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Abstract

DNA replication stress is a constant threat that cells must manage to proliferate and maintain 

genome integrity. DNA replication stress responses, a subset of the broader DNA damage response 

(DDR), operate when the DNA replication machinery (replisome) is blocked or replication forks 

collapse during S phase. There are many sources of replication stress, such as DNA lesions caused 

by endogenous and exogenous agents including commonly used cancer therapeutics, and difficult-

to-replicate DNA sequences comprising fragile sites, G-quadraplex DNA, hairpins at trinucleotide 

repeats, and telomeres. Replication stress is also a consequence of conflicts between opposing 

transcription and replication, and oncogenic stress which dysregulates replication origin firing and 

fork progression. Cells initially respond to replication stress by protecting blocked replisomes, but 

if the offending problem (e.g., DNA damage) is not bypassed or resolved in a timely manner, 

forks may be cleaved by nucleases, inducing a DNA double-strand break (DSB) and providing 

a means to accurately restart stalled forks via homologous recombination. However, DSBs pose 

their own risks to genome stability if left unrepaired or misrepaired. Here we focus on replication 

stress response systems, comprising DDR signaling, fork protection, and fork processing by 

nucleases that promote fork repair and restart. Replication stress nucleases include MUS81, 

EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, 

XPG, and FEN1. Replication stress factors are important in cancer etiology as suppressors of 

genome instability associated with oncogenic mutations, and as potential cancer therapy targets to 

enhance the efficacy of chemo- and radiotherapeutics.
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1. Introduction

Accurate DNA replication and proper chromosome segregation to daughter cells are critical 

to maintaining genome integrity and preventing cancer. Replication of the 6.3 billion 

bp of the diploid human genome during a typical eight-hour S phase requires >30,000 

active origins, ~5000 of which are active at a time [1,2]. Replication forks travel in a 

highly processive manner, synthesizing ~3000 bp per min, yet forks frequently encounter 

obstacles that stall replisomes, causing replication stress and triggering stress responses 

including the intra-S checkpoint [3], fork protection to prevent replisome dissociation 

or fork collapse, and repair mechanisms that restart damaged forks. Replication stress 

is caused by a wide variety of endogenous and exogenous factors. Spontaneous DNA 

damage is caused by endogenous reactive oxygen species formed during cellular metabolism 

[4,5], misincorporation of ribonucleotides, and DNA lability [5]. DNA damage is also 

caused by exogenous genotoxic chemicals, and by ionizing and non-ionizing radiation. 

The vast majority of DNA lesions block replicative polymerases, necessitating lesion 

repair by an appropriate repair pathway, lesion bypass (damage tolerance) by translesion 

DNA synthesis (TLS) polymerases, repriming, homologous recombination (HR) mediated 

template switching, or passive rescue from an adjacent fork [6,7]. DNA lesions that block 

replicative polymerases include nucleotides with broken rings, oxidized bases, and chemical 

adducts, as well as single- and double-strand breaks (DSBs). DNA polymerase inhibitors 

and depletion of nucleotide pools with hydroxyurea are exogenous sources that cause global 

replication stress, slowing or stopping most or all replication forks [8].

Additional endogenous sources of replication stress are difficult to replicate DNA sequences 

and certain chromatin environments (e.g., G-quadraplex DNA, common fragile sites, 

telomeric DNA) [9–17]. Replication stress is also caused by stable R-loops which form 

by hybridization of RNA transcripts to DNA templates, especially in G-rich sequences 

[18–20], and by collisions between opposing transcription and replication machinery, 

particularly in highly transcribed ribosomal RNA gene arrays, fragile sites, and telomeres 

[21–27]. Topoisomerases avert replication stress by preventing DNA overwinding in front 

of replication forks, a type of intrinsic, topological replication stress. A recent yeast study 

showed that cohesin, a highly conserved protein with essential roles in sister chromatid 

cohesion required for proper chromosome segregation, increases replication stress in 

centromeric and ribosomal DNA by trapping topological stress [28]. Although cells suffer 

replication stress at random sites throughout the genome due to spontaneous (or induced) 

DNA damage, the stress associated with difficult to replicate sequences and challenging 

chromatin environments must be managed at those sites in every S phase.

When replication forks are blocked, the initial response has two aims: (1) protect the 

replication fork by stabilizing the replisome machinery, and (2) protect the fork from 

nucleolytic attack [29,30]. If a blocked fork is not restarted in a timely manner, it may 

be cleaved by structure-specific nucleases yielding a single-ended DSB (seDSB) that is 

processed by resection nucleases to suppress misrepair by canonical non-homologous end-

joining (cNHEJ) and promote accurate fork restart by HR. This is important because cNHEJ 

is the dominant DSB repair pathway in mammalian cells [31,32] and cNHEJ of seDSBs 

can cause deletions and translocations that produce acentric and dicentric chromosomes 
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that segregate improperly in mitosis or induce breakage-bridge-fusion cycles that further 

threaten genome integrity [33]. In this review we begin by discussing DDR signaling in 

response to replication stress, and then describe the activities of key nucleases and co-factors 

in replication fork protection, fork cleavage to seDSBs, and fork resection that together 

promote accurate HR-medicated fork repair and restart. These mechanisms are crucial for 

maintaining genome stability and thus preventing cancer, and they are important as potential 

targets in cancer therapy.

2. DDR Signaling in Response to Replication Stress

DNA repair and DNA damage checkpoint systems minimize replication fork encounters 

with blocking lesions [34–36], but with a steady state of ~10,000 DNA lesions per cell 

in unstressed cells [5] and ~5000 simultaneously active replisomes during S phase [2], 

fork encounters with blocking lesions are unavoidable. Acute or chronic exposures to 

genotoxic chemicals and radiation greatly increase replication stress, as does dysregulated 

replication associated with oncogenic stress [37–39]. Under normal circumstances, the 

leading and lagging strand replication machines are coupled, traveling together with the 

MCM (minichromosome maintenance) replicative helicase. If the leading strand polymerase 

is blocked, MCM helicase may decouple and unwind DNA ahead of the fork, exposing 

hundreds of bases of single-stranded DNA (ssDNA) [40,41]. As with ssDNA exposed by 

5′–3′ resection of broken ends at DSBs by resection nucleases EXO1 and DNA2 (with 

its cofactor BLM) [42–44], the ssDNA exposed by decoupled MCM helicase is rapidly 

bound by the abundant, heterotrimeric replication protein A (RPA) (Figure 1A). RPA-bound 

ssDNA is recognized by the ATR (ataxia telangiectasia and Rad3-related) cofactor ATRIP 

(ATR-interacting protein), leading to activation of ATR (Figure 1B), the central signaling 

kinase of the intra-S checkpoint response [45]. In addition to ssDNA-RPA and ATRIP, 

ATR activation requires several other factors including TopBP1, RAD17-RFC, and the 9-1-1 

complex. Additional, distinct ATR activation mechanisms have been described involving 

NBS1, a component of the MRE11-RAD50-NBS1 (MRN) complex, and the RPA-binding 

factor ETAA1 [45–47].

ATR is a member of the phosphatidyl inositol 3′ kinase-related kinase (PIKK) family, which 

also includes ATM and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). 

PIKKs play central roles in DNA damage responses including DSB repair, checkpoint 

activation, apoptosis, suppression of transcription, and responses to telomere dysfunction 

and viral infection [48,49]. Activation of each PIKK involves a specific cofactor. The ATR 

interacting protein ATRIP recruits ATR to RPA-bound ssDNA, initiating ATR activation 

[50]. The MRN complex and the Ku70/Ku80 heterodimer bind to frank DSB ends, the 

NBS1 component of MRN recruits and activates ATM, and Ku70/Ku80 recruits and 

activates DNA-PKcs [48]. Activated PIKKs are autophosphorylated, and they phosphorylate 

each other and many other targets, showing various degrees of signaling pathway crosstalk 

[48].

One feature of PIKK crosstalk is apparent in the phosphorylation of RPA bound to ssDNA. 

RPA is a trimeric complex of 14 kDa, 32 kDa, and 70 kDa subunits with essential roles 

in DNA replication, DNA repair, and DDR signaling. The N-terminus of the 32 kDa 
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subunit RPA32 (also called RPA2) is phosphorylated on serine and threonine residues by 

all three PIKKs and cyclin dependent kinase (CDK) (Figure 1C) [51–53]. Phosphorylation 

of specific RPA32 residues occurs sequentially [54], and residues modified early can 

prime phosphorylation of other residues (Figure 1C) [51–53]. Following DNA damage, 

CDK phosphorylates RPA32 S23 and S29, and phospho-S23 (p-S23) primes subsequent 

phosphorylation of S29, S33 (by ATR), and S4S8 (both phosphorylated by ATM and DNA-

PK). These priming effects are sometimes reciprocal; for example, ATR phosphorylation of 

RPA32 T21 by DNA-PK primes phosphorylation of S4S8 by ATM and DNA-PK, and vice 

versa (Figure 1C). Thus, CDK phosphorylation of RPA32 initiates a positive feedback loop 

that results in hyperphosphorylated RPA32, marked by pS4S8 and pT21, which is required 

for certain downstream events such as apoptosis [55]. RPA-bound ssDNA has emerged as 

a critical structural foundation for a variety of DDR signaling responses [54]. In addition 

to its key role in ATR activation, RPA phosphorylation regulates replication in response to 

stress, and it inhibits resection [56,57]. Most RPA32 phosphorylation events documented 

to date reflect early DDR signaling as RPA becomes progressively phosphorylated, but in 

cells stressed with the Topo I inhibitor camptothecin, S12 phosphorylation occurs one and 

a half to two days after the drug is removed, and this correlates with resumption of DNA 

replication, suggesting that this modification deactivates Chk1 to terminate checkpoint arrest 

[51].

RPA modifications regulate cell responses to stress, at least in part, by modulating RPA 

interactions with DNA and various protein partners, many of which have important DDR 

signaling and DNA repair roles. For example, RPA phosphorylation reduces its affinity for 

undamaged double-stranded DNA (dsDNA), but increases its affinity for damaged dsDNA, 

and it regulates RPA affinity for ssDNA [58,59]. Phospho-RPA shows reduced interactions 

with ATM, DNA-PK, MRN, 53BP1, and p53 [54]. Conversely, phospho-RPA shows 

enhanced affinity for PRP19, an E3 ubiquitin ligase important for ATR-ATRIP association 

with RPA-bound ssDNA, and represents a positive feedback system for ATR activation 

[60]. Other RPA modifications, including SUMOylation and ubiquitylation, regulate its 

interactions with other proteins, including the key HR factors RAD51 and RAD52 [54]. RPA 

inhibitors designed to interfere with RPA binding to ssDNA or RPA phosphorylation are 

being investigated as cancer chemotherapeutics, including mitigation of tumor resistance to 

genotoxic chemotherapy [61,62].

