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Abstract

Intra-cranial electroencephalographic brain recordings (iEEG) provide a powerful tool for 

investigating the neural processes supporting episodic memory encoding and form the basis of 

experimental therapies aimed at improving memory dysfunction. However, given the invasiveness 

of iEEG, investigations are constrained to patients with drug-resistant epilepsy for whom such 

recordings are clinically indicated. Particularly in the case of temporal lobe epilepsy (TLE), 

neuropathology and the possibility of functional reorganization are potential constraints on the 

generalizability of intra-cerebral findings and pose challenges to the development of therapies for 

memory disorders stemming from other etiologies. Here, samples of TLE (N = 16; all of whom 

had undergone iEEG) and age-matched healthy control (N = 19) participants underwent fMRI as 

they studied lists of concrete nouns. fMRI BOLDresponses elicited by the study words were 

segregated according to subsequent performance on tests of delayed free recall and recognition 

memory. Subsequent memory effects predictive of both successful recall and recognition memory 

were evident in several neural regions, most prominently in the left inferior frontal gyrus, and did 

not demonstrate any group differences. Behaviorally, the groups did not differ in overall recall 

performance or in the strength of temporal contiguity effects. However, group differences in serial 

position effects and false alarm rates were evident during the free recall and recognition memory 

tasks, respectively. Despite these behavioral differences, neuropathology associated with temporal 

lobe epilepsy was apparently insufficient to give rise to detectable differences in the functional 

neuroanatomy of episodic memory encoding relative to neurologically healthy controls. The 
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findings provide reassurance that iEEG findings derived from experimental paradigms similar to 

those employed here generalize to the neurotypical population.
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1. Introduction

When coupled with the subsequent memory procedure (Paller and Wagner, 2002), intra-

cerebral recordings of neural activity (iEEG) provide Johnson and Knight, 2015). iEEG has 

been especially heavily used to identify neural correlates of the encoding operations that 

support the ability to freely recall studied words following an intervening distractor interval. 

These studies have consistently linked successful encoding to a number of 

electrophysiological phenomena - including modulation of gamma and theta power, and 

increased theta-gamma phase amplitude coupling - in inferior frontal gyrus (IFG), inferior 

temporal gyrus, posterior parietal cortex, and hippocampus, among other regions (e.g. Burke 

et al., 2014; Kucewicz et al., 2019; Kragel et al., 2017; Lega et al., 2012, 2014; Long and 

Kahana, 2015). In a complementary line of research, iEEG has emerged as a powerful tool 

in the development of experimental therapies and medical devices aimed at treating memory 

disorders (Ezzyat et al., 2017, 2018; Kucewicz et al., 2018).

Due to the invasive nature of iEEG, experimental applications of the technique are largely 

limited to patients with drug resistant epilepsy who have undergone surgically guided 

electrode placement to localize epileptogenic brain regions. Given the well-known 

dependence of episodic memory on the medial temporal lobes (MTL), much of the iEEG 

work carried out in the memory domain has been performed on patients with temporal lobe 

epilepsy (TLE). TLE is frequently associated with structural pathology in the MTL 

(including hippocampal sclerosis and atrophy) and often presents with comorbid 

psychopathology and cognitive impairment, particularly in relation to episodic memory and 

executive function. Moreover, the pathology underlying TLE may promote adaptive neural 

reorganization and compensation, resulting in altered regional neural function (Bonelli et al., 

2013; Powell et al., 2007; Richardson et al., 2003; Sidhu et al., 2015). Together, these factors 

potentially compromise the generalizability of iEEG findings to the general population.

In a prior study that aimed to compare the neural correlates of successful memory encoding 

in TLE patients with those in neurologically healthy adults, Long et al. (2014) examined the 

spectral correlates of successful encoding using iEEG in TLE patients and scalp EEG in 

healthy control participants. Across both groups and recording modalities, successful 

encoding elicited similar patterns of activity in the theta and high gamma frequency bands in 

multiple frontal and temporal ROIs. However, the use of different signal acquisition 

methodologies and behavioral paradigms (delayed free recall in TLE, immediate free recall 

in healthy controls) precluded direct comparisons between the two groups.

