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ABSTRACT
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most 

common form of dementia. Patients typically present with neuro- and systemic 
inflammation and iron dysregulation, associated with oxidative damage that reflects 
in hypercoagulability. Hypercoagulability is closely associated with increased 
fibrin(ogen) and  in AD patients fibrin(ogen) has been implicated in the development 
of neuroinflammation and memory deficits. There is still no clear reason precisely why 
(a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) 
could together lead to the loss of neuronal structure and cognitive function. Here 
we suggest an alternative hypothesis based on previous ultrastructural evidence 
of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue 
that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) 
of Gram-negative strains, might be the cause of the continuing and low-grade 
inflammation, characteristic of AD. Here, we follow an integrated approach, by 
studying the viscoelastic and ultrastructural properties of AD plasma and whole blood 
by using scanning electron microscopy, Thromboelastography (TEG®) and the Global 
Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close 
proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state 
in AD. TEG® results where LPS was added to naive blood showed the same trends as 
were found with the AD patients, while the GTT® results (where only platelet activity 
is measured), were not affected by the added LPS, suggesting that LPS does not 
directly impact platelet function. Our findings reinforce the importance of further 
investigating the role of LPS in AD.

INTRODUCTION

Alzheimer-type dementia (AD) is a 
neurodegenerative disorder and the most common form 
of dementia [1-3]. Dementia is a syndrome applied to a 
group of symptoms that can be caused by a variety of 
conditions, the most common of which is Alzheimer’s 
disease; unfortunately, due in part to this ambiguity, the 
aetiology of AD is not well understood [4]. The onset 

and risk of -development is still mostly unexplained, and 
only very partially so by genetic factors [4]. Today AD is 
the largest unmet medical need in neurology [5-7], and 
is a condition characterized by neuroinflammation [8, 
9]. Neuroinflammation is a multi-faceted and complex 
phenomenon where the precise mechanisms have not 
been completely elucidated [10], but where activated 
astrocytes and microglia are usually the trigger in the 
neuroinflammatory process. They become reactive in 
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response to virtually all pathological situations in the brain 
such as axotomy (neuritic dystrophy), ischemia, infection, 
and existing neurodegenerative diseases [11-15]. 

In this paper, we discuss the factors involved 
in systemic inflammation and show that they are also 
typically prevalent in neuroinflammation. We focus 
specifically on literature that shows a changed iron profile, 
increased fibrinogen levels and oxidative stress; these 

have each been implicated in a typical hypercoagulable 
(thrombotic) state, but are also present in AD (the literature 
is discussed fully in the different sections). Figure 1 
shows the layout of this paper, where the focus is on 3 
main characteristics of AD, namely (1) neuroinflammation 
(2) systemic inflammation and (3) oxidative stress. We 
briefly discuss specific changes in brain morphology 
(A) and shared inflammatory mediators between 

Figure 1: Alzheimer-type dementia (AD) and three of its main characteristics (1) neuroinflammation (2) systemic 
inflammation and (3) oxidative stress, where A. involves specific changes in brain morphology and B. shows shared inflammatory 
mediators between neuroinflammation and systemic inflammation (with special reference to a changed iron profile) and C. factors that are 
typically implicated in systemic inflammation, but that have an impact on the brain. The three main characteristics are affected by and also 
result in (4) hypercoagulation, which we can measure using electron microscopy and viscoelastic techniques. We conclude by discussing 
how the presence of a dormant blood microbiome, and in particular the lipopolysaccharides (LPS) and other cell wall materials that they 
can shed, may be central to the hypercoagulable/neuroinflammatory state in this condition.
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neuroinflammation and systemic inflammation (B) (with 
special reference to a changed iron profile). Factors that 
are typically implicated in systemic inflammation, but 
that have an impact on the brain (C) are then examined. 
We then consider how the three main characteristics are 
affected by and also result in (4) hypercoagulation and how 
we can measure this by using electron microscopic and 
viscoelastic techniques. Lastly, we conclude by discussing 
possible reasons for this hypercoagulability in AD, and we 
discuss that the presence of a dormant blood microbiome, 
and in particular the lipopolysaccharides (LPS) that they 
can shed, may be central to the hypercoagulable state in 
this condition [16, 17]. 

NEUROINFLAMMATION AND THE 
IRON LINK

The next paragraphs will briefly discuss presentation 
of neuroinflammation and the involvement of iron and its 
accompanying oxidative damage in AD etiology. We will 
make the link between the presence of hypercoagulability 
in AD and oxidative damage, changed iron levels and 
inflammation (both neuro- and systemic inflammation).

