support for a role for DNA

barcoding in integrative taxonomy for recognizing molecular

and biological entities. The low Minimum Cumulative Error

(MCE) in the calculation of OT suggested a strong agreement

between morphological identification and coxI molecular vari-

ability in the reference dataset, supporting the taxonomic value

of IOTUs. For M. nattereri, the correlation between genetic

variation and geographic origin of the samples defined three

distinct IOTUs.

Figure 2. Subdivision of echolocating bats in the different taxonomic ranks. How to properly call all the different entities identified in our
work of integrated taxonomy on Italian echolocating bats. It is important to observe the raise of information content proceeding from left to right.
doi:10.1371/journal.pone.0040122.g002

Table 2. Divergent intraspecific molecular lineages.

Scientific name Number of lineages Geographical localization of the lineages % Mean divergence
Bootstrap values
between lineages

Myotis myotis 2 (NIT, CIT, SIT); (NIT) 3.51 100/99

Myotis blythii 2 (NIT, CIT, SIT); (NIT) 3.40 100/99

Myotis nattereri 3 (UK); (NIT); (CIT, SIT) 9.47, 9.34, 5.60 93/100/100

Myotis bechsteinii 2 (SI); (FR, NIT, CIT) 2.52 99/100

Plecotus auritus 3 (NIT, CIT); (NIT); (CIT, SIT) 2.52, 2.56, 2.62 100/98/91

List of Italian bats species with mean sequence divergence (K2P) between lineages greater than 2%. Locality group (NIT: Northern Italy; CIT: Central Italy; SIT: Southern
Italy; UK: United Kingdom; FR: France) and bootstrap support (1000 replicates) for each lineage are also provided.
doi:10.1371/journal.pone.0040122.t002
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Our molecular dataset included samples that belonged to

cryptic and/or recently described species (M. brandtii, M. alcathoe,

Plecotus macrobullaris, and Pipistrellus pygmaeus), whose presence,

distribution, and population size in the Italian peninsula are still

poorly understood. In this context, our OT/MCE-based approach

was successful in flagging potentially taxonomic criticisms (e.g.

species showing high molecular variability) and granted a high

discrimination power even in the detection of cryptic taxa.

Our analyses revealed two instances when morphological and

molecular characterizations were inconsistent. Two pairs of

vespertilionid congeners (E. serotinus-E. nilsonii and M. myotis-M.

blythii) were described as two MOTUs. Although clearly distin-

guishable at the morphological level (and sometimes at the

ecological and/or physiological one), these species cannot be

clearly identified based on coxI despite some patterns of molecular

divergence.

The molecular similarity at the DNA barcode sequences of the

Eptesicus species has been previously observed for other mitochon-

drial markers [31,69,70] (Figure S3). A recent hypothesis posits

that E. serotinus populations from Russia might have maintained

their original mitochondrial lineages, which were lost in western

populations due to complete introgression of mtDNA of E. nilssonii

[70]. Further analyses with nuclear markers could confirm this

hypothesis.

Similarly, reduced interspecific mtDNA variability was reported

for European populations of M. myotis and M. blythii, which are

sympatric across a wide range of southern and central Europe

[31,69,71,72]. MtDNA haplotypes are frequently shared between

M. myotis and M. blythii in sympatric areas, such as the Alps and

northern Italy [41,69]. In agreement with these studies, our DNA

barcoding approach revealed no clear genetic segregation between

individuals from these taxa, limiting the delineation of distinct

taxonomic entities. MtDNA and nuclear microsatellites revealed

that approximately 25% of M. blythii had introgressed genes of

M. myotis origin, but less than 4% of the M. myotis bats had

introgressed genes from M. blythii [72]. Thus, these two species

exhibit ongoing asymmetric hybridization in sympatric regions,

including northern Italy. This hybridization pattern suggests

a progressive loss of the mitochondrial genome of M. blythii in

Europe through a series of introgression events occurred during

the recent colonization by M. blythii from Asia. In addition to

known hybridization in northern Italy, our results suggest that

these species can also hybridize in central and southern Italy.

However, more extensive sampling and the use of nuclear markers

are required to confirm the occurrence of hybridization in these

regions.

Moreover, the two coxI lineages in this MOTU (Figure S3 and

Table 2) did not correspond to morphology or sampling location.