In a parallel literature, functional magnetic resonance imaging (fMRI) has been used to 

characterize the neural correlates of encoding operations supporting delayed free recall in 
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neurologically healthy adults. Results from these studies are largely consistent with those 

reported in the iEEG literature, revealing a consistent pattern of predominantly left 

lateralized subsequent memory effects in the IFG, inferior temporal gyrus, posterior parietal 

cortex, along with effects in the hippocampus bilaterally (Brassen et al., 2006; Dickerson et 

al., 2007; Long et al., 2010; Staresina and Davachi, 2006; Strange et al., 2002). The 

noninvasiveness and full-brain coverage afforded by fMRI make it well suited to examine 

potential reorganization of the neural circuits supporting episodic encoding in TLE.

Prior fMRI investigations have reported encoding effects that differed between TLE patients 

and healthy controls, primarily within the MTL (Bonelli et al., 2010; Powell et al., 2007; 

Sidhu et al., 2013). The group differences reported in these studies were highly variable in 

respect of the location and direction of the differences, and it is unclear from the published 

reports whether the contrasts necessary to identify any group-invariant subsequent memory 

effects (e.g., inclusive masking of simple group effects) were performed. Moreover, in each 

of the aforementioned studies subsequent memory performance was assessed with a post-

scan recognition memory test. To our knowledge, there are no published prior fMRI 

investigations that directly compared subsequent memory effects for delayed free recall in 

TLE and healthy participants. Finally, and of importance, the majority of the TLE patients 

examined in these prior studies exhibited evidence of frank hippocampal pathology 

(hippocampal sclerosis), in contrast to the TLE samples typically employed in iEEG studies, 

including the sample employed in the present study.

In summary, iEEG has emerged as a powerful tool for studying the neurophysiological basis 

of successful memory encoding and is being used to develop experimental therapies aimed 

at improving memory dysfunction. However, for the reasons noted previously, studies using 

iEEG are limited to patient populations in whom neuropathology, coupled with possible 

functional reorganization, pose significant threats to the generalizability of the findings. 

Thus, the primary aim of the current study was to compare fMRI subsequent memory effects 

in samples of TLE patients and neurologically healthy adults. To advance this aim, TLE and 

healthy volunteers underwent fMRI as they studied lists of concrete nouns. fMRI BOLD 

responses elicited by the study words were segregated according to subsequent performance 

on tests of both free recall and recognition memory. To foreshadow the results, we identified 

several canonical subsequent memory effects that did not reliably differ in their magnitudes 

across the two groups.

2. Materials and methods

2.1. Participants

Samples of 16 TLE and 19 age-matched [t(28.92) = −1.65, p = .110] healthy control (HC) 

participants contributed to the data reported here. All participants gave informed consent in 

accordance with the University of Texas at Dallas and University of Texas Southwestern 

Institutional Review Boards and were compensated $30 an hour.

2.1.1. TLE participants—Nineteen adults with medication resistant TLE (defined by 

ictal activity originating in the temporal lobes) were recruited to participate in this 

experiment. Each TLE participant had previously undergone iEEG to localize and monitor 
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epileptogenic activity, during which time they performed a delayed free recall task similar to 

the one reported here. Enrollment was limited to patients that correctly recalled at least 10% 

of study items across a full iEEG session. The average delay between iEEG surgery and the 

fMRI session was 3 months (SD = 2.12 months). Three TLE participants were left-handed, 

and all participants spoke fluent English before the age of five. Three right-handed 

participants were excluded from subsequent analyses for the following reasons: excessive in-

scanner motion (N = 1), technical malfunction with the in-scanner microphone (N = 1), and 

structural abnormality resulting in poor normalization of the structural and functional MRI 

scans (N = 1). Data from the remaining 16 TLE participants (20–59 years, M = 36 years, SD 
= 11.7 years; 11 females) are reported in the following analyses. None of the patients 

reported in these analyses showed radiological evidence of hippocampal sclerosis. 

Additional clinical details for these 16 participants are reported in Table 1.