Once ATR is activated in response to replication stress, it phosphorylates and activates Chk1 

kinase, which then phosphorylates downstream targets including CDK which regulates cell 

cycle progression. Activation of ATR and Chk1 are critical for the intra-S checkpoint in 

response to replication stress. This checkpoint enhances DNA repair, promotes protection of 

stalled replication forks, slows or stops cell cycle progression in S/G2 phases by preventing 

late origin firing to minimize replication fork encounters with blocking lesions, and activates 

dormant origins to rescue under-replicated DNA adjacent to blocked or collapsed forks 

[45,63–65]. Defects in ATR and other replication stress factors are implicated in many 

human diseases, including cancers, premature ageing, microcephaly, growth retardation, 

anemia, neurodegenerative disorders, ataxia, and developmental disorders [15].
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Although PIKK signaling pathways display crosstalk, each PIKK has a dominant role in 

specific types of DSB repair. DNA-PK and ATM coordinate repair of two-ended DSBs by 

cNHEJ and HR, respectively [31,49], and ATR coordinates the replication stress response, 

including HR-mediated repair of seDSBs at collapsed replication forks [45,66].

3. Protecting and Rescuing Blocked Replication Forks

DNA replication initiates at origins in a complex, highly regulated process involving 

assembly of pre-replication complexes and licensing factors that ensure DNA is replicated 

only once per cell cycle [67]. For this reason, there is a premium on protecting replisomes at 

stalled replication forks to prevent replisome dissociation and fork collapse. Stalled forks are 

protected by a plethora of repair and replication factors, including RIF1, which inhibits 

end resection, the MRN-interacting protein MRNIP, the TLS suppressor USP1 which 

regulates PCNA via de-ubiquitination, HR proteins (RAD51, BRCA1, BRCA2, FANCD2), 

and RADX which regulates RAD51 [30,68–73]. Cells with defects in any of these fork 

protection factors are hypersensitive to replication stress.

Maintaining replisomes to protect stalled forks often involves fork regression to a ‘chicken 

foot’ structure that resembles four-way branched Holliday junctions of HR reactions (Figure 

2A) [29]. Chicken foot structures have a one-ended DSB that at least initially includes 

ssDNA to which the HR factors RAD51, BRCA1, BRCA2, and the RAD51 paralogs 

(RAD51B/C/D and XRCC2/3) are recruited [74], although HR factors appear to play 

distinct roles in HR and fork protection [75]. Recent evidence indicates that fork reversal 

proceeds in two phases. Limited reversal is catalyzed by helicase-like chromatin remodeling 

proteins SMARCAL1, HLTF and PICH, the structure-specific nuclease ZRANB3, and 

RAD51 [29]. PICH has branch migration activity that helps extend fork reversal, which 

induces topological strain, thus extensive reversal requires topoisomerase Iiα (TopoIIα) to 

relieve the strain. TopoIIα is SUMOylated by ZATT, and SUMO-TopoIIα then recruits 

PICH which branch migrates the four-way structure to further extend the reversed fork 

[29,76]. RAD51, BRCA1, and BRCA2 protect reversed forks from nuclease attack by 

MRE11, EXO1, DNA2, and MUS81 [77–79]. Part of the fork protection response involves 

histone methylation at stalled replication forks by EZH2, as this chromatin modification 

regulates MUS81 recruitment and subsequent nucleolytic attack of the protected fork [80]. 

It was recently shown that the WRN interacting protein WRNIP also protects reversed forks 

from nucleolytic attack [81]. Presumably seDSBs at protected forks are prevented from 

engaging in cNHEJ with other DSBs, i.e., seDSBs at other stressed forks or ends of frank, 

two-ended DSBs, to avert genome rearrangements. In cells with defects in any of these fork 

protection factors, reversed forks are rapidly degraded, accounting for their hypersensitivity 

to agents that induce replication stress. It has been hypothesized that extensive fork reversal 

is important to promote fork restart via HR [29,76]. In this model, extensive fork reversal 

allows sufficient end resection of seDSB ends to establish a functional RAD51-ssDNA 

nucleoprotein filament to drive HR restart. Forks reversed to a limited extent, by contrast, 

are preferentially restarted by RECQ1-mediated branch migration to achieve the same goal 

(Figure 2A).
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There are several other mechanisms that repair and restart blocked replication forks, some of 

which bypass the blocking lesion. A blocked fork may be passively rescued by replication 

from an existing fork, or by checkpoint-activation of an adjacent dormant origin [65], 

replisomes may transiently switch templates to bypass a lesion, lesions may be bypassed by 

error-prone translesion DNA synthesis (TLS) polymerases, or a new fork may be established 

downstream of the blocking lesion by repriming by PRIMPOL and PRIM1 [6,64,82–87]. An 

advantage of this set of fork rescue pathways is that they do not create seDSBs and thus 

eliminate the threat of large-scale genome rearrangement due to cNHEJ-mediated seDSB 

misrepair. A disadvantage is that these leave behind unrepaired lesions (template switching) 

or a segment of under-replicated DNA (repriming), or they induce mutations (TLS). If 

stressed forks are rescued by an adjacent fork, the associated delay poses the risk that the 

stalled fork will reconfigure into toxic, branched structures catalyzed by HR factors [88].

The threats to genome integrity due to mutation, under-replicated DNA, and delayed restart 

can be avoided by engaging another set of fork restart mechanisms initiated when forks 

are cleaved by structure-specific endonucleases MUS81 or EEPD1. Similar to fork restart 

involving a chicken foot intermediate, fork cleavage restart mechanisms also create seDSBs. 

The roles of these fork cleavage nucleases and other nucleases/co-factors that contribute to 

restarting stressed replication forks via HR are described in the following sections.

4. MUS81: An Ancient Structure-Specific Nuclease Involved in HR and 

Restart of Stressed Replication Forks

MUS81 is a structure-specific 3′ endonuclease in the XPF 3′ endonuclease family 

that cleaves a variety of branched DNA structures including 3′ flaps and Holliday 

junctions.Yeast Mus81 was first discovered in 2000 in a two-hybrid screen for proteins 

that interacted with the RAD54 HR protein and was named for the sensitivity of Mus81-

defective cells to methyl methanesulfonate and UV light [89]. Mus81-defective yeast also 

have a severe meiotic HR defect that together with its interaction with RAD54 suggested 

an important role in HR [89]. Indeed, yeast Mus81 and its Eme1 cofactor resolve Holliday 

junctions and human MUS81 cleaves four-way (Holliday) junctions and 3′ flap structures 

[90,91] (Figure 2B). In human cells, MUS81 with its EME1 cofactor resolves Holliday 

junctions in HR intermediates [92–95], and reversed forks that resemble Holliday junctions 

[96]. In contrast, MUS81 with its EME2 cofactor cleaves blocked replication forks, causing 

fork collapse to a seDSB [97–99] (Figure 2B). The seDSB is apparently resected to 

allow formation of a RAD51-ssDNA nucleoprotein filament that catalyzes fork restart by 

a mechanism that resembles break-induced replication (BIR) [100], although the resection 

nuclease(s) involved in processing MUS81-cleaved forks are not known (Figure 2C). Yeast 

Mus81 also mediates resolution of structures in G2/M that arise when blocked forks are 

rescued by converging forks to complete DNA replication [101].

MUS81 is an important DDR factor and a relevant tumor marker. MUS81 defects sensitize 

cells to various genotoxic chemicals [102,103], and it was recently shown that inhibition 

of MUS81 sensitizes HR-proficient cancer cells to the PARP1 inhibitor, olaparib [104], 

an agent commonly used to treat cancers with HR defects, such as BRCA1- and BRCA2-
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defective breast cancers [105,106]. This suggests that inhibiting the HR functions of MUS81 

is synthetically lethal with PARP inhibition, analogous to the synthetic lethality of PARP 

inhibitors in BRCA- and other HR-defective cells. This finding also suggests that MUS81 

inhibition may be an alternative means to sensitize HR-proficient (i.e., BRCA-wildtype) 

tumors to PARP inhibitors [104]. MUS81 may also underlie an important cancer diagnostic. 

MUS81 was found to cleave DNA in prostate cancer cells, inducing cytosolic DNA that 

serves as a prostate tumor marker and promotes STING-dependent immune recognition 

to drive host rejection of tumor cells in vivo [107]. Interestingly, MUS81 foci correlated 

with cytosolic DNA levels that may reflect MUS81 cleavage of stressed replication forks 

[107] caused by oncogenic stress [39]. As noted above, BRCA1/2 help protect reversed 

replication forks, but in cells with BRCA2 defects, MUS81 is essential for cellular resistance 

to replication stress and proper chromosome segregation [108]. Because of their fork 

protection defect, reversed forks in BRCA2-defective cells are susceptible to nucleolytic 

attack by MRE11 in a reaction initiated by the CtIP nuclease, causing hypersensitivity to 

replication stress. In these BRCA2-defective cells, stressed fork rescue requires MUS81 

cleavage to effect fork restart by an HR mechanism resembling BIR [78]. These findings 

suggest a treatment strategy for BRCA-defective cells in which this MUS81 fork restart 

pathway is blocked to enhance tumor killing by replication-stress inducing chemotherapy 

[78]; this strategy might provide similar benefits with radiotherapy. The roles of MUS81 

in cancer depend on the tumor genetic background. Unlike its protective role in BRCA-

defective tumors, MUS81 mediates chromosome shattering and apoptosis in cancer cells 

with microsatellite instability and a defect in the Werner syndrome helicase WRN [109].

Chk1 inhibitors have been explored as cancer chemotherapeutics, but these agents often 

cause severe side effects. In a recent study [110], Chk1 inhibition increased under-replicated 

DNA and mitotic defects, including anaphase bridges and intermediates of mitotic DNA 

synthesis (termed MiDAS). MiDAS completes replication of regions that fail to fully 

replicate during S phase as a result of replication stress, i.e., at common fragile sites 

[111,112]. MUS81-EME1 was shown to cleave nascent DNA generated during mitosis 

in response to insufficient nucleotide pools to maintain MiDAS, and this promoted 

chromosome instability but did not affect cell survival. In contrast, MUS81-EME2, which 

normally promotes fork restart, mediates cell death in Chk1-inhibited cells [110]. It was 

therefore suggested that caution be exercised with Chk1 inhibitors as such treatments may 

kill certain tumor cells, but those that survive may display chromosomal instability [110]. 