Instead, they represent distinct sympatric lineages, which were also

found in the same colony (e.g. Onferno Natural Reserve in

northern Italy). This pattern of molecular variability deserves to be

further investigated, though some cases of divergent molecular

mtDNA lineages have already been observed in M. myotis from

Italian populations [27]. It is possible that the two lineages

represent population structure from multiple refugia during the

climatic fluctuations of Pleistocene and a similar phenomenon

might have occurred for other taxa [27].

As a final remark, it should be considered that the two coxI

lineages can be interpreted as two UCS in spite of their variability

(see Table 2). However, due to the complex taxonomic situation of

M. myotis and M. blythii, it seems better to call them, from the DNA

barcoding point of view, a single MOTU. In addition, to be more

precise and to anticipate one of the conclusions of this work, we

propose to call these undefined cases as Multi Taxa - Molecular

Operational Taxonomic Units (MT-MOTUs) (see below).

Identification of Unclassified Samples
The two DNA barcoding approaches used to identify cryptic

species (i.e. BOLD-IDS and the comparison with reference

dataset) agreed for only 34% of the morphologically unidentified

samples (Table 1). While the reference dataset allows identifying

all morphologically unassigned samples, BOLD-IDS only identi-

fied Plecotus species, M. alcathoe, and Pipistrellus pipistrellus.

M. mystacinus and P. pygmaeus were not unequivocally assigned

because of taxonomic uncertainties or morphological misclassifi-

cation of reference specimens in BOLD with congeners. All Myotis

samples identified as M. mystacinus by comparison with the

reference dataset were characterized as indecision cases by IDS,

which returned a ‘‘Myotis mystacinus – M. cf. aurascens’’ response.

M. aurascens was considered a geographical morph of M. mystacinus

that has been proposed as a new species based on slight

morphological and karyotypic differences [73–75]. However,

mtDNA variation was not distinct between M. aurascens and M.

mystacinus, leaving its taxonomic status unclear [32,40,69]. Mis-

classification of morphological reference specimens reflects the

practical difficulties in the morphological recognition of cryptic

species only known from molecular data, such as the case of

Pipistrellus pygmaeus vs. P. pipistrellus.

On the whole, these contrasting results highlight that nowadays,

if we are dealing with taxa rich in cryptic species such as

echolocating bats, a dedicated reference database is the core step

to reduce the influence of misidentification. Moreover, we believe

that in a local context, where biogeographical forces drive to the

differentiation of isolated populations and even new putative

species (e.g. the Italian Peninsula), the development of a local

reference molecular database permits more resolution to un-

derstand species presence and boundaries than any available

general archive.

Detection of New Lineages and New Cryptic Species
We detected substantial intraspecific variation in DNA barcodes

from five vespertilionid species that are widely distributed across

Italy. Each species had two or three intraspecific coxI lineages with

mean K2P genetic distances .2%. According to our scheme,

some of these lineages can be tentatively considered as UCS.

Similarly, if we adopt the criteria suggested by [63,64], these

lineages would be flagged as potentially containing cryptic species

requiring additional taxonomic investigations. It should be also

considered that cyt b (used to assess the 2% threshold as in [63,64])

evolves at a faster rate than coxI [76]. Thus, as suggested by [65]

the range of application of the criteria cited above might be

properly resized when applied in a metazoan DNA barcoding

context based on coxI.

In several cases, multiple intraspecific lineages occurred in

syntopy (at both regional and site scale; see for example the case of

Plecotus auritus) without any pattern of morphological differentia-

tion. While introgression explains these intraspecific patterns in

M. blythii [72], intraspecific variation in Plecotus auritus and M.

bechsteinii cannot be explained so easily. M. bechsteinii might have

experienced a population decline in the middle of the Neolithic

(5000 years ago) as a result of habitat reduction. The fragmen-

tation and isolation of small populations might have led to rapid

population differentiation through drift therefore contributing to

the molecular divergence of geographic lineages [77]. Preliminary

biogeographic analyses [57,78] showed contrasting patterns of

intraspecific variation among European populations of Plecotus spp.

and other vespertilionids. These studies highlighted the key role of
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the Iberian Peninsula as a refugium during the Pleistocene ice age,

which led to divergence of cryptic lineages within some taxa. It is

possible, that the Italian and Balkan peninsulas also acted as

refugia, harbouring their own cryptic lineages [30,57]. Compar-

isons with lineages sampled from other European locations might

provide further evidence of the Italian peninsula as a glacial

refugium. It should be acknowledged that the interpretation of

divergent intraspecific mitochondrial lineages could not be trivial,

especially if they are revealed using a single and female-inherited

marker (e.g. coxI). As clearly demonstrated by [19] on an extensive

survey of Neotropical bat populations, mitochondrial splits .2%

can be the result of phylogeographic structuring as an effect of

female philopatry or they can reflect the real occurrence of cryptic

taxa. Both phenomena are equally plausible but to resolve the

situation, the combined use of both mitochondrial and nuclear

markers is desirable due to their different modes of inheritance.