2.1.2. Healthy control participants—An additional 20 adult volunteers were recruited 

from the University of Texas at Dallas and surrounding community to serve as a healthy age-

matched control group. One participant was excluded from subsequent analyses due to a 

technical malfunction with the in-scanner microphone. Data from the remaining 19 HC 

participants (20–60 years; M = 30.2 years; SD = 9.3 years; 9 females) are reported in the 

analyses of the free recall task. Data from the recognition memory task were missing for one 

of these participants. All HC participants were right-handed and spoke fluent English before 

the age of five. No participant had a history of neurological or psychiatric disease or 

reported taking any prescription medications affecting the central nervous system.

2.2. Experimental design

Participants underwent fMRI scanning as they performed a verbal delayed free-recall task 

comprising three phases: encoding, arithmetic distractor, and free recall (Fig. 1). Participants 

were given instructions and performed practice trials prior to entering the scanner. During 

the scanning session, the onset of each phase was signaled by a 1 s presentation of the words 

“STUDY”, “MATH”, and “RECALL”, respectively. Participants completed a total of 18 

Encoding-Recall cycles divided equally over six functional runs. Structural T1 MPRAGE 

scans were collected upon completion of the final Encoding-Recall cycle. The entire 

scanning session took approximately 65 min.

During encoding, participants studied word lists comprising a unique set of 15 concrete 

nouns. These words were selected at random, and without replacement, from the same 

experimental word pool that was used to generate the study lists employed with the TLE 

participants when they performed the free recall task while undergoing intra-cerebral 

recordings (see above). Consequently, there was overlap between the study lists employed 

with the patients in the present study and in the prior iEEG study (on average 57% of the 

study words employed here were also employed as study items previously). Additionally, 

62% of the items employed as lures in the present recognition memory test (see below) were 

employed as study items in the iEEG sessions. A re-analysis of recognition memory 

performance after omitting the overlapping study and lure words did not significantly alter 

the pattern of the results reported below, suggesting that any influence of prior exposure to 
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experimental items in the TLE sample had dissipated before they undertook the fMRI 

session.

Each trial began with a red warning fixation cross presented for 500 ms followed by the 

presentation of a single word in white font for 1800 ms. Each word was followed by the 

presentation of a white fixation cross for 900 ms. An additional seven null trials (white 

fixation cross) were pseudo-randomly interspersed throughout each study list under the 

constraint that no more than three null trials occurred consecutively. This resulted in an 

inter-stimulus fixation interval that jittered between 900 and 9600 ms (mean ISI = ~1800 

ms). Participants were instructed to form a mental image of the object denoted by each word 

and to refrain from saying the word aloud or rehearsing previously studied words.

After the encoding phase participants completed a 15 s arithmetic distractor task. They 

viewed math equations in the form of A + B=C and had to indicate whether the expression 

was correct (e.g., ‘3 + 1 = 4?’) or incorrect (e.g., ‘4 + 7 = 13?’). Participants indicated their 

responses via button press using their right index and middle fingers in a counterbalanced 

fashion. Each equation remained on the screen until a response was made. Participants were 

instructed to respond as quickly as possible while maintaining accuracy.

Upon completion of the distractor task, participants were prompted to verbally recall as 

many of the words from the prior list as they could remember, in any order. A green fixation 

cross was presented in the center of the screen for the entire 30 s duration of the recall phase. 

Verbal responses during this phase were recorded for later transcription using a scanner-

compatible microphone (Optoacoustics) and noise-cancelling software (OptiMRI v. 3.2) to 

filter out scanner noise. As noted, audio recordings from two participants (one each from the 

HC and TLE groups) were unusable due to technical issues with the software. Participants 

were instructed to speak loudly and clearly with their eyes open while minimizing any 

unnecessary movement. They were also encouraged to avoid repetitions and any non-recall 

verbalization (e.g., “umm”) as well as to avoid recalling words from earlier lists. Participants 

were encouraged to continue attempting to recall list items for the entire 30s duration.