Such treatments could therefore promote progression of surviving tumor cells to a more 

aggressive state or increase the risk of secondary tumors [113,114].

5. EEPD1: A 5′ Structure-Specific Endonuclease That Complements the 3′ 

MUS81 Nuclease

EEPD1 (endo- exonuclease phosphatase domain protein 1) has a DNase I-like nuclease 

domain and a DNA binding domain with two helix–hairpin–helix motifs similar to those 

in prokaryotic RuvA2. As with MUS81, cells with defective EEPD1 are hypersensitive to 

a variety of genotoxic chemicals and radiation, and replication stress induces chromosome 

aberrations and mitotic catastrophe [115,116]. iPOND (isolation of proteins on nascent 
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DNA) is a technique that reveals proteins associated with replication forks, including 

replisome components and proteins recruited to stressed forks [117,118]. iPOND analysis 

demonstrated that EEPD1 is recruited to stalled replication forks, and similar to MUS81, 

EEPD1 cleaves fork structures in vitro, and stalled replication forks in vivo (Figure 3) [115]. 

Once EEPD1 cleaves stalled replication forks, it promotes EXO1-mediated resection of the 

resulting seDSB to block cNHEJ and promote HR-mediated fork restart [115,116,119]. 

Resection defects are seen in EEPD1-defective cells at both stressed replication forks 

and frank DSBs, and these defects suppress ATR activation and downstream stress 

responses including induction of H2AX and Chk1 activation [115]. Replication stress is 

associated with rapid cell division (i.e., due to oncogenic stress or during embryonic 

development), and EEPD1 knockdown causes severe developmental defects during early 

vertebrate development [120]. Unlike MUS81, which evolved ~1.5 billion years ago, EEPD1 

arose much later, appearing in chordates and early vertebrates ~500 million years ago. 

Interestingly, this corresponds to the period in evolution where genome size underwent two 

successive doublings [121]. It is tempting to speculate that the original MUS81 stressed 

fork cleavage system required additional assistance to manage increased replication stress 

associated with genome expansion, and this selective pressure gave rise to EEPD1. Another 

advantage to EEPD1 is that it is a 5′ nuclease and therefore it cleaves the opposite 

strand at stalled forks as that cleaved by the MUS81 3′ nuclease. Although cleavage of 

either strand produces seDSBs that can initiate HR-mediated fork restart, these distinct 

restart mechanisms may have different restart kinetics. As shown in Figure 3, MUS81′s 

3′ endonuclease activity cleaves the template strand for leading-strand synthesis, whereas 

EEPD1′s 5′ endonuclease activity cleaves the template strand for lagging-strand synthesis. 

This polarity difference means that the seDSB end produced by MUS81 is forced to 

invade the lagging strand duplex, which remains discontinuous until Okazaki fragment 

maturation is complete. Strand invasion by MUS81 seDSBs may not be successful until 

they are resected enough to allow invasion into a mature lagging strand duplex. In contrast, 

EEPD1 fork cleavage allows the resected seDSB end to invade the (continuous) leading 

strand duplex, which requires less resection and therefore may provide a faster fork restart 

mechanism. There is evidence that even relatively short delays in fork restart can result 

in genome instability [115,120,122,123], probably because such delays increase the chance 

that stalled forks will be remodeled into toxic HR intermediates [6,88]. Hence, EEPD1 

may have been selected during evolution because it provided an alternative and potentially 

faster fork restart mechanism to complement the ancient MUS81 mechanism, and thus help 

manage increased replication stress associated with larger genomes. Another reason EEPD1 

may have provided a selective advantage during vertebrate genome evolution is because 

EEPD1 interacts with and recruits the EXO1 resection nuclease to seDSBs at collapsed 

replication forks, thereby promoting accurate fork restart by HR [119].

Inactivating mutations in EEPD1 are not seen in cancers, but EEPD1 is overexpressed in 

subsets of cancers of the brain, breast, colon, cervix, kidney, skin, lung, prostate, head 

and neck, and uterus [124]. This pattern of few/no mutations and relatively common 

overexpression is reminiscent of other important DDR factors, such as RAD51, and 

may reflect the critical nature of replication stress responses to cancer cell survival. 

Indeed, cancer cells face greater replication stress than normal cells due to dysregulated 
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replication associated with oncogenic stress, nutrient deprivation, hypoxia, attacks by the 

immune system, and stress associated with genotoxic cancer treatments [17]. Thus, EEPD1 

overexpression probably provides a selective advantage to tumor cells, and it may be an 

important contributor to tumor resistance to therapies that induce replication stress. As 

noted above, inhibition of MUS81 and BRCA defects are synthetically lethal with PARP1 

inhibitors, [108,125]. BRCA defects are also synthetically lethal with defects in the RAD52 

HR protein [126,127]. Importantly, BRCA-RAD52 synthetic lethality is suppressed by 

defects in EEPD1 [128], thus EEPD1 activities at stressed replication forks, and/or during 

HR repair of frank DSBs, apparently generate intermediates that require processing by either 

BRCA1/2 or RAD52 to prevent cell death. These findings suggest that although inhibition 

of RAD52 may provide benefits to patients with BRCA-defective tumors, therapeutic 

resistance may develop by downregulation or inactivation of EEPD1.

6. Metnase: A Recently Evolved Nuclease-Protein Methyl Transferase That 

Promotes Replication Fork Restart

Metnase evolved ~50 million years ago when a Mariner transposon integrated downstream 

of a SET protein methylase, and subsequent genetic changes fused the SET and nuclease 

domains [129]. Metnase is a structure-specific nuclease with numerous genome stabilization 

functions including promotion of cNHEJ, chromosome decatenation, and restart of stressed 

replication forks [130–132]. Although defects in the Metnase nuclease delay replication fork 

restart [123] and Metnase cleaves replication fork structures in vitro [133], Metnase does 

not cleave stalled forks in vivo like MUS81 and EEPD1 [116]. These findings suggest that 

Metnase nuclease functions in a later step in replication fork restart, such as trimming 

flaps in HR-mediated fork repair intermediates [116]. The Metnase protein methylase 

targets histone H3 K36 to promote recruitment of cNHEJ factors Ku and NBS1 [134], 

Metnase automethylation regulates its chromosome decatenation function [135], and its 

methylase also plays an as yet undefined role in promoting restart of stressed replication 

forks [122]. Metnase is phosphorylated by Chk1, and this modification promotes cNHEJ, 

but suppresses replication fork restart [136]. Indeed, Metnase regulates Chk1 stability, 

suggesting a feedback loop between Metnase and Chk1 that coordinates DNA repair and 

checkpoint processes [137].

7. Other Nucleases with Known or Potential Roles in Replication Stress 

Responses: CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, 

Artemis, XPG, and FEN1

CtIP is a nuclease with important roles in the regulation and initial resection of frank 

DSBs in collaboration with MRE11 [43,138]. However, MRE11 must be restrained from 

degrading reversed replication forks [72,139]. In the context of reversed forks CtIP has a 

nuclease (and MRE11) independent role that protects reversed forks from nucleolytic attack 

by DNA2 [140]. This CtIP function is even more important in cells with diminished fork 

protection due to BRCA1 defects, suggesting CtIP as a novel therapeutic target to augment 

genotoxic cancer therapy of tumors with BRCA1 defects [140]. In a recent study CtIP was 
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shown to be regulated by SUMOylation, a constitutive modification in S phase cells, and 

this modification was shown to be important for both CtIP roles in resection and in fork 

protection [141]. This raises the possibility of targeting the CtIP SUMO modification to 

augment cancer therapy.

EXO1, and DNA2 with its BLM cofactor, are responsible for extensive resection of frank 

DSB ends, exposing long ssDNA tracts that are first bound by RPA to trigger checkpoint 

responses as discussed above, before RPA is replaced by RAD51 for HR-mediated DSB 

repair. Resection also appears to be important at reversed replication forks to recruit RAD51, 

BRCA1/2 and other fork protection factors. At stressed forks cleaved by EEPD1, there is 

direct evidence that EEPD1 recruits EXO1 to ensure resection of the seDSB and accurate, 

HR-mediated fork restart [119]. Although Metnase doesn’t cleave stressed forks, it also 

recruits EXO1 to promote resection of seDSBs at cleaved forks [133]. There is as yet 

no direct evidence that MUS81 similarly recruits EXO1 and/or DNA2-BLM to seDSBs; 

if MUS81 lacks this function, this is another likely selective advantage provided by the 

late-evolving EEPD1 and Metnase proteins.

The SLX4 scaffold protein interacts with many proteins, including three structure-specific 

nucleases, MUS81-EME1, XPF-ERCC1, and SLX1. These complexes mediate a broad 

range of DNA transactions that promote genome stability [142]. The SLX1 structure-

specific nuclease with its SLX4 co-factor cleaves a variety of branched DNA structures 

in vitro, it contributes to genome stability by processing branched intermediates during HR, 

and it promotes inter-strand crosslink repair and telomere maintenance [142–144]. SLX4 

also associates with the XPF-ERCC1 structure-specific nuclease and like SLX1-SLX4, this 

complex also cleaves a variety of branched DNA structures in vitro [142]. XPF-ERCC1 are 

involved in nucleotide excision repair and inter-strand crosslink repair, and it was recently 

shown that XPF-ERCC1 is important for DSB repair by HR when substrates form secondary 

structures, such as AT-rich and G-quadraplex sequences [145]. Although these types of 

structures can arise during HR repair of frank DSBs and at stressed replication forks, the 

roles of SLX1 and XPF-ERCC1 in replication stress responses are poorly understood. A 

recent study implicated both XPF and Artemis (which has nucleolytic roles in cNHEJ) in 

rapid cleavage of stressed replication forks, although siRNA knockdown of XPF, Artemis, 

or both proteins had relatively minor effects on the speed and efficiency of replication fork 

restart [146].