The hallmarks of dementia in AD, as well as the 
severity and state of neurodegeneration, are closely 
linked to the presence of tau phosphorylation, amyloid-β 
peptide aggregation, neurofibrillary tangle formation, 
neuroinflammation, and neurodegeneration [18, 19]. If we 
look closely at the presentation of AD, it is characterized by 
brain lesions known as intracellular neurofibrillary tangles 
and extracellular neuritic plaques surrounded by activated 
astrocytes and microglia [20]. The neurofibrillary tangles 
consist of paired helical filaments of truncated tau protein 
that is abnormally hyperphosphorylated [21, 22]. The 
main component in the plaques is the amyloid-β peptide 
[1, 23], though its role in the actual disease pathology is 
more than questionable [24]. The brain lesions in AD are 
also characterized by the presence of a broad spectrum 
of inflammatory mediators (complement proteins, 
inflammatory cytokines, prostaglandins, and acute phase 
reactants such as C-reactive protein and amyloid P) [25, 
26]. Resident brain cells, including neurons produce these 
mediators [27, 28]. Neuroinflammation is therefore key in 
AD [26, 28-33]. Central to this neuroinflammation in AD 
is the involvement of iron and its accompanying oxidative 
damage in AD etiology [34-48]. Oxidative damage is 
one of the earliest pathological changes in AD, and the 
aberrant redox activity is therefore also among the earliest 
changes in the transition to the disease state [49]. Note that 
as long ago as 1991 it was shown that chelators of free 
iron improved cognitive function in AD sufferers [40, 50]. 

OXIDATIVE DAMAGE, 
IRON, INFLAMMATION AND 
HYPERCOAGULABILITY

Oxidative damage, increased iron levels and 
inflammation are all linked to the development of 
hypercoagulability [51-58]. Increased fibrin(ogen) 
levels have also been noted in hypercoagulation [53, 59-
65] and this is also observed in blood vessels positive 
for amyloid in mouse and human AD samples [66]. 
Fibrinogen extravasation in the AD brain has also been 
noted [67]. Thus, fibrin(ogen) may play an important 
role in AD etiology as it has been implicated in the 
neuroinflammation, neurovascular damage, blood-brain 
barrier permeability, vascular amyloid deposition, and 
memory deficits, all of which are associated with AD [68]. 
Increased fibrinogen levels in AD are therefore a strong 
cerebrovascular risk factor in these patients, as fibrinogen 
specifically binds to β-amyloid, thereby altering fibrin clot 
structure and delaying clot degradation [69]. However, 
there is currently no evidence regarding the extent to 
which delayed clot degeneration might contribute to AD.

Thrombosis, and therefore hypercoagulation, 
is typically associated with increased levels of 
fibrin(ogen) [58, 70, 71]. A changed iron profile (e.g. 
low transferrin and/or high serum ferritin) is also central 
to thrombosis and hypercoagulation [38, 58, 72-79] and 
iron dysregulation is heavily implicated in AD [38, 80]. 
Changes in fibrin fibre structure (due to hypercoagulation 
and a changed iron profile) can be visualized using various 
ultramicroscopy techniques [54, 58, 81-86]. In addition, 
these changes might be correlated with results from 
viscoelastic techniques like thromboelastography (TEG®) 
[52, 79, 85, 87, 88]. Figure 2 shows how the intrinsic and 
extrinsic coagulation process causes fibrin fibre formation 
under normal conditions, and how fibrin fibre formation is 
changed under the influence of a changed (aberrant) iron 
profile, whether by generating hydroxyl radicals (resulting 
in oxidative stress, and also during systemic inflammation) 
[89] or by electrostatic means [57, 58].

LINK BETWEEN A 
HYPERCOAGULABLE STATE, IRON 
DYSREGULATION, CHANGES IN FIBRIN 
FIBRE STRUCTURE AND A STERILE 
MICROBIOME

This said, there is still no clear reason precisely why 
(a) this hypercoagulable state, (b) iron dysregulation and 
(c) changes in fibrin fibre structure could together lead to 
the loss of neuronal structure and cognitive function in AD. 
The following paragraphs will discuss the link between (a 
to c) and a supposedly sterile blood microbiome. 

Recently, we showed (with ultrastructural 
microscopy techniques) that, in the “sterile” blood 
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Figure 2: Schematic representation of the intrinsic and extrinsic coagulation pathway and the conversion of soluble 
fibrinogen into insoluble polymers. Thrombin‘s action on fibrinogen results in the formation of fibrin strands (left insert) that are 
in time degradable with plasmin. By contrast, iron-induced dense matted deposits (right insert) are less degradable [89] - this is during 
normal blood coagulation. Iron-induced blood coagulation is seen as dense matted deposits under scanning electron microscopy and 
viscoelastically [85, 87, 88]. 