A surprise recognition memory test was administered approximately 20 min after exiting the 

scanner. The test was undertaken on a laptop computer in a quiet exam room. The 270 items 

from the previously studied word lists were intermixed with 135 semantically unrelated new 

words and presented one at a time. Participants were instructed to judge whether each item 

had been studied previously or was new, signaling the confidence of their judgment via the 

following five response options: high confidence old, low confidence old, don’t know (DK), 

low confidence new, high confidence new. Participants entered responses directly onto the 

laptop keyboard. Response mappings for old and new items were counterbalanced across 

participants (i.e., 1 = high confidence old/new, 2 = low confidence old/new, 3 = DK, 4 = low 

confidence new/old, 5 = high confidence new/old). The recognition test was self-paced 

under the instruction to respond as quickly as possible while maintaining accuracy. An 

opportunity to take a break was available every 81 trials.
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2.3. MRI data acquisition and preprocessing

Functional and anatomical images were acquired with a 3T Philips Achieva MRI scanner 

(Philips Medical Systems, Andover, MA, USA) equipped with a 32-channel receiver head 

coil. Functional images were acquired using a T2*-weighted, blood-oxygen level-dependent 

echoplanar (EPI) sequence (sensitivity encoding [SENSE] factor 2, flip angle 70 deg, 80 × 

78 matrix, field of view [FOV] = 24 cm, repetition time [TR] = 2000 ms, and echo time [TE] 

= 30 ms). EPI volumes consisted of 34 slices (1-mm interslice gap) with a vocal size of 3 × 3 

× 3 mm. slice were acquired in ascending order oriented parallel to the anterior commissure-

posterior commissure line. Each functional run included 201 EPI volumes. T1-weighted 

anatomical images were acquired with a magnetization-prepared rapid gradient echo pulse 

sequence (FOV = 240 × 240, 1 × 1 × 1 mm isotropic voxels, 34 slices, sagittal 

acquisition).Participants performed a total of 18 study-test cycles split evenly across six 

scanning runs.

All fMRI preprocessing and analyses were conducted with Statistical Parametric Mapping 

(SPM12, Wellcome Department of Cognitive Neurology, London, UK), run under Matlab 

R2017a (MathWorks). Functional images were realigned to the mean EPI image and then 

slice-time corrected using sinc interpolation to the 17th slice. The images were then 

reoriented and spatially normalized to a sample-specific EPI template following previously 

published procedures (de Chastelaine et al., 2011, 2016). Normalized volumes were 

resampled into 3 mm isotropic voxels and smoothed with an isotropic 8 mm full-width half-

maximum Gaussian kernel. Anatomical images were spatially normalized to a sample-

specific T1 template following procedures analogous to those applied to the functional 

images. The data from the six scanning runs were concatenated using the 

spm_fmri_concatenate function.

2.4. Behavioral data analysis

All behavioral analyses were conducted with R software. t-tests were performed using the 

base package t.test function. ANOVAs were conducted using the afex package (Singmann et 

al., 2016) and the Greenhouse-Geisser procedure (Greenhouse and Geisser, 1959) was used 

to correct degrees of freedom for non-sphericity when necessary. Post-hoc tests on 

significant effects from the ANOVAs were conducted using the emmeans package (Lenth et 

al., 2018) and corrected for multiple comparisons using the Holm-Bonferroni procedure 

where appropriate. Descriptive statistics for free recall and recognition memory performance 

are reported in Table 2. Note that when the behavioral analyses were repeated using 

ANCOVAs to control for any effects of age on performance the results did not differ from 

those reported below.

2.5. MRI data analysis

The fMRI data were analyzed in two stages. At the first stage, a separate GLM was 

constructed for each participant. Parameter estimates from events of interest were then 

carried forward to second-level random effects factorial ANOVAs to test for group level 

effects. Separate GLMs were employed to identify subsequent memory effects associated 

with the free recall and recognition memory tasks.
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2.5.1. Subsequent recall effects—Two events of interest from the encoding phase 

were included in the design matrix of the free recall analyses: study items that were 

subsequently recalled (R) and items that were subsequently forgotten (NR). Each event of 

interest was modeled with a delta function convolved with SPM’s canonical hemodynamic 