XPG and FEN1 are flap endonucleases with roles in nucleotide excision repair and HR. In 

addition to its primary role in suppressing replication stress by repairing bulky lesions, XPG 

was shown to have a non-catalytic role in promoting HR through interactions with RAD51, 

BRCA1, BRCA2, and PALB2, and the HR defect in XPG-mutant cells causes genome 

instability and decreases fork restart after HU-induced replication stress [147]. FEN1, named 

for its flap endonuclease activity, also has 5′ exonuclease and gap endonuclease activities, 

and is involved in Okazaki fragment maturation, base excision repair, HR, and processing of 

stalled replication forks [148,149].
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8. Perspectives

Despite the major advances in molecular characterization of tumors that inform targeted 

cancer therapies, the majority of cancer patients still receive non-targeted, genotoxic 

chemo- or radiotherapy, and these genotoxins universally cause replication stress. This 

has stimulated drug development efforts to augment chemo- and radiotherapy with 

agents that block general DDR signaling, such as inhibitors of ATM and ATR [150–

152], as well as HR factors and replication stress nucleases (Table 1). Characterizing 

expression levels of MUS81, EEPD1, and Metnase may help illuminate tumor resistance 

to traditional therapeutics and inform personalized treatments, such as higher genotoxin 

doses to counteract the enhanced replication stress resistance associated with overexpression 

of these nucleases. Because of the central nature of DNA replication in cell division, 

replication stress responses also provide a rich environment for the development of targeted, 

synthetic lethal treatment strategies [34]. Increasing our understanding of DDR factors 

that specifically regulate replication responses, including the structure-specific nucleases 

discussed here, is likely to drive new approaches that exploit tumor dependence on specific 

replication stress response factors.

Acknowledgments:

We thank our colleagues in the Colorado State University College of Veterinary Medicine and Biomedical Science, 
and the University of Texas Health Sciences Center, San Antonio for many helpful discussions.

Funding:

Research in the Nickoloff lab was supported by NIH General Medical Sciences grant number R01 GM084020 
and American Lung Association grant number LCD-686552. Research in the Hromas lab was supported by NIH 
National Cancer Institute grant number R01 CA139429.

References

1. Löb D; Lengert N; Chagin VO; Reinhart M; Casas-Delucchi CS; Cardoso MC; Drossel B 3D 
replicon distributions arise from stochastic initiation and domino-like DNA replication progression. 
Nat. Commun 2016, 7, 11207. [PubMed: 27052359] 

2. Chagin VO; Casas-Delucchi CS; Reinhart M; Schermelleh L; Markaki Y; Maiser A; Bolius JJ; 
Bensimon A; Fillies M; Domaing P; et al. 4D Visualization of replication foci in mammalian cells 
corresponding to individual replicons. Nat. Commun 2016, 7, 11231. [PubMed: 27052570] 

3. IIyer DR; Rhind N The Intra-S Checkpoint Responses to DNA Damage. Genes 2017, 8, 74.

4. Sarmiento-Salinas FL; Perez-Gonzalez A; Acosta-Casique A; Ix-Ballote A; Diaz A; Trevino 
S; Rosas-Murrieta NH; Millán-Perez-Peña L; Maycotte P Reactive Oxygen Species: Role in 
Carcinogenesis, Cancer Cell Signaling and Tumor Progression. Life Sci. 2021, 284, 119942. 
[PubMed: 34506835] 

5. Tubbs A; Nussenzweig A Endogenous DNA Damage as a Source of Genomic Instability in Cancer. 
Cell 2017, 168, 644–656. [PubMed: 28187286] 

6. Nickoloff JA; Sharma N; Taylor L; Allen SJ; Hromas R The Safe Path at the Fork: Ensuring 
Replication-Associated DNA Double-Strand Breaks are Repaired by Homologous Recombination. 
Front. Genet 2021, 12.

7. Conti BA; Smogorzewska A Mechanisms of direct replication restart at stressed replisomes. DNA 
Repair 2020, 95, 102947. [PubMed: 32853827] 

8. Lyu X; Chastain M; Chai W Genome-Wide Mapping and Profiling of Gammah2ax Binding 
Hotspots in Response to Different Replication Stress Inducers. BMC Genom. 2019, 20, 579.

Nickoloff et al. Page 11

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Poggi L; Richard GF Alternative DNA Structures in Vivo: Molecular Evidence and Remaining 
Questions. Microbiol. Mol. Biol. Rev 2020, 85, e00110–e00120. [PubMed: 33361270] 

10. Spiegel J; Adhikari S; Balasubramanian S The Structure and Function of DNA G-Quadruplexes. 
Trends Chem. 2019, 2, 123–136.

11. Barlow JH; Faryabi RB; Callen E; Wong N; Malhowski A; Chen HT; Gutierrez-Cruz G; Sun HW; 
McKinnon P; Wright G; et al. Identification of Early Replicating Fragile Sites That Contribute to 
Genome Instability. Cell 2013, 152, 620–632. [PubMed: 23352430] 

12. Kaushal S; Freudenreich CH The role of fork stalling and DNA structures in causing chromosome 
fragility. Genes Chromosom. Cancer 2018, 58, 270–283.

13. Bochman ML; Paeschke K; Zakian VA DNA secondary structures: Stability and function of 
G-quadruplex structures. Nat. Rev. Genet 2012, 13, 770–780. [PubMed: 23032257] 

14. Gadaleta MC; Noguchi E Regulation of DNA Replication through Natural Impediments in the 
Eukaryotic Genome. Genes 2017, 8, 98.

15. Zeman MK; Cimprich KA Causes and consequences of replication stress. Nat. Cell Biol 2013, 16, 
2–9.

16. Cicconi A; Chang S Shelterin and the replisome: At the intersection of telomere repair and 
replication. Curr. Opin. Genet. Dev 2020, 60, 77–84. [PubMed: 32171974] 

17. Gaillard H; Garcia-Muse T; Aguilera A Replication stress and cancer. Nat. Cancer 2015, 15, 
276–289.

18. Santos-Pereira JM; Aguilera A R loops: New modulators of genome dynamics and function. Nat. 
Rev. Genet 2015, 16, 583–597. [PubMed: 26370899] 

19. Hamperl S; Bocek MJ; Saldivar JC; Swigut T; Cimprich KA Transcription-Replication Conflict 
Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 2017, 
170, 774–786. [PubMed: 28802045] 

20. Freudenreich CH R-loops: Targets for nuclease cleavage and repeat instability. Curr. Genet 2018, 
64, 789–794. [PubMed: 29327083] 

21. Ivessa A; Lenzmeier BA; Bessler JB; Goudsouzian LK; Schnakenberg SL; Zakian VA The 
Saccharomyces cerevisiae Helicase Rrm3p Facilitates Replication Past Nonhistone Protein-DNA 
Complexes. Mol. Cell 2003, 12, 1525–1536. [PubMed: 14690605] 

22. Billard P; A Poncet D Replication Stress at Telomeric and Mitochondrial DNA: Common Origins 
and Consequences on Ageing. Int. J. Mol. Sci 2019, 20, 4959.

23. Kotsantis P; Silva LM; Irmscher S; Jones R; Folkes L; Gromak N; Petermann E Increased global 
transcription activity as a mechanism of replication stress in cancer. Nat. Commun 2016, 7, 13087. 
[PubMed: 27725641] 

24. Bermejo R; Lai MS; Foiani M Preventing Replication Stress to Maintain Genome Stability: 
Resolving Conflicts between Replication and Transcription. Mol. Cell 2012, 45, 710–718. 
[PubMed: 22464441] 

25. Gómez-González B; Aguilera A Transcription-mediated replication hindrance: A major driver of 
genome instability. Genes Dev. 2019, 33, 1008–1026. [PubMed: 31123061] 

26. Hamperl S; Cimprich KA Conflict Resolution in the Genome: How Transcription and Replication 
Make It Work. Cell 2016, 167, 1455–1467. [PubMed: 27912056] 

27. Garcia-Muse T; Aguilera A Transcription–replication conflicts: How they occur and how they are 
resolved. Nat. Rev. Mol. Cell Biol 2016, 17, 553–563. [PubMed: 27435505] 

28. Minchell NE; Keszthelyi A; Baxter J Cohesin Causes Replicative DNA Damage by Trapping DNA 
Topological Stress. Mol. Cell 2020, 78, 739–751.e8. [PubMed: 32259483] 

29. Qiu S; Jiang G; Cao L; Huang J Replication Fork Reversal and Protection. Front. Cell Dev. Biol 
2021, 9, 670392. [PubMed: 34041245] 

30. Rickman K; Smogorzewska A Advances in understanding DNA processing and protection at 
stalled replication forks. J. Cell Biol 2019, 218, 1096–1107. [PubMed: 30670471] 

31. Chang HHY; Pannunzio NR; Adachi N; Lieber MR Non-homologous DNA end joining and 
alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol 2017, 18, 495–506. 
[PubMed: 28512351] 

Nickoloff et al. Page 12

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Scully R; Panday A; Elango R; Willis NA DNA double-strand break repair-pathway choice in 
somatic mammalian cells. Nat. Rev. Mol. Cell Biol 2019, 20, 698–714. [PubMed: 31263220] 

33. Toledo F Mechanisms Generating Cancer Genome Complexity: Back to the Future. Cancers 2020, 
12, 3783.

34. Nickoloff JA; Jones D; Lee S-H; Williamson EA; Hromas R Drugging the Cancers Addicted to 
DNA Repair. JNCI J. Natl. Cancer Inst 2017, 109, djx059.

35. Chatterjee N; Walker GC Mechanisms of DNA Damage, Repair, and Mutagenesis. Environ. Mol. 
Mutagen 2017, 58, 235–263. [PubMed: 28485537] 

36. Jossen R; Bermejo R The DNA damage checkpoint response to replication stress: A Game of 
Forks. Front. Genet 2013, 4, 26. [PubMed: 23493417] 

37. Hills SA; Diffley JF DNA Replication and Oncogene-Induced Replicative Stress. Curr. Biol 2014, 
24, R435–R444. [PubMed: 24845676] 

38. Primo LMF; Teixeira LK DNA replication stress: Oncogenes in the spotlight. Genet. Mol. Biol 
2020, 43, e20190138.

39. Kotsantis P; Petermann E; Boulton SJ Mechanisms of Oncogene-Induced Replication Stress: 
Jigsaw Falling into Place. Cancer Discov. 2018, 8, 537–555. [PubMed: 29653955] 

40. Cortez D Unwind and slow down: Checkpoint activation by helicase and polymerase uncoupling: 
Figure 1. Genes Dev. 2005, 19, 1007–1012. [PubMed: 15879550] 

41. Berti M; Cortez D; Lopes M The plasticity of DNA replication forks in response to clinically 
relevant genotoxic stress. Nat. Rev. Mol. Cell Biol 2020, 21, 633–651. [PubMed: 32612242] 

42. Daley JM; Niu H; Miller AS; Sung P Biochemical mechanism of DSB end resection and its 
regulation. DNA Repair 2015, 32, 66–74. [PubMed: 25956866] 