Oncotarget35288www.impactjournals.com/oncotarget

microbiome of AD patients, there are bacteria present, 
that we have suggested are normally dormant [16, 90]. 
Dormancy is in fact the norm in environmental and 
general microbiology [91, 92]. We note that there is a 
substantial literature implicating chronic infection [93-
97] as well as the gastrointestinal tract microbiome in 
AD [98-100]. In particular, periodontal disease related 
pathogens and their inflammatory products have been 
shown to contribute to, or at least to accompany, systemic 
inflammation and the pathogenesis of AD [93, 101-105]. 
Particularly, periodontal pathogens Porphyromonas 
gingivalis, Tannerella forsythia, and Treponema denticola 
have been implicated in the development of AD [106, 
107]. Infections with Herpes simplex virus type 1 [97], 
picornavirus, Borna disease virus, Chlamydia pneumoniae, 
Helicobacter pylori, and spirochetes [96, 108] and 
pathogens causing urinary tract infections [94, 109-111] 
are also implicated and co-occurring in AD. 

Recently, immunoblotting demonstrated bands 
corresponding to lipopolysaccharides (LPS) (also 
known as endotoxin), produced or shed by P. gingivalis 
in 40% of AD brain specimens [107]. Indeed, there is 
evidence that bacterial endotoxins are directly involved 
in the inflammatory and pathological processes associated 
with AD [112]. Interestingly, it has been observed that 
chronic infusion of the bacterial LPS, the outer cell wall 
component of Gram negative bacteria, into the fourth brain 
ventricle of rats reproduces many of the inflammatory 

and pathological features seen in the brain of AD patients 
[112]. Apolipoprotein E (ApoE) is an intermediate-density 
lipoprotein that is essential for the normal catabolism 
of triglyceride-rich lipoprotein constituents. It also 
transports cholesterol (its primary function), and regulates 
amyloid-β (Aβ) metabolism, aggregation, and deposition 
[113]. Interestingly, LPS may disturb the typically anti-
inflammatory effect of ApoE. ApoE function is known 
to be down-regulated in AD patients [114, 115], and 
carrying the ApoE4 allele increases risk of Alzheimer’s 
disease [113, 116, 117]. The down-regulating effect on 
ApoE by LPS was also seen in an animal model [118]. 
Furthermore, LPS is used in animal models to induce 
AD-like symptoms, as well as neuroinflammation [119, 
120], as well as Parkinson’s disease-like symptoms 
[17, 121-128]. Recently it was also noted that LPS can 
produce myelin injury and plaque-like aggregates of 
myelin in mice, and amyloid-β and amyloid-β protein 
precursor co-localize with these myelin aggregates. 
Cortical amyloid plaques also co-localized with myelin 
aggregates [129]. Following LPS injection, Alzheimer-like 
amyloidogenic axonal pathology also occur in the normal 
mammalian brain in partnership with neuroinflammation 
[130], and LPS is associated with the development of 
neuroinflammation in animals [130], as well as in primary 
culture neuroinflammatory models [131]. 

From the above, and other literature reviewed 
elsewhere [17, 132], there is ample evidence that LPS can 

Table 1: Thromboelastograph® parameters typically generated for whole blood and platelet poor 
plasma [153, 154].
THROMBOELASTIC PARAMETERS

R value: reaction time Minutes
Time of latency from start of test to 
initial fibrin formation (amplitude of 
2mm); i.e. initiation time

K: kinetics Minutes
Time taken to achieve a certain level of 
clot strength (amplitude of 20mm); i.e. 
amplification

Α (Alpha):  Angle (slope between the 
traces represented by R and K) Angle in degrees

The angle measures the speed at which 
fibrin build up and cross linking takes 
place, hence assesses the rate of clot 
formation; i.e. thrombin burst

MA: Maximal Amplitude mm
Maximum strength/stiffness of  clot. 
Represents the ultimate strength of the 
fibrin clot, i.e. overall stability of the 
clot

Maximum rate of thrombus generation 
(MRTG) Dyn.cm-2.s-1 The maximum velocity of clot growth 

observed
Time to maximum rate of thrombus 
generation (TMRTG) Minutes The time interval observed before the 

maximum speed of the clot growth

Total thrombus generation (TTG) Dyn.cm-2 

The clot strength: the amount of total 
resistance (to movement of the cup and 
pin) generated during clot formation.  
This is the total area under the velocity 
curve during clot growth representing 
the amount of clot strength generated 
during clot
growth
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cause neuroinflammation and amyloid-β formation. There 
is also evidence for the involvement of LPS in cognitive 
impairment in AD. For instance, 

• LPS is used to induce cognitive impairment in 
mice [120, 133].