We also detected a complex pattern of intraspecific molecular

variation in M. nattereri sampled across Italy. Previous mtDNA and

nuclear studies showed that the M. nattereri complex is paraphyletic

and encompasses at least four different lineages distributed in the

Palearctic (i.e. M. nattereri, M. escalerai, Myotis sp. A, Myotis sp. B)

[30,56,57]. Two of these lineages, M. nattereri sensu stricto and

M. escalerai, have been formally described based on morphological,

ecological, and molecular characteristics. M. nattereri sensu stricto

was first described by Kuhl (1817) and is distributed mainly in

Central and Northern Europe. M. escalerai was first described by

[58] but its taxonomic status as a distinct species was confirmed

with molecular evidence [56,57]. M. escalerai is distributed in the

Iberian Peninsula and part of France. Our DNA barcoding data

confirmed that M. nattereri from northern Italy were distinct from

those from central and southern Italy and northern Europe

(Table 2 and Figure S3). Analysis of other mitochondrial markers

(ND1 and cyt b) clustered specimens from northern Italy with those

from northern Iberia and the Alps (Myotis sp. A). M. nattereri

samples from central and southern Italy formed a divergent

lineage (Myotis sp. C) that had not been previously observed in the

western Palearctic.

The high level of variation between these lineages is greater

than the thresholds conventionally used to flag the occurrence of

different species following the genetic species concept proposed by

[63,64] (i.e. .5% K2P). However, no preliminary descriptions or

taxonomic synonyms have been given to any of these lineages,

even the North African Myotis sp. B. Thus, the IOTU status for

these lineages based on molecular divergence and biogeography

could lead to a formal description of these entities once

supplementary details (e.g. detailed morphological and/or ecolog-

ical data) are provided. However, as well discussed by [19,65], the

use of mitochondrial markers only, even if coupled with geo-

graphical, ecological and other sources of data, does not

necessarily associate with gene flow. This is a main problem in

mammals where high male biased gene flow and female philopatry

are common, especially for Myotis bats [79]. More extensive

sampling across the entire Italian peninsula (and related islands)

and the use of bi-parentally inherited markers could be used to

assess the extent of gene flow between the two distinct lineages we

observed for Italy.

MOTUs, IOTUs and Taxonomy
Defining a biological species is not a simple matter. As dynamic,

evolving entities, species are not unequivocally defined [80] and

there are a variety of species concepts [81]. It is not trivial to

determine which concept best fits samples classified by molecular

data [63,64]. In such complex situations, species designations

based on a single category of taxonomic features (morphological,

ecological, molecular, or biogeographic) is questionable. On the

other hand, when multiple lines of evidence are available, it is

unclear which data are most important in defining the species.

Unfortunately, this is a serious limit because scientists usually deal

with measurable values and reasonably controlled variables.

Understanding how to balance the different data types will be

important for classifying from multiple sources.

To standardize an integrated approach for taxonomy, we

formally proposed a new entity, the Integrated Operational

Taxonomic Unit (IOTU). This concept links different data sources

in taxonomy, allowing morphological, ecological, geographical

and other characteristics of living beings to be better combined

with molecular data. IOTUs are defined by molecular lineages

that have further support from at least one more part of the

‘‘taxonomic circle’’ [2] (Figure 1). The use of IOTUs should play

a key role to shed light on the winding road towards species

definitions. The results on our bat dataset showed this clearly: in

the context of a taxonomic work a researcher is dealing, at the

same time, with several kinds of biological entities that are ‘‘filling

the gap’’ between individuals and species (Figure 2). As a matter of

fact, it is often almost impossible to reach the level of species with

a single approach, but not all the entities identified with molecular

techniques are ‘‘simple’’ MOTUs, as apparently is thought in

many DNA barcoding papers.