43. Symington LS Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. 
Mol. Biol 2016, 51, 195–212. [PubMed: 27098756] 

44. Zhao F; Kim W; Kloeber JA; Lou Z DNA end resection and its role in DNA replication and DSB 
repair choice in mammalian cells. Exp. Mol. Med 2020, 52, 1705–1714. [PubMed: 33122806] 

45. Yazinski SA; Zou L Functions, Regulation, and Therapeutic Implications of the ATR Checkpoint 
Pathway. Annu. Rev. Genet 2016, 50, 155–173. [PubMed: 27617969] 

46. Shiotani B; Nguyen HD; Håkansson P; Maréchal A; Tse A; Tahara H; Zou L Two Distinct Modes 
of ATR Activation Orchestrated by Rad17 and Nbs1. Cell Rep. 2013, 3, 1651–1662. [PubMed: 
23684611] 

47. Haahr P; Hoffmann S; Tollenaere M; Ho T; Toledo L; Mann M; Bekker-Jensen S; Räschle M; 
Mailand N Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat. Cell Biol 2016, 
18, 1196–1207. [PubMed: 27723717] 

48. Blackford AN; Jackson SP ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA 
Damage Response. Mol. Cell 2017, 66, 801–817. [PubMed: 28622525] 

49. Shibata A; Jeggo PA ATM’s Role in the Repair of DNA Double-Strand Breaks. Genes 2021, 12, 
1370. [PubMed: 34573351] 

50. Saldivar JC; Cortez D; Cimprich KA The Essential Kinase ATR: Ensuring Faithful Duplication of 
a Challenging Genome. Nat. Rev. Mol. Cell Biol 2017, 18, 622–636. [PubMed: 28811666] 

51. Liu S; Opiyo SO; Manthey K; Glanzer JG; Ashley AK; Amerin C; Troksa K; Shrivastav M; 
Nickoloff JA; Oakley GG Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and 
checkpoint activation in response to replication stress. Nucleic Acids Res. 2012, 40, 10780–10794. 
[PubMed: 22977173] 

52. Anantha RW; Vassin VM; Borowiec JA Sequential and Synergistic Modification of Human 
RPA Stimulates Chromosomal DNA Repair. J. Biol. Chem 2007, 282, 35910–35923. [PubMed: 
17928296] 

53. Olson E; Nievera CJ; Klimovich V; Fanning E; Wu X RPA2 Is a Direct Downstream Target for 
ATR to Regulate the S-phase Checkpoint. J. Biol. Chem 2006, 281, 39517–39533. [PubMed: 
17035231] 

54. Maréchal A; Zou L RPA-coated single-stranded DNA as a platform for post-translational 
modifications in the DNA damage response. Cell Res. 2014, 25, 9–23. [PubMed: 25403473] 

Nickoloff et al. Page 13

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



55. Zuazua-Villar P; Ganesh A; Phear G; Gagou ME; Meuth M Extensive RPA2 hyperphosphorylation 
promotes apoptosis in response to DNA replication stress in CHK1 inhibited cells. Nucleic Acids 
Res. 2015, 43, 9776–9787. [PubMed: 26271993] 

56. Vassin VM; Anantha RW; Sokolova E; Kanner S; Borowiec JA Human RPA phosphorylation by 
ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. 
J. Cell Sci 2009, 122, 4070–4080. [PubMed: 19843584] 

57. Soniat MM; Myler LR; Kuo H-C; Paull TT; Finkelstein IJ RPA Phosphorylation Inhibits DNA 
Resection. Mol. Cell 2019, 75, 145–153.e5. [PubMed: 31153714] 

58. Patrick SM; Oakley GG; Dixon K; Turchi JJ DNA Damage Induced Hyperphosphorylation 
of Replication Protein A. 2. Characterization of DNA Binding Activity, Protein Interactions, 
and Activity in DNA Replication and Repair. Biochemistry 2005, 44, 8438–8448. [PubMed: 
15938633] 

59. Oakley GG; Patrick SM; Yao J; Carty MP; Turchi JJ; Dixon K RPA Phosphorylation in 
Mitosis Alters DNA Binding and Protein–Protein Interactions. Biochemistry 2003, 42, 3255–3264. 
[PubMed: 12641457] 

60. Marechal A; Li JM; Ji XY; Wu CS; Yazinski SA; Nguyen HD; Liu S; Jimenez AE; Jin J; Zou L 
PRP19 Transforms into a Sensor of RPA-ssDNA after DNA Damage and Drives ATR Activation 
Via a Ubiquitin-Mediated Circuitry. Mol. Cell 2014, 53, 235–246. [PubMed: 24332808] 

61. Mishra AK; Dormi SS; Turchi AM; Woods DS; Turchi JJ Chemical inhibitor targeting the 
replication protein A–DNA interaction increases the efficacy of Pt-based chemotherapy in lung 
and ovarian cancer. Biochem. Pharmacol 2014, 93, 25–33. [PubMed: 25449597] 

62. Glanzer JG; Liu S; Wang L; Mosel A; Peng A; Oakley GG RPA Inhibition Increases Replication 
Stress and Suppresses Tumor Growth. Cancer Res. 2014, 74, 5165–5172. [PubMed: 25070753] 

63. Sadoughi F; Hallajzadeh J; Asemi Z; Mansournia MA; Alemi F; Yousefi B Signaling pathways 
involved in cell cycle arrest during the DNA breaks. DNA Repair 2021, 98, 103047. [PubMed: 
33454524] 

64. Brambati A; Zardoni L; Achar YJ; Piccini D; Galanti L; Colosio A; Foiani M; Liberi G Dormant 
origins and fork protection mechanisms rescue sister forks arrested by transcription. Nucleic Acids 
Res. 2017, 46, 1227–1239.

65. Courtot L; Hoffmann J-S; Bergoglio V The Protective Role of Dormant Origins in Response to 
Replicative Stress. Int. J. Mol. Sci 2018, 19, 3569.

66. Williams RM; Zhang X Roles of ATM and ATR in DNA double strand breaks and replication 
stress. Prog. Biophys. Mol. Biol 2021, 163, 109–119. [PubMed: 33887296] 

67. Parker MW; Botchan MR; Berger JM Mechanisms and regulation of DNA replication initiation in 
eukaryotes. Crit. Rev. Biochem. Mol. Biol 2017, 52, 107–144. [PubMed: 28094588] 

68. Mukherjee C; Tripathi V; Manolika EM; Heijink AM; Ricci G; Merzouk S; De Boer HR; 
Demmers J; Van Vugt MATM; Chaudhuri AR RIF1 promotes replication fork protection and 
efficient restart to maintain genome stability. Nat. Commun 2019, 10, 3287. [PubMed: 31337767] 

69. Bennett LG; Wilkie AM; Antonopoulou E; Ceppi I; Sanchez A; Vernon EG; Gamble A; Myers 
KN; Collis SJ; Cejka P; et al. MRNIP is a replication fork protection factor. Sci. Adv 2020, 6, 
eaba5974. [PubMed: 32832601] 

70. Lim KS; Li H; Roberts E; Gaudiano EF; Clairmont C; Sambel LA; Ponnienselvan K; Liu JC; 
Yang C; Kozono D; et al. USP1 Is Required for Replication Fork Protection in BRCA1-Deficient 
Tumors. Mol. Cell 2018, 72, 925–941.e4. [PubMed: 30576655] 

71. Rickman KA; Noonan RJ; Lach F; Sridhar S; Wang A; Abhyankar A; Huang A; Kelly M; 
Auerbach AD; Smogorzewska A Distinct roles of BRCA2 in replication fork protection in 
response to hydroxyurea and DNA interstrand cross-links. Genes Dev. 2020, 34, 832–846. 
[PubMed: 32354836] 

72. Schlacher K; Wu H; Jasin M A Distinct Replication Fork Protection Pathway Connects Fanconi 
Anemia Tumor Suppressors to RAD51-BRCA1/2. Cancer Cell 2012, 22, 106–116. [PubMed: 
22789542] 

73. Bhat K; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D RADX Modulates 
RAD51 Activity to Control Replication Fork Protection. Cell Rep. 2018, 24, 538–545. [PubMed: 
30021152] 

Nickoloff et al. Page 14

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Berti M; Teloni F; Mijic S; Ursich S; Fuchs J; Palumbieri MD; Krietsch J; Schmid J; Garcin EB; 
Gon S; et al. Sequential role of RAD51 paralog complexes in replication fork remodeling and 
restart. Nat. Commun 2020, 11, 1–12. [PubMed: 31911652] 

75. Tye S; Ronson GE; Morris JR A fork in the road: Where homologous recombination and 
stalled replication fork protection part ways. Semin. Cell Dev. Biol 2020, 113, 14–26. [PubMed: 
32653304] 

76. Tian T; Bu M; Chen X; Ding L; Yang Y; Han J; Feng X-H; Xu P; Liu T; Ying S; et al. 
The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome 
Stability. Mol. Cell 2020, 81, 198–211.e6. [PubMed: 33296677] 

77. Thangavel S; Berti M; Levikova M; Pinto C; Gomathinayagam S; Vujanovic M; Zellweger R; 
Moore H; Lee EH; Hendrickson EA; et al. DNA2 Drives Processing and Restart of Reversed 
Replication Forks in Human Cells. J. Cell Biol 2015, 208, 545–562. [PubMed: 25733713] 

78. Lemaçon D; Jackson J; Quinet A; Brickner JR; Li S; Yazinski S; You Z; Ira G; Zou L; 
Mosammaparast N; et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit 
MUS81-dependent fork rescue in BRCA2-deficient cells. Nat. Commun 2017, 8, 1–12. [PubMed: 
28232747] 

79. Mijic S; Zellweger R; Chappidi N; Berti M; Jacobs K; Mutreja K; Ursich S; Chaudhuri AR; 
Nussenzweig A; Janscak P; et al. Replication fork reversal triggers fork degradation in BRCA2-
defective cells. Nat. Commun 2017, 8, 859. [PubMed: 29038466] 

80. Rondinelli B; Gogola E; Yücel H; Duarte AA; Van De Ven M; Van Der Sluijs R; 
Konstantinopoulos PA; Jonkers J; Ceccaldi R; Rottenberg S; et al. EZH2 promotes degradation 
of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol 
2017, 19, 1371–1378. [PubMed: 29035360] 

81. Porebski B; Wild S; Kummer S; Scaglione S; Gaillard P-HL; Gari K WRNIP1 Protects Reversed 
DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage. iScience 2019, 21, 31–41. 
[PubMed: 31654852] 