• LPS induces stress and depression in late onset 
AD [134]. 

• Neuro-inflammation, amyloidogenesis and 

memory impairment in a mouse model is seen following 
the systemic inflammation generated by LPS [120].

• Intraperitoneal injection of LPS causes attention 
deficits [135] and severe and fluctuating cognitive deficits 
in 16-week ME7 mice [136].

Where does this bacteria/LPS argument lead us to? 
It is known that LPS can also cause hypercoagulation 
[137, 138]; this has been referred to as endotoxin-mediated 

Table 2: Demographics of participants, as well as iron levels, thromboelastography® (TEG®) of plasma, fibrin 
fiber thickness, and thromboelastography® (TEG®) and global thrombosis test (GTT®) of naïve blood of age-
matched controls (without dementia) and Alzheimer-type dementia (AD) patients, showing medians, standard 
deviation and p-values (values lower than 0.05 are indicated in blue) obtained using the Mann- Whitney U test.   

Variables Healthy individuals
(n = 20)

Alzheimer-type 
dementia individuals
(n = 40)

P-value
Confidence 
interval (95%) 
relative to 
median

AGE years 68.5 (±22.21) 79 (±11.8) 0.316 -4 to 21
GENDER
Male 6 (40%) 12 (30%)
Female 14 (60%) 28 (70%)
IRON PROFILES
Iron µM 18.8 (± 5.74) 13.55 (±4.98) 0.0293 0.4 to 6.8
Transferrin g.L-1 2.55 (± 0.39) 2.11 (± 0.39) 0.0001 0.2 to 0.7
% Saturation 28 (± 10.32) 26 (± 9.95) 0.6543 -5 to 8
Serum Ferritin ng.mL-1 79 (±78.39) 99 (±128.84) 0.457 -59 to 21
THROMBOELASTOGRAPHY® OF PLATELET POOR PLASMA
MRTG 5.35 (± 2.83) 8.47 (± 4.82) 0.0013 1.21 to 4.79
TMRTG 9.46 (± 4.24) 7.79 (± 5.02) 0.0428 0.08 to 2.67
TTG 243.89 (± 85.66) 283.97 (± 116.51) 0.157 -97.47 to 16.3
R 7.2 (± 3.60) 6.2 (± 4.18) 0.122 -0.2 to 2
K 2.35 (± 0.73) 1.4 (± 4.23) 0.0015 0.3 to 1.2
Angle 66.85  (± 9.60) 74.05  (± 8.64) < 0.0001 -10.6 to -3.9
MA 32.7 (± 8.96) 36.1 (± 9.67) 0.15 -8.3 to 1.4
FIBRIN FIBRE 
THICKNESS n = 1000 n = 2000

Fibre thickness in nm 110 (±  33.8) 115 (±  44.18) <0.0001 6 to 12
TEG® RESULTS OF NAÏVE WHOLE BLOOD WITH AND WITHOUT ADDED LPS

Healthy Whole Blood
(n = 10)

Healthy Whole Blood 
with added LPS
(n = 10)

MRTG 2.42 (±  0.41) 2.835 (±  0.67) 0.404 -0.82 to 0.44
TMRTG 15.04 (±  2.98) 11.835 (± 1.92) 0.0003 1.66 to 6.25
TTG 605.21 (± 122.53) 620.89 (± 133.94) 0.739 -135.27 to 81.88
R 10.2 (± 1.01) 7.1 (± 1.82) 0.001 1.8 to 3.9
K 5.35 (± 1.08) 5 (± 1.28) 0.252 -0.6 to 1.7
ANGLE 44.8 (± 4.86) 49.1 (± 2.08) 0.085 -6.5 to 1.1
MA 53.65 (± 5.80) 55 (± 5.13) 0.616 -4.9 to 3.1
GTT® RESULTS OF NAÏVE WHOLE BLOOD WITH AND WITHOUT ADDED LPS

Healthy Whole Blood
(n = 10)

Healthy Whole Blood 
with added LPS
(n = 10)

OT 335.8 (± 80.96) 354.35  (± 73.66) 0.481 -101.8 to 49
LT 1576 (± 322.24) 1534.5 (± 155.19) 0.315 -93 to 369
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hypercoagulation [139]. There is substantial evidence in 
the literature that microbes have a prominent involvement 
in AD, but it seems that only a few researchers have 
taken the final step to suggest that such bacteria may 
actually cause or exacerbate AD (in the sense of “Koch’s 
postulates”) [96], and that shedding of LPS from the 
(dormant) blood microbiome may exacerbate or even 
cause the hypercoagulability seen in AD. Clearly the 
measurement of hypercoagulability is considerably easier 
than the estimation of cognitive function.