A final consideration: the term MOTU is used ambiguously in

DNA barcoding literature. We propose here that it should only be

used for its original definition only (i.e. M1 group, see

introduction): ‘‘a group of undetermined organisms sharing

a common molecular variability’’ [7], and we suggest alternatives

for its other definitions. For MOTUs included in the M2 group

(see introduction), we suggest that UCS is a better definition. For

MOTUs included in the M3 group (see introduction), we suggest

the designation Multi Taxa - Molecular Operational Taxonomic

Units (MT-MOTUs), reflecting the low information content,

which is often the result of the poor resolution of the molecular

marker or of the pattern of evolution of organelle’s markers (such

as the case of M. myotis and M. blythii).

Although divergent lineages do not always reflect distinct species

or other taxonomic ranks, molecular data remains at the core of

current taxonomic approaches. However, the future of taxonomy

is not only in molecular markers. Rather, the future of modern

taxonomy is more and more oriented towards the definition of the

best way to integrate molecular data into multidisciplinary

taxonomic approaches. In this context, the concept of IOTU is

a major innovation for future taxonomic studies. The web of

entities commented and described here (Figure 1) represents

a ranking system that can improve the interpretation of data in

integrated taxonomic approaches.

In applying this vision to the study of Italian bats, we showed

that species, IOTUs, and even MOTUs, CCSs, UCSs, or DCLs

yield information that can be meaningful to assess ecological

requirements and/or conservation needs. In other words, all of

these entities can be considered valuable conservation units. Thus,

molecular identification techniques, such as DNA barcoding, play

a major role in describing existing patterns of biodiversity, which

are needed to design realistic actions for conservation manage-

ment plans.

Supporting Information

Figure S1 Frequency distribution of intraspecific and
interspecific genetic divergences in morphologically
identified echolocating bats from Italy. Graph shows

intraspecific (yellow bars) and interspecific (red bars) comparisons
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across the bats species included in the reference dataset. Distances

were calculated by MEGA 4.0 (pairwise deletion), using Kimura’s

two-parameters substitution model.

(PDF)

Figure S2 Cumulative error plot. Minimum cumulative

error analysis conducted on the reference dataset of Italian

echolocating bats species. Type I (yellow) and type II (red) errors

obtained with different thresholds.

(PDF)

Figure S3 NJ reconstruction of Italian echolocating bats
coxI sequences. Neighbour joining tree based on coxI sequences

of Italian echolocating bats generated with MEGA. Square

brackets indicate the different taxonomic ranks corresponding to

species, MOTUs (dotted line), and IOTUs (bold line) inferred by

OT. As reported in Figure 2, Myotis bechsteinii and Plecotus auritus,

should be assigned to the UCS rank. For each bat, voucher

number and locality group are also provided (further details can be

retrieved from Table S1). Bootstrap support (1000 replicates)

values .70% are indicated above the nodes.

(PDF)

Figure S4 NJ reconstructions ofMyotis nattereri species
complex based on ND1 and cyt b sequences. Phenetic

relationships among sequences of the cyt b and ND1 genes for

Italian and European lineages belonging to the species complex

Myotis nattereri. Locality groups are shown as follows: SIT, Southern

Italy; CIT, Central Italy; SIT, Southern Italy; SMO, southern

Morocco; CMO, central Morocco; NMO, northern Morocco;

SIB, southern Iberia; NIB, northern Iberia; GER, Germany; AUS,

Austria; SWI, Switzerland; GRE, Greece; HUN, Hungary.

Bootstrap support (1000 replicates) values .70% are indicated

above the nodes. Corresponding lineages are indicated by square

brackets and named as reported in the manuscript. For further

details about samples and owner of the sequences see Table S2.

(PDF)

Table S1 List of biological samples, GenBank acces-
sions and sampling details. Bats examined in this study using

a DNA barcoding approach with reference to specimen voucher

(when available), family and species attribution (except for

unrecognized bats), GenBank accession numbers, sampling

localities (with province) and assigned locality group names

(NIT: Northern Italy; CIT: Central Italy; SIT: Southern Italy;

SAR: Sardinia; SW: Switzerland; IE: Ireland; FR: France; DE:

Germany; UK: United Kingdom). Samples highlighted in bold

have been included in the reference dataset and used for OT

calculation. coxI sequences from GU270553 to GU270566 were

retrieved in GenBank.

(PDF)

Table S2 List of GenBank accession numbers and
sampling details of bats belonging to the M. nattereri
species complex. Sampling locality details, accession numbers

with related reference of cyt b and ND1 sequences and name of

corresponding lineage are provided for each individual.

(PDF)
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