82. Quinet A; Tirman S; Cybulla E; Meroni A; Vindigni A To skip or not to skip: Choosing repriming 
to tolerate DNA damage. Mol. Cell 2021, 81, 649–658. [PubMed: 33515486] 

83. Goodman MF; Woodgate R Translesion DNA Polymerases. Cold Spring Harb. Perspect. Biol 
2013, 5, a010363. [PubMed: 23838442] 

84. Ma X; Tang T; Guo C Regulation of translesion DNA synthesis in mammalian cells. Environ. Mol. 
Mutagen 2020, 61, 680–692. [PubMed: 31983077] 

85. Yekezare M; Gomez-Gonzalez B; Diffley JF Controlling DNA Replication Origins in Response to 
DNA Damage—Inhibit Globally, Activate Locally. J. Cell Sci 2013, 126, 1297–1306. [PubMed: 
23645160] 

86. Lehmann CP; Jiménez-Martín A; Branzei D; Tercero JA Prevention of unwanted recombination at 
damaged replication forks. Curr. Genet 2020, 66, 1045–1051. [PubMed: 32671464] 

87. Vaisman A; Woodgate R Translesion DNA Polymerases in Eukaryotes: What Makes Them Tick? 
Crit. Rev. Biochem. Mol. Biol 2017, 52, 274–303. [PubMed: 28279077] 

88. Fabre F; Chan A; Heyer WD; Gangloff S Alternate Pathways Involving Sgs1/Top3, Mus81/Mms4, 
and Srs2 Prevent Formation of Toxic Recombination Intermediates from Single-Stranded Gaps 
Created by DNA Replication. Proc. Natl. Acad. Sci. USA 2002, 99, 16887–16892. [PubMed: 
12475932] 

89. Interthal H; Heyer W-D MUS81 encodes a novel Helix-hairpin-Helix protein involved in the 
response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. J. Cell Biol 
2000, 263, 812–827.

90. Boddy MN; Gaillard PHL; McDonald WH; Shanahan P; Yates JR 3rd; Russell P Mus81-Eme1 
Are Essential Components of a Holliday Junction Resolvase. Cell 2001, 107, 537–548. [PubMed: 
11719193] 

91. Chen X-B; Melchionna R; Aliouat-Denis C-M; Gaillard P-H; Blasina A; Van de Weyer I; 
Boddy MN; Russell P; Vialard J; McGowan CH Human Mus81-Associated Endonuclease Cleaves 
Holliday Junctions In Vitro. Mol. Cell 2001, 8, 1117–1127. [PubMed: 11741546] 

Nickoloff et al. Page 15

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



92. Dehé PM; Coulon S; Scaglione S; Shanahan P; Takedachi A; Wohlschlegel JA; Yates JR 3rd; 
Llorente B; Russell P; Gaillard PH Regulation of Mus81-Eme1 Holliday Junction Resolvase in 
Response to DNA Damage. Nat. Struct. Mol. Biol 2013, 20, 598–603. [PubMed: 23584455] 

93. Naim V; Wilhelm T; Debatisse M; Rosselli F Ercc1 and Mus81-Eme1 Promote Sister Chromatid 
Separation by Processing Late Replication Intermediates at Common Fragile Sites During Mitosis. 
Nat. Cell Biol 2013, 15, 1008–1015. [PubMed: 23811686] 

94. Wyatt HD; Sarbajna S; Matos J; West SC Coordinated Actions of SLX1-SLX4 and MUS81-EME1 
for Holliday Junction Resolution in Human Cells. Mol. Cell 2013, 52, 234–247. [PubMed: 
24076221] 

95. Sarbajna S; Davies D; West SC Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding 
genome instability and mitotic catastrophe. Genes Dev. 2014, 28, 1124–1136. [PubMed: 
24831703] 

96. Amangyeld T; Shin Y-K; Lee M; Kwon B; Seo Y-S Human MUS81-EME2 can cleave a variety 
of DNA structures including intact Holliday junction and nicked duplex. Nucleic Acids Res. 2014, 
42, 5846–5862. [PubMed: 24692662] 

97. Pepe A; West SC MUS81-EME2 Promotes Replication Fork Restart. Cell Rep. 2014, 7, 1048–
1055. [PubMed: 24813886] 

98. Pepe A; West SC Substrate Specificity of the Mus81-Eme2 Structure Selective Endonuclease. 
Nucleic Acids Res. 2014, 42, 3833–3845. [PubMed: 24371268] 

99. Gao H; Chen X-B; McGowan CH Mus81 Endonuclease Localizes to Nucleoli and to Regions 
of DNA Damage in Human S-phase Cells. Mol. Biol. Cell 2003, 14, 4826–4834. [PubMed: 
14638871] 

100. Kramara J; Osia B; Malkova A Break-Induced Replication: The Where, the Why, and the How. 
Trends Genet. 2018, 34, 518–531. [PubMed: 29735283] 

101. Pardo B; Moriel-Carretero M; Vicat T; Aguilera A; Pasero P Homologous recombination and 
Mus81 promote replication completion in response to replication fork blockage. EMBO Rep. 
2020, 21, e49367. [PubMed: 32419301] 

102. Dendouga N; Gao H; Moechars D; Janicot M; Vialard J; McGowan CH Disruption of Murine 
Mus81 Increases Genomic Instability and DNA Damage Sensitivity but Does Not Promote 
Tumorigenesis. Mol. Cell. Biol 2005, 25, 7569–7579. [PubMed: 16107704] 

103. Xie S; Zheng H; Wen X; Sun J; Wang Y; Gao X; Guo L; Lu R MUS81 is associated with cell 
proliferation and cisplatin sensitivity in serous ovarian cancer. Biochem. Biophys. Res. Commun 
2016, 476, 493–500. [PubMed: 27255997] 

104. Zhong A; Zhang H; Xie S; Deng M; Zheng H; Wang Y; Chen M; Lu R; Guo L Inhibition of 
MUS81 improves the chemical sensitivity of olaparib by regulating MCM2 in epithelial ovarian 
cancer. Oncol. Rep 2018, 39, 1747–1756. [PubMed: 29393493] 

105. D’Andrea AD Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair 2018, 71, 
172–176. [PubMed: 30177437] 

106. Pommier Y; O’Connor MJ; de Bono J Laying a Trap to Kill Cancer Cells: Parp Inhibitors and 
Their Mechanisms of Action. Sci.Transl. Med 2016, 8, 362ps17.

107. Ho SSW; Zhang WYL; Tan NYJ; Khatoo M; Suter MA; Tripathi S; Cheung FSG; Lim WK; Tan 
PH; Ngeow J; et al. The DNA Structure-Specific Endonuclease MUS81 Mediates DNA Sensor 
STING-Dependent Host Rejection of Prostate Cancer Cells. Immunity 2016, 44, 1177–1189. 
[PubMed: 27178469] 

108. Lai X; Broderick R; Bergoglio V; Zimmer J; Badie S; Niedzwiedz W; Hoffmann JS; Tarsounas 
M Mus81 Nuclease Activity Is Essential for Replication Stress Tolerance and Chromosome 
Segregation in Brca2-Deficient Cells. Nat. Commun 2017, 8, 15983. [PubMed: 28714477] 

109. van Wietmarschen N; Sridharan S; Nathan WJ; Tubbs A; Chan EM; Callen E; Wu W; Belinky F; 
Tripathi V; Wong N; et al. Repeat expansions confer WRN dependence in microsatellite-unstable 
cancers. Nature 2020, 586, 292–298. [PubMed: 32999459] 

110. Calzetta NL; Besteiro MAG; Gottifredi V Mus81-Eme1–dependent aberrant processing of DNA 
replication intermediates in mitosis impairs genome integrity. Sci. Adv 2020, 6, eabc8257. 
[PubMed: 33298441] 

Nickoloff et al. Page 16

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



111. Epum EA; Haber JE DNA replication: The recombination connection. Trends Cell Biol. 2021, 32, 
45–57. [PubMed: 34384659] 

112. Özer Ö; Hickson ID Pathways for maintenance of telomeres and common fragile sites during 
DNA replication stress. Open Biol. 2018, 8, 180018. [PubMed: 29695617] 

113. Brower V Tracking Chemotherapy’s Effects on Secondary Cancers. JNCI J. Natl. Cancer Inst 
2013, 105, 1421–1422. [PubMed: 24052617] 

114. Kamran S; De Gonzalez AB; Ng A; Haas-Kogan D; Viswanathan AN Therapeutic radiation and 
the potential risk of second malignancies. Cancer 2016, 122, 1809–1821. [PubMed: 26950597] 

115. Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel 
B; Brantley A; et al. Eepd1 Rescues Stressed Replication Forks and Maintains Genome Stability 
by Promoting End Resection and Homologous Recombination Repair. PLoS Genet. 2015, 11, 
e1005675. [PubMed: 26684013] 

116. Sharma N; Speed MC; Allen CP; Maranon DG; Williamson E; Singh S; Hromas R; Nickoloff 
JA Distinct roles of structure-specific endonucleases EEPD1 and Metnase in replication stress 
responses. NAR Cancer 2020, 2, zcaa008. [PubMed: 32743552] 

117. Cortez D Proteomic Analyses of the Eukaryotic Replication Machinery. Methods Enzymol. 2017, 
591, 33–53. [PubMed: 28645376] 

118. Sirbu BM; Couch FB; Feigerle JT; Bhaskara S; Hiebert SW; Cortez D Analysis of Protein 
Dynamics at Active, Stalled, and Collapsed Replication Forks. Genes. Dev 2011, 25, 1320–1327. 
[PubMed: 21685366] 

119. Kim H-S; Nickoloff JA; Wu Y; Williamson EA; Sidhu GS; Reinert BL; Jaiswal AS; Srinivasan G; 
Patel B; Kong K; et al. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication 
Forks. J. Biol. Chem 2017, 292, 2795–2804. [PubMed: 28049724] 

120. Chun C; Wu Y; Lee S-H; Williamson EA; Reinert BL; Jaiswal AS; Nickoloff JA; Hromas RA 
The homologous recombination component EEPD1 is required for genome stability in response 
to developmental stress of vertebrate embryogenesis. Cell Cycle 2016, 15, 957–962. [PubMed: 
26900729] 

121. Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H 
New Evidence for Genome-Wide Duplications at the Origin of Vertebrates Using an Amphioxus 
Gene Set and Completed Animal Genomes. Genome Res. 2003, 13, 1056–1066. [PubMed: 
12799346] 

122. Kim H-S; Kim S-K; Hromas R; Lee S-H The Set Domain Is Essential for Metnase Functions in 
Replication Restart and the 5′ End of Ss-Overhang Cleavage. PLoS ONE 2015, 10, e0139418. 
[PubMed: 26437079] 

123. Kim H-S; Chen Q; Kim S-K; Nickoloff JA; Hromas R; Georgiadis MM; Lee S-K The Ddn 
Catalytic Motif Is Required for Metnase Functions in Nhej Repair and Replication Restart. J. 
Biol. Chem 2014, 289, 10930–10938. [PubMed: 24573677] 

124. Park S-J; Yoon B-H; Kim S-Y GENT2: An updated gene expression database for normal and 
tumor tissues. BMC Med Genom. 2019, 12, 1–8.