In the current paper we used scanning electron 
microscopy, together with viscoelastic techniques, to study 
whole blood and plasma in AD patients and compared the 
results with those of age- and gender-matched healthy 
individuals. We also studied iron profiles and general 
hematological parameters. Lastly, we simulated the effect 
of “physiological” levels of LPS, by adding it to healthy, 
uncitrated blood. We determine if LPS has an effect on 
platelets by using a novel technique called the Global 
Thrombosis Test (GTT) [140, 141]. This allows for the 
detection of thrombin generation by activated platelets, 
the major determinant of arterial thrombogenesis and 
measured endogenous (spontaneous) thrombolytic 
activity (http://www.globalthrombosis.com). Typical LPS 
concentrations in ‘normal’ whole blood in healthy subjects 
seem to be of the order of 10-15 ng.L-1 [17, 142, 143], 
while those of LBP are roughly 1,000,000 times greater at 
5-15 mg.L-1 (with both values increasing during sepsis). 
The exact significance of these numbers is not clear [17] 
as LPS is so hydrophobic that most is bound to the LPS-
binding protein or lipoproteins [144-146]. We also added 
LPS to naïve whole blood and measured coagulation 
parameters with the TEG®, to determine directly if added 
LPS causes hypercoagulability. If this were to be the case, 
it would imply that LPS can bind directly to fibrinogen. 

RESULTS 

Healthy individual and Alzheimer-type dementia 
patient data

Table 2 show demographics for healthy and AD 
individuals, iron profiles, and data for the TEG®, GTT® 
and SEM.

Literature suggests that normal values for serum iron 
are between 11.6 and 31.4 μmol.L-1 [158], for transferrin 
they are 2.2 - 3.7 g.L-1 [158], normal % saturation is 20-
50% [158], and serum ferritin for males are between 
25 - 300 μg.L-1 and females are between 25 - 200 μg.L-1 

[159]. However, values for normal ranges vary between 
pathology laboratories. Our values are therefore taken 
according to the values for South Africa (http://ampath.
co.za) and indicated in the table. In the current sample, 
the iron and transferrin showed significant differences 

between the healthy and AD population, with the 
transferrin for the AD individuals being mostly lower (see 
Table 2).

In our previous paper on the hematological system 
and systemic inflammation of AD, we reviewed the 
importance of increased iron, and particularly serum 
ferritin [160]. Results from the current AD sample show 
that both iron and transferrin levels were significantly 
different between the healthy and AD individuals. 
Transferrin is lowered in inflammation [72, 161], and is 
known as a “negative” acute-phase protein [161]; it is also 
decreased in in AD [162]. In the present sample most of 
the AD individuals have serum ferritin levels within the 
normal ranges for their genders.

Thromboelastography® results

The following parameters were all changed in the 
AD patients, and showed a significant difference between 
the healthy and AD individuals:

• Increased maximum rate of thrombus generation 
(MRTG), 

• Decreased time to maximum rate of thrombus 
generation (TMRTG) which is the time interval (s) 
observed before maximum velocity of clot growth,

• Shorter time taken to achieve final clot strength 
i.e. amplification (K) 

• as well as an increased Alpha or Angle 
representing the speed at which the fibrin build-up 
and crosslinking of the fibrinogen fibres takes place, or 
therefore to stabilize the clot.

The results are in line with a faster initial clot 
formation but and increased time to stabilize the clot in 
AD compared to controls.

Scanning electron microscopy (SEM) of whole 
blood and platelet poor plasma (PPP) results

Due to the observations that the viscoelastic 
properties of clot generation were significantly changed 
as judged using the TEG®, SEM was performed with both 
whole blood and PPP. Figure 3 shows SEM micrographs 
from whole blood and PPP of healthy individuals, while 
Figure 4 and 5 shows examples from AD individuals. 
Whole blood from healthy individuals typically shows 
discoid erythrocytes (RBCs), with platelets that are 
typically discoid, without pseudopodia and a few that 
are slightly activated, usually due to contact activation 
[53, 160, 163-165] (Figure 3A). This slight activation, 
with resulting pseudopodia formation, is due to contact 
activation [166]. This ultrastructure is in line with our 
database of thousands of micrographs from healthy 
individuals. Although, for the current study we used age- 
and gender-matched healthy individuals, there are not 
great variations between RBCs and fibrin networks of 
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young and old individuals when they are healthy. RBCs 
are typically discoid and fibrin fibres typically are seen as 
individual strands.