response function (HRF) and its temporal and dispersion derivatives. The three 1s periods 

during which task cues were presented, the 15s duration arithmetic phase, and the 30s 

duration recall phase were each modeled as covariates of no interest, along with six 

regressors representing motion-related variance (three for rigid-body translation and three 

for rotation). Data from volumes showing a transient displacement of >1 mm or >1° in any 

direction were eliminated by defining them as covariates of no interest. Parameter estimates 

from the two events of interest were carried over to a second-level random effects 2 × 2 

factorial mixed effects ANOVA treating group (HC, TLE) as a between subjects factor and 

subsequent recall status (R, NR) as a within subjects factor (note that in SPM, a pooled error 

term is estimated. Hence, the two main effects and their interaction were tested using a 

common error term).

2.5.2. Subsequent recognition effects—A similar approach was used to analyze the 

post-scan recognition memory task. Encoding trials were categorized into three events of 

interest: old items recognized with high confidence (HiHits), old items recognized with low 

confidence (LoHits), and old items that were incorrectly endorsed as ‘New’ or ‘DK’ (Miss/

DK). Recognition hits were segregated by confidence in order to separately examine the 

neural correlates of the encoding of ‘strong’ and ‘weak’ memories (Squire et al., 2007; Wais 

et al., 2010). As for the recall analyses, each event of interest was modeled with a delta 

function convolved with SPM’s canonical HRF and temporal and dispersion derivatives. 

Also as previously, task instructions, arithmetic and recall phases, and motion outliers were 

modeled as covariates of no interest. Parameter estimates from the events of interest were 

carried over to a second-level random effects 2 × 3 factorial ANOVA treating group (HC, 

TLE) as a between subjects factor and subsequent recognition status (HiHit, LoHit, 

Miss/DK) as a within subjects factor.

There was considerable overlap between study items that were later recalled and those that 

were later recognized (see Results 3.1.2.). We performed a follow-up analysis to further 

examine test-selective effects. For this analysis, encoding trials were sorted into three 

categories according to subsequent memory status on the two memory tests: study items that 

were freely recalled, items that were recognized but not recalled, and forgotten study items 

(neither recalled nor recognized). Note that freely recalled study items were entered into the 

design matrix collapsed across subsequent recognition memory status. This was necessitated 

by the limited number of study items that were freely recalled but not recognized during the 

later recognition memory test (<10% of trials, see Results 3.1.2.). The resulting three events 

of interest were specified in the first level design matrices and all other aspects of the models 

were specified as before. Parameter estimates for these events of interest were carried 

forward to a mixed effects 3 × 2 ANOVA.
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2.5.3. Common and selective group effects

Whole brain analyses were conducted using F-contrasts derived from the respective ANOVA 

models. To identify effects common to the two groups, the across-group main effect of 

memory (height-threshold p < .001, uncorrected) was exclusively masked with the group × 

subsequent memory interaction (liberally thresholded at p < .1). Thus, voxels were identified 

where a reliable across-group main effect was unmodified by effects due to group. Regions 

demonstrating subsequent memory effects that differed according to group were identified 

with the memory × group interaction contrast (height-threshold p < .001, uncorrected). 

Family-wise error (FWE) corrected cluster-extent thresholds were estimated with the 

Gaussian random field method implemented in SPM12.

To test a priori predictions regarding hippocampal involvement during encoding, we applied 

small volume corrections (SVC) for each of the aforementioned contrasts within an 

anatomically defined bilateral hippocampal ROI. The ROI was manually traced on an 

anatomical T1 template averaged across a large dataset from our lab (N = 136) and spatially 

smoothed to approximate the smoothness of the functional data (de Chastelaine et al., 2017).

For each significant cluster (p < .05), we extracted parameter estimates for the BOLD 

responses elicited by the respective recall (R, NR) and recognition (HiHit, LoHit, Miss/DK) 

responses, averaged across all voxels falling within a 5 mm radius (3 mm for hippocampus) 

of the peak voxel. Given the wide range of ages in both groups, along with the known 

influence of age on memory performance, we submitted the extracted parameter estimates to 

separate ANCOVA models with factors of group and memory status, controlling for the 

effects of age. Controlling for the effects of age did not significantly alter any of the neural 

subsequent memory effects identified for the free recall and recognition memory tests that 

are reported below in analyses in which age was not employed as a covariate. Results of the 

ANCOVA models are available from the first author upon request.