125. Puigvert JC; Sanjiv K; Helleday T Targeting DNA repair, DNA metabolism and replication stress 
as anti-cancer strategies. FEBS J. 2015, 283, 232–245. [PubMed: 26507796] 

126. Feng Z; Scott SP; Bussen W; Sharma GG; Guo G; Pandita TK; Powell SN Rad52 Inactivation 
Is Synthetically Lethal with Brca2 Deficiency. Proc. Natl. Acad. Sci. USA 2011, 108, 686–691. 
[PubMed: 21148102] 

127. Lok B; Carley AC; Tchang B; Powell SN RAD52 inactivation is synthetically lethal 
with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated 
homologous recombination. Oncogene 2012, 32, 3552–3558. [PubMed: 22964643] 

128. Hromas R; Kim H-S; Sidhu G; Williamson E; Jaiswal A; Totterdale TA; Nole J; Lee S-H; 
Nickoloff JA; Kong KY The endonuclease EEPD1 mediates synthetic lethality in RAD52-
depleted BRCA1 mutant breast cancer cells. Breast Cancer Res. 2017, 19, 122. [PubMed: 
29145865] 

129. Cordaux R; Udit S; Batzer MA; Feschotte C Birth of a Chimeric Primate Gene by Capture of the 
Transposase Gene from a Mobile Element. Proc. Natl. Acad. Sci. USA 2006, 103, 8101–8106. 
[PubMed: 16672366] 

Nickoloff et al. Page 17

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



130. De Haro LP; Wray J; Williamson EA; Durant ST; Corwin L; Gentry AC; Osheroff N; Lee S-H; 
Hromas R; Nickoloff JA Metnase promotes restart and repair of stalled and collapsed replication 
forks. Nucleic Acids Res. 2010, 38, 5681–5691. [PubMed: 20457750] 

131. Lee S-H; Oshige M; Durant ST; Rasila KK; Williamson EA; Ramsey H; Kwan L; Nickoloff 
JA; Hromas R The SET domain protein Metnase mediates foreign DNA integration and links 
integration to nonhomologous end-joining repair. Proc. Natl. Acad. Sci. USA 2005, 102, 18075–
18080. [PubMed: 16332963] 

132. Nickoloff JA; Sharma N; Taylor L; Allen SJ; Lee S-H; Hromas R Metnase and EEPD1: DNA 
Repair Functions and Potential Targets in Cancer Therapy. Front. Oncol 2022, 12.

133. Kim H-S; Williamson EA; Nickoloff JA; Hromas RA; Lee S-H Metnase Mediates Loading 
of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication 
Forks. J. Biol. Chem 2017, 292, 1414–1425. [PubMed: 27974460] 

134. Fnu S; Williamson EA; De Haro LP; Brenneman M; Wray J; Shaheen M; Radhakrishnan K; 
Lee S-H; Nickoloff JA;Hromas R Methylation of histone H3 lysine 36 enhances DNA repair 
by nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 2010, 108, 540–545. [PubMed: 
21187428] 

135. Williamson EA; Rasila KK; Corwin LK; Wray J; Beck BD; Severns V; Mobarak C; Lee 
S-H; Nickoloff JA; Hromas R The SET and transposase domain protein Metnase enhances 
chromosome decatenation: Regulation by automethylation. Nucleic Acids Res. 2008, 36, 5822–
5831. [PubMed: 18790802] 

136. Hromas R; Williamson EA; Fnu S; Lee Y-J; Park S-J; Beck BD; You J-S; Laitao A; Nickoloff JA; 
Lee S-H Chk1Phosphorylation of Metnase Enhances DNA Repair but Inhibits Replication Fork 
Restart. Oncogene 2012, 31, 4245–4254. [PubMed: 22231448] 

137. Williamson EA; Wu Y; Singh S; Byrne M; Wray J; Lee S-H; A Nickoloff J; Hromas R The DNA 
repair component Metnase regulates Chk1 stability. Cell Div. 2014, 9, 1. [PubMed: 25024738] 

138. Nimonkar AV; Genschel J; Kinoshita E; Polaczek P; Campbell JL; Wyman C; Modrich P; 
Kowalczykowski SC Blm-Dna2-Rpa-Mrn and Exo1-Blm-Rpa-Mrn Constitute Two DNA End 
Resection Machineries for Human DNA Break Repair. Genes Dev. 2011, 25, 350–362. [PubMed: 
21325134] 

139. Lyu X; Lei K; Sang PB; Shiva O; Chastain M; Chi P; Chai W Human CST complex protects 
stalled replication forks by directly blocking MRE11 degradation of nascent-strand DNA. EMBO 
J. 2020, 40, e103654. [PubMed: 33210317] 

140. Przetocka S; Porro A; Bolck HA; Walker C; Lezaja A; Trenner A; von Aesch C; Himmels 
SF; D’Andrea AD; Ceccaldi R; et al. Ctip-Mediated Fork Protection Synergizes with Brca1 to 
Suppress Genomic Instability Upon DNA Replication Stress. Mol. Cell 2018, 72, 568–582.e6. 
[PubMed: 30344097] 

141. Locke AJ; Hossain L; McCrostie G; A Ronato D; Fitieh A; Rafique TA; Mashayekhi F; 
Motamedi M; Masson J-Y; Ismail IH SUMOylation mediates CtIP’s functions in DNA end 
resection and replication fork protection. Nucleic Acids Res. 2021, 49, 928–953. [PubMed: 
33406258] 

142. Young SJ; West SC Coordinated roles of SLX4 and MutSβ in DNA repair and the maintenance of 
genome stability. Crit. Rev.Biochem. Mol. Biol 2021, 56, 157–177. [PubMed: 33596761] 

143. Payliss BJ; Patel A; Sheppard AC; Wyatt HDM Exploring the Structures and Functions of 
Macromolecular SLX4-Nuclease Complexes in Genome Stability. Front. Genet 2021, 12.

144. Guervilly J-H; Gaillard P-HL SLX4: Multitasking to maintain genome stability. Crit. Rev. 
Biochem. Mol. Biol 2018, 53, 475–514. [PubMed: 30284473] 

145. Li S; Lu H; Wang Z; Hu Q; Wang H; Xiang R; Chiba T; Wu X Ercc1/Xpf Is Important for 
Repair of DNA Double-Strand Breaks Containing Secondary Structures. iScience 2019, 16, 63–
78. [PubMed: 31153042] 

146. Bétous R; De Rugy TG; Pelegrini AL; Queille S; De Villartay J-P; Hoffmann J-S DNA 
replication stress triggers rapid DNA replication fork breakage by Artemis and XPF. PLoS Genet. 
2018, 14, e1007541. [PubMed: 30059501] 

Nickoloff et al. Page 18

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



147. Trego KS; Groesser T; Davalos AR; Parplys AC; Zhao W; Nelson M; Hlaing A; Shih B; Rydberg 
B; Pluth JM; et al. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous 
Recombination and Genome Stability. Mol. Cell 2016, 61, 535–546. [PubMed: 26833090] 

148. Zheng L; Zhou M; Chai Q; Parrish J; Xue D; Patrick SM; Turchi JJ; Yannone SM; Chen D; 
Shen B Novel function of the flap endonuclease 1 complex in processing stalled DNA replication 
forks. EMBO Rep. 2005, 6, 83–89. [PubMed: 15592449] 

149. Zheng L; Jia J; Finger LD; Guo Z; Zer C; Shen B Functional regulation of FEN1 nuclease and its 
link to cancer. Nucleic Acids Res. 2010, 39, 781–794. [PubMed: 20929870] 

150. Nickoloff JA; Taylor L; Sharma N; Kato TA Exploiting DNA Repair Pathways for Tumor 
Sensitization, Mitigation of Resistance, and Normal Tissue Protection in Radiotherapy. Cancer 
Drug Resist. 2014, 4, 244–263.

151. Carrassa L; Damia G DNA damage response inhibitors: Mechanisms and potential applications in 
cancer therapy. Cancer Treat.Rev 2017, 60, 139–151. [PubMed: 28961555] 

152. Jackson SP; Helleday T DNA REPAIR. Drugging DNA Repair. Science 2016, 352, 1178–1179. 
[PubMed: 27257245] 

153. Gavande NS; VanderVere-Carozza PS; Pawelczak KS; Vernon TL; Jordan MR; Turchi JJ 
Structure-Guided Optimization of Replication Protein a (Rpa)-DNA Interaction Inhibitors. ACS 
Med. Chem. Lett 2020, 11, 1118–1124. [PubMed: 32550990] 

154. Patrone JD; Waterson AG; Fesik SW Recent advancements in the discovery of protein–protein 
interaction inhibitors of replication protein A. MedChemComm 2016, 8, 259–267. [PubMed: 
30108742] 

155. Neher TM; Bodenmiller D; Fitch R; Jalal SI; Turchi JJ Novel Irreversible Small Molecule 
Inhibitors of Replication Protein A Display Single-Agent Activity and Synergize with Cisplatin. 
Mol. Cancer Ther 2011, 10, 1796–1806. [PubMed: 21846830] 

156. Dupre A; Boyer-Chatenet L; Sattler RM; Modi AP; Lee JH; Nicolette ML; Kopelovich L; Jasin 
M; Baer R; Paull TT; et al. A Forward Chemical Genetic Screen Reveals an Inhibitor of the 
Mre11-Rad50-Nbs1 Complex. Nat. Chem. Biol 2008, 4, 119–125. [PubMed: 18176557] 

157. Chow TY-K; A Alaoui-Jamali M; Yeh C; Yuen L; Griller D The DNA Double-Stranded Break 
Repair Protein Endo-Exonuclease as a Therapeutic Target for Cancer. Mol. Cancer Ther 2004, 3, 
911–919. [PubMed: 15299074] 