Figures 4 and 5 show extensive fibrin networks 
from whole blood and PPP for AD individuals. Recently 
we noted the presence of bacteria inside and around RBCs 
of AD patients [90]. Figure 4D also shows an example 
of an eryptotic erythrocyte. The term eryptosis is a type 
of suicidal death of erythrocytes, that was discovered 
recently. It is characterized by erythrocyte shrinkage, 
blebbing, and phospholipid scrambling of the cell 
membrane. For a detailed discussion on eryptosis see 
various publications by Lang and Quadri [167] [168] 
[169, 170]. Previously it was reported in AD, that Amyloid 
peptides may induce RBC eryptosis. 

In the current, newly collected samples we also 
found this phenomenon in whole blood of all individuals 
from our AD sample (Figure 4). Due to the descriptive 
nature of SEM analysis, any kind of exact estimation of 
bacterial numbers per volume blood is unfortunately not 
possible with this method. Platelets were overactivated 
and showed extreme spreading, as typically seen during 
systemic inflammation [166, 171, 172]. 

Due to the presence of (visible) bacteria in whole 
blood smears, (as seen with electron microscopy) from 
AD individuals and therefore potentially the presence of 

cell wall material that they shed, LPS may be one of the 
culprits, or at least contribute to the hypercoagulability in 
AD. 

Figure 5 shows fibrin fibre networks from two 
healthy individuals (A and B) and two AD individuals; the 
networks are created by adding thrombin to plasma. We 
also performed measurements on the fibrin fibre diameters 
using ImageJ (ImageJ is a public domain, Java-based 
image processing program developed at the National 
Institutes of Health: http://rsbweb.nih.gov/ij/); Table 
2 shows the median fibrin fibre diameter and statistical 
analysis for the healthy and AD individual fibrin fibres 
(see Figure 6). Previously we noted a significant difference 
in fibrin fibre thickness in a pilot study where we measured 
fibrin fibre thickness in platelet rich plasma (PRP) from 
AD patients with normal and high serum ferritin values 
[88]. With regard to median fibrin fibre width, the value 
for the healthy (younger) subjects was 105± 3 nm [58]. 
These measurements were taken on samples from younger 
individuals. The high ferritin AD group had a fibre width 
that was significantly higher than the normal ferritin AD 
group, with 34% less than the high ferritin group [88]. The 
current results showed that the median fiber thickness of 
older healthy individuals was 110 nm (± 34 nm) and the 
median AD fibre thickness was 115 nm (± 44 nm). There 
seems to be a linkage between fibre diameter and serum 

Figure 3: Whole blood smear showing a typical erythrocyte; Scale bar: 1 μm A.; two healthy platelets with slight pseudopodia 
formation; Scale bar: 300 nm B.; and an extensive fibrin network created by adding thrombin (58 nM thrombin final concentration with 
plasma) to platelet poor plasma; Scale bar: 1 μm C. 
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Figure 4: Whole blood smear showing erythrocyte and platelet interactions from Alzheimer-type dementia individuals, 
with bacterial presence A. to F. Hyperactivated platelets with spreading are shown in G. and H. White arrows show platelet spreading, 
indicative of inflammation and hyperactivation - this is known to happen in all inflammatory conditions; for a discussion on hyperactivation 
of platelets see [166]. Blue arrows show matted plasma/fibrin deposits. False yellow colouring was added to emphasize the presence of 
microbiota. Red block shows eryptotic erythrocyte. P shows partially intact but activated platelets, where spreading is starting happen, and 
white block surrounds such an activated platelet mass. Scale bars: 1 μm 
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ferritin levels, which were not different in the present 
samples.

GTT® and TEG® analysis with added LPS

Due to the presence of bacteria in the whole 
blood of AD individuals as seen in the SEM images, we 
simulated the potential presence of LPS in naïve whole 
blood from healthy individuals by adding it. A very low 
final concentration of 0.2 ng.L-1 caused a hypercoagulable 

state using the TEG® in naïve whole blood when the LPS 
was added. The TEG® measures the activity of the whole 
coagulation pathway. The following two parameters 
were significantly changed to a more hypercoagulable 
state in when LPS was added to the blood of the healthy 
individuals:

R value (reaction time in seconds) is shorter with 
added LPS, showing the time of latency from start of test 
to initial fibrin formation is decreased. 

Time to maximum rate of thrombus generation 
(TMRTG) is also shorter with added LPS, showing a 

Figure 5: Extensive fibrin networks from two healthy individuals (A and B) and from two Alzheimer-type dementia 
individuals (C and D) created by adding thrombin to platelet poor plasma. White arrow possibly shows LPS or coagulated 
plasma proteins, red arrow and red line shows thicker fibrin fiber. Scale bar: 1 μm 

Figure 6: Fibrin fibre thickness (nm) distribution width for both healthy A. and Alzheimer-type dementia individuals B.
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lowering of the time interval in seconds before maximum 
velocity of clot growth.

This suggests that added LPS causes quicker and 
firmer clot generation.

Results from the GTT® showed that added LPS did 
not have an effect on platelet shear force in the GTT® 
(seen Table 2). As mentioned previously, this GTT® test 
measures platelet reactivity (occlusion time, OT), where 
an OT of less than 300 seconds indicated platelet hyper-
reactivity, while one between 300 and 500 indicates 
normal haemostatic/platelet activity [140]. The median of 
the OT of the healthy individuals with and without added 
LPS were in the normal ranges, suggesting that LPS do 
not affect platelet activity. The GTT also shows the time 
to lyse (LT), and normal values are less than 2000 seconds. 
Table 2 shows the median for the healthy individuals are 
less than 2000 seconds, and that LPS does not cause low 
thrombotic activity.

One interpretation is that LPS possibly binds 
(due to its very lipophilic nature) to plasma proteins 
involved in the coagulation cascade, resulting in the 
hypercoagulability of naïve whole blood with added 
LPS. This is supported by the TEG® results. However, 
measuring OT and LT with the GTT, we see no significant 
changes between naïve whole blood with and without 
added LPS (see Table 2). This suggests that LPS does not 
affect platelet activity.

DISCUSSION

In the current sample we see that the following 
parameters were significantly different between healthy 
and Alzheimer-type dementia individuals:

• Iron (free, is less in AD)
• Transferrin (is less in AD)
• Maximum rate of thrombus generation (MRTG), 
• Time to maximum rate of thrombus generation 

(TMRTG) which is the time interval (s) observed before 
maximum velocity of clot growth,

• Time taken to achieve final clot strength i.e. 
amplification (K) 

• Alpha or Angle representing the speed at which 
the fibrin build-up and crosslinking of the fibrinogen fibres 
takes place.

• Fibrin fibre thickness
These results are indicative of increased 

coagulability in AD, suggesting structural changes in the 
physical fibrin fibre packaging. The presence of bacteria 
in whole blood in AD individuals, as seen with SEM as 
shown in this paper, suggest that LPS, known to be shed 
from (Gram-negative) bacterial membranes may play a 
role in the increased coagulability that is seen in AD PPP. 

We assessed coagulation of naive blood with and 
without LPS. TEG® of naïve healthy blood with added 
LPS showed that it was indeed the case that LPS affects 
coagulability, as both the

• R value and 
• Time to maximum rate of thrombus generation 

(TMRTG)
showed increased coagulability (due to a shorter 

time to maximum rate of thrombus generation) and also 
shorter initial clot formation, where R is also shorter 
with added LPS. This suggests that added LPS causes 
quicker and firmer clot generation. This is in line with 
the hypercoagulability seen in AD individuals. Due to 
the very variable and often unreliable currently available 
measurements for LPS in whole blood (for a review see 
[17], basal LPS levels were not measured in the samples. 
GTT, which measures only platelet activity, was not 
affected by the added LPS. These results suggest that LPS 
does not directly impact platelet function (at least in a 
controlled experimental environment).

LPS is known to induce inflammation via cytokine 
activation [173-175], and a characteristic of inflammation 
is almost always a hypercoagulatory state [58, 176-
183]. LPS may also cause hypercoagulation via tissue 
factor-(TF-) mediated activation of hemostasis in whole 
blood samples from adults and neonates [184]. TF is 
also a cytokine. We suggest that there is a third possible 
route of acute activation by directly binding to plasma 
proteins involved in the coagulation cascade to cause 
hypercoagulation. The results presented here support such 
an acute (fast) reaction. 

These results suggest that the clot in AD forms 
faster, resulting in a firmer clot, reflected in both a 
decreased time to clot formation and time to maximum 
firmness of clot. The reason for this changed fibrin 
structure may be due to a changed fibrinogen packaging 
during the clot formation, and this changed packaging may 
be due to the presence of LPS. Future work will seek to 
establish this directly.