158. Wang Y-Y; Hung AC; Lo S; Hsieh Y-C; Yuan S-SF MRE11 as a molecular signature 
and therapeutic target for cancer treatment with radiotherapy. Cancer Lett. 2021, 514, 1–11. 
[PubMed: 34022282] 

159. Lin ZP; Ratner ES; Whicker ME; Lee Y; Sartorelli AC Triapine Disrupts Ctip-Mediated 
Homologous Recombination Repair and Sensitizes Ovarian Cancer Cells to Parp and 
Topoisomerase Inhibitors. Mol. Cancer Res 2014, 12, 381–393. [PubMed: 24413181] 

160. Kuster A; Mozaffari NL; Wilkinson OJ; Wojtaszek JL; Zurfluh C; Przetocka S; Zyla D; 
von Aesch C; Dillingham MS; Williams RS; et al. A stapled peptide mimetic of the CtIP 
tetramerization motif interferes with double-strand break repair and replication fork protection. 
Sci. Adv 2021, 7, eabc6381. [PubMed: 33608267] 

161. Kuo C-H; Leu Y-L; Wang T-H; Tseng W-C; Feng C-H; Wang S-H; Chen C-C A novel DNA 
repair inhibitor, diallyl disulfide (DADS), impairs DNA resection during DNA double-strand 
break repair by reducing Sae2 and Exo1 levels. DNA Repair 2019, 82, 102690. [PubMed: 
31479843] 

162. Liu W; Zhou M; Li Z; Li H; Polaczek P; Dai H; Wu Q; Liu C; Karanja KK; Popuri V; 
et al. A Selective Small, Olecule Dna2 Inhibitor for Sensitization of Human Cancer Cells to 
Chemotherapy. EBioMedicine 2016, 6, 73–86. [PubMed: 27211550] 

163. Kumar S; Peng X; Daley J; Yang L; Shen J; Nguyen N; Bae G; Niu H; Peng Y; Hsieh H-J; et al. 
Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. 
Oncogenesis 2017, 6, e319. [PubMed: 28414320] 

164. Chen X; Ali IY; EL Fisher C; Arribas-Bosacoma R; Rajasekaran MB; Williams G; Walker S; 
Booth JR; Hudson JJ; Roe SM; et al. Uncovering an allosteric mode of action for a selective 
inhibitor of human Bloom syndrome protein. eLife 2021, 10.

Nickoloff et al. Page 19

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



165. Nguyen GH; Dexheimer TS; Rosenthal AS; Chu WK; Singh DK; Mosedale G; Bachrati CZ; 
Schultz L; Sakurai M; Savitsky P; et al. A Small Molecule Inhibitor of the BLM Helicase 
Modulates Chromosome Stability in Human Cells. Chem. Biol 2013, 20, 55–62. [PubMed: 
23352139] 

166. Yin Q-K; Wang C-X; Wang Y-Q; Guo Q-L; Zhang Z-L; Ou T-M; Huang S-L; Li D; Wang 
H-G; Tan J-H; et al. Huang. Discovery of Isaindigotone Derivatives as Novel Bloom’s Syndrome 
Protein (BLM) Helicase Inhibitors That Disrupt the BLM/DNA Interactions and Regulate the 
Homologous Recombination Repair. J. Med. Chem 2019, 62, 3147–3162. [PubMed: 30827110] 

167. Datta A; Brosh RM Jr. New Insights Into DNA Helicases as Druggable Targets for Cancer 
Therapy. Front. Mol. Biosci 2018, 5,59. [PubMed: 29998112] 

168. Budke B; Lv W; Kozikowski AP; Connell PP Recent Developments Using Small Molecules to 
Target RAD51: How to Best Modulate RAD51 for Anticancer Therapy? ChemMedChem 2016, 
11, 2468–2473. [PubMed: 27781374] 

169. King HO; Brend T; Payne HL; Wright A; Ward T; Patel K; Egnuni T; Stead LF; Patel A; Wurdak 
H; et al. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem 
Cell Rep. 2017, 8, 125–139.

170. Balbous A; Cortes U; Guilloteau K; Rivet P; Pinel B; Duchesne M; Godet J; Boissonnade O; 
Wager M; Bensadoun RJ; et al. A radiosensitizing effect of RAD51 inhibition in glioblastoma 
stem-like cells. BMC Cancer 2016, 16, 1–13.

171. Pastushok L; Fu Y; Lin L; Luo Y; DeCoteau JF; Lee K; Geyer CR A Novel Cell-Penetrating 
Antibody Fragment Inhibits the DNA Repair Protein RAD51. Sci. Rep 2019, 9, 11227. [PubMed: 
31375703] 

172. Turchick A; Hegan DC; Jensen RB; Glazer PM A cell-penetrating antibody inhibits human 
RAD51 via direct binding. Nucleic Acids Res. 2017, 45, 11782–11799. [PubMed: 29036688] 

173. Turchick A; Liu Y; Zhao W; Cohen I; Glazer PM Synthetic lethality of a cell-penetrating 
anti-RAD51 antibody in PTEN-deficient melanoma and glioma cells. Oncotarget 2019, 10, 
1272–1283. [PubMed: 30863489] 

174. Ngo ST; Van Vu V; Phung HTT Computational investigation of possible inhibitors of the winged-
helix domain of MUS81. J. Mol. Graph. Model 2020, 103, 107771. [PubMed: 33340918] 

175. Williamson EA; Damiani L; Leitao A; Hu C; Hathaway H; Oprea T; Sklar L; Shaheen M; 
Bauman J; Wang W; et al. Targeting the Transposase Domain of the DNA Repair Component 
Metnase to Enhance Chemotherapy. Cancer Res. 2012, 72, 6200–6208. [PubMed: 23090115] 

176. Arora S; Heyza J; Zhang H; Kalman-Maltese V; Tillison K; Floyd AM; Chalfin EM; Bepler G; 
Patrick SM Identification of small molecule inhibitors of ERCC1-XPF that inhibit DNA repair 
and potentiate cisplatin efficacy in cancer cells. Oncotarget 2016, 7, 75104–75117. [PubMed: 
27650543] 

177. McNeil EM; Astell KR; Ritchie A-M; Shave S; Houston DR; Bakrania P; Jones HM; Khurana P; 
Wallace C; Chapman T; et al. Inhibition of the ERCC1–XPF structure-specific endonuclease to 
overcome cancer chemoresistance. DNA Repair 2015, 31, 19–28. [PubMed: 25956741] 

Nickoloff et al. Page 20

DNA (Basel). Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Replication Protein A (RPA) roles in replication stress responses. (A) RPA is a heterotrimer 

with 14, 32, and 70 kDa subunits, each with single strand DNA (ssDNA) binding domains 

called OB (oligonucleotide binding) folds. (B) Diagram of a replication fork in which the 

leading strand DNA polymerase is blocked and decouples from the MCM helicase, creating 

ssDNA that is bound by RPA. ATRIP recognition of ssDNA-RPA recruits and activates 

ATR. (C) Crosstalk among phosphatidyl inositol 3′ kinase-related kinases (PIKKs) and 

cyclin dependent kinase (CDK) for phosphorylation of serine and threonine residues in the 

N-terminus of RPA32. The width of each arrow is proportional to the role that each PIKK 

plays in phosphorylating specific RPA32 residues. Phosphorylated RPA32 residues prime 

phosphorylation of other residues, indicated by arrows below.
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Figure 2. 
Replication fork protection and restart. (A) Replication forks blocked by a DNA lesion (red 

star), or stalled by polymerase inhibitors or hydroxyurea, may reverse to a chicken foot, in 

two steps as shown. RAD51, BRCA2 and other factors protect the seDSB of the reversed 

fork from nucleolytic attack. Reversed forks may be restarted by RECQ1-mediated branch 

migration, or by RAD51-mediated strand invasion. (B) MUS81-EME1 cleaves four-way 

Holiday junctions, 3′ flaps, and stalled replication forks, which causes fork collapse to a 

seDSB. MUS81-EME2 cleaves stalled forks to create seDSBs. (C) seDSBs at collapsed 

replication forks are resected to expose ssDNA which is bound by RAD51 to catalyze 

HR-mediated fork restart, analogous to break-induced replication (BIR).
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Figure 3. 
Distinct mechanisms of fork cleavage by MUS81 and EEPD1. (Left) The 3′ MUS81 

nuclease cleaves the leading template strand, producing a seDSB that must be resected to 

load RAD51. This strand is forced to invade the lagging strand duplex, but strand invasion 

and reestablishment of the fork may be obstructed if the invasion occurs in the region of 

immature Okazaki fragments. Fork restart may be delayed until further resection allows 

invasion into a region with fully mature Okazaki fragments, and/or by delaying invasion 

until maturation is complete. (Right) By cleaving the lagging strand template, EEPD1 

avoids this problem as invasion will always occur in the continuous leading strand duplex.
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Table 1.

Functions and inhibitors of key replication stress nucleases and co-factors.

Protein Biochemical Activities Biological Functions Inhibitor 
References

RPA Binds ssDNA, ATRIP, and itself
DNA replication and repair; activates ATR through ATRIP 

binding to RPA-bound ssDNA; replaced by RAD51 on 
ssDNA during HR

[61,62,153–155]

MRE11 DSB end binding, 3′–5′ 
exonuclease, endonuclease

Early DSB sensor, ATM activation, promotes cNHEJ, 
initiates resection for HR [156–158]

CtIP Endonuclease Promotes limited resection by MRE11 [159,160]

EXO1 5′–3′ exonuclease Extensive end resection [161] *

DNA2 5′–3′ exonuclease Extensive end resection [162,163]

BLM 3′–5′ helicase Unwinds DNA structures during HR, promotes resection by 
DNA2 [164–167]

RAD51 Strand invasion (recombinase) Binds dsDNA, ssDNA and itself, catalyzes HR [168–173]

MUS81-EME2 3′ structure specific endonuclease Cleaves stalled forks, promotes fork restart [174]

EEPD1 5′ structure specific endonuclease Cleaves stalled forks, promotes fork restart and fork 
resection by EXO1 None

†

Metnase 5′ structure specific endonuclease, 
protein methylase

Cleaves stalled forks, promotes fork restart and fork 
resection by EXO1 [175]

SLX1-SLX4 5′ structure specific endonuclease Cleaves branched structures, promotes HR, crosslink repair, 
and telomere maintenance None 

†

XPF-ERCC1 5′ structure specific endonuclease Nucleotide excision repair, inter-strand crosslink repair, HR 
(replication stress?) [176,177]

*
EXO1 activity inhibited indirectly by diallyl disulfide through reduced protein levels.

†
These proteins have been inhibited by using siRNA knockdown.
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