MATERIALS AND METHODS

Volunteer details and blood collection

Blood samples were obtained from non-smoking 
Alzheimer-type dementia (AD) patients, identified by a 
Neurologist and under the care of a medical practitioner. 
Specifically, care was taken to exclude vascular dementia. 
We also recruited “healthy” age-matched individuals that 
did not smoke. It should be noted that the term “healthy” 
is used in this paper to describe an individual that has does 
not have dementia. Ethical clearance was obtained from 
the Health Sciences Ethical committee from the University 
of Pretoria, and informed consent was obtained from 
family members who act as carers of the patients. Healthy 
individuals also filled in consent forms. Blood was 
collected in two x 4mL citrate tubes, one EDTA tube, and 
one 4mL clotting tube for iron level determination. This 
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collection and all handling of samples were performed 
under very strictly aseptic conditions, in order to prevent 
any microbial contamination of samples. 

Statistical analysis

The non-parametric Mann-Whitney U test was 
adopted to determine P-values using the software 
StatsDirect (www.statsdirect.com). A p-value of less than 
0.05 was considered statistically significant (but cf. e.g. 
[147, 148]). 

Iron tests

Serum ferritin was measured by using the Bio-
Rad Laboratories’ QuantImune ferritin IRMA kit that is 
a single-incubation two-site immunoradiometric assay. 
In this IRMA, which measures the most basic isoferritin, 
the highly purified I-labeled antibody to ferritin is the 
tracer and the ferritin antibodies are immobilized on 
polyacrylamide beads as the solid phase. Transferrin was 
measured with the RayBio® Human Transferrin ELISA 
from RayBiotech. Serum iron was measured with the Iron 
Assay kit (Colorimetric assay). 

Viscoelastic tests using platelet poor plasma (PPP)

Coagulation parameters, using PPP of 
patients and healthy individuals, were done using 
thromboelastography® (TEG®). PPP was brought to room 
temperature and 340 µl was placed in a disposable cup in 
a computer-controlled TEG® hemostasis system (Model 
5000, Hemoscope, Niles, IL), with addition of 20 µl CaCl2 
as the last step to initiate clotting. Thrombelastographic 
data were collected until maximum elastic modulus (MG) 
is reached or 60 min had elapsed [79, 88, 149-152]. See 
Table 1 for the parameters that can be obtained when both 
plasma and whole blood are studied using the TEG®. 
TEG® is typically used to determine clot formation and 
clot strength [85]. 

Scanning electron microscopy (SEM) of whole 
blood and platelet poor plasma (PPP)

At least 30 minutes after the blood was collected, 
10 µl of whole blood were placed directly on a glass cover 
slip, fixed, dehydrated, dried, mounted and coated with 
carbon according to previously described methods [155]. 
Platelet poor plasma (PPP) were obtained and frozen 
at -80°C. After all samples were collected, PPP were 
thawed and 10 µl mixed with 5 µl thrombin to create an 
extensive fibrin network. A Zeiss ULTRA Plus FEG-SEM 
with InLens capabilities was used to study the surface 
morphology of erythrocytes, and micrographs were taken 

at 1kV. 

The Global thrombotic test (GTT®) and 
thromboelastography® (TEG®) on naïve, 
uncitrated whole blood with and without added 
LPS (final LPS concentration 0.2 ng.L-1)

As mentioned above, this GTT® test measures 
platelet reactivity (occlusion time, OT), where an 
OT of less than 300 seconds indicated platelet hyper-
reactivity, while one of between 300 and 500 indicates 
normal haemostatic/platelet activity [140]. It also 
shows the time to lyse or lysis time (LT), where an LT 
of less than 2000 seconds shows a normal spontaneous 
thrombolytic activity and LT of 2000 to 4000 seconds 
shows a reduced thrombolytic activity [156]. Due to the 
physical constraints of this test (naïve, uncitrated blood 
is drawn and immediately dispensed into the machine, 
and also mixed with LPS (final concentration: 0.2 ng.L-

1 LPS), and incubated for 3 minutes, only the blood of 
10 healthy individuals who came into the laboratory for 
the tests, were used. LPS from Escherichia coli O111:B4 
was purchased from Sigma, product number L 2630. 
Naïve and LPS-treated naïve healthy blood was also 
tested with the TEG®, without added CaCl2. These tests 
were done to determine if LPS causes either (1) platelet-
induced hypercoagulability or (2) fibrinogen-induced 
hypercoagulability in healthy blood. This was done to 
simulate LPS effects, as our hypothesis states that the 
hypercoagulability seen in AD, together with the presence 
of increased serum ferritin and low transferrin levels 
[157], is related to the presence of bacteria in sterile blood, 
and that these bacteria are visible using SEM. 
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