3. Results

3.1. Behavioral results

3.1.1. Free recall—As illustrated in Fig. 2A, probability of free recall was numerically 

higher in HC compared to TLE participants; however, this difference was not statistically 

significant (t(31.75) = 1.08, p = .287). Additionally, total number of prior list intrusions did 

not significantly differ between the two groups (t(32.67) = 0.20, p = .841). To test for serial 

position effects on recall performance, we performed a mixed-factorial ANOVA in which 

group (TLE, HC) was treated as a between-subjects factor and serial position as a within-

subjects factor. The ANOVA revealed a significant main effect of serial position on recall 

performance (F(14, 462) = 14.47, p < .001) (Fig. 2B). Post-hoc pairwise comparisons between 

serial positions revealed that both groups demonstrated a significant primacy effect for the 

initial two words in each list as well as a significant recency effect for the final two words. 

The ANOVA also identified a significant interaction between group and serial position 

(F(14, 462) 2.98, p < .001). Inspection of Fig. 2B suggests that the interaction was driven by a 

tendency for TLE participants to recall fewer items from later in the study list. Post-hoc 

between-group comparisons between recall at each serial position were significant (p < .05) 
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prior to correction for multiple comparisons for study items occurring in the 10th, 11th, and 

15th list positions. None of these effects, however, survived correction.

We next computed probability of first recall, a metric that identifies the probability of 

initiating free recall as a function of serial position in the study list (Howard and Kahana, 

1999). As can be seen in Fig. 2C, both groups exhibited a clear tendency to initiate recall 

with the first studied item (i.e., primacy bias). A mixed-factorial ANOVA with factors of 

group and serial position identified a significant group × serial position interaction (F(14, 462) 

= 3.58, p < .001). Post-hoc between-group comparisons confirmed that the primacy bias for 

the initial study item was stronger in TLE relative to HC participants (t(467) = −6.16, p 
< .001), and this effect remained significant after correcting for multiple comparisons (Note 

that the emmeans package in R computes a pooled standard error. Each pairwise comparison 

was therefore tested using a common error term). Probability of first recall for the other 

serial positions did not significantly vary between the two groups.

In tests of free recall, items studied in neighboring list positions typically have a higher 

likelihood of being successively recalled, a phenomenon known as the temporal contiguity 

effect (Kahana, 1996). Here, we computed lag conditional response probabilities (i.e., lag-

CRPs; Kahana, 1996) to estimate temporal contiguity effects in HC and TLE participants. In 

brief, upon recalling an item i, lag-CRPs quantify the probability of next recalling an item 

that was initially studied in the i ± lag list position conditional on the total possible 

transitions for a given lag. As can be seen in Fig. 2D, both groups demonstrated strong 

temporal contiguity effects as evidenced by elevated transitional probabilities at shorter lags 

(illustrated by the peakedness of the lag-CRP curves). Moreover, both groups demonstrate 

canonical asymmetric lag-CRPs indicating a bias for forward (positive lags) rather than 

backward (negative lags) recall transitions (Kahana, 1996). To further qualify temporal 

contiguity effects, we estimated a summary measure of temporal clustering for each 

participant following the procedure described by Polyn et al. (2009). Scores on this measure 

can range from 0 to 1, with a score of 1 indicating perfect temporal clustering. The two 

groups did not significantly differ on this measure (t(25.37) = −1.24, p = .228) (Table 2).

3.1.2. Recognition memory

Recognition accuracy was operationalized as pHit/(pHit + pFA) for each confidence bin 

(Wixted et al., 2010) and submitted to a 2 (HC, TLE) × 2 (high, low confidence) factorial 

ANOVA. As illustrated in Fig. 3A, this analysis revealed a main effect of group (F(1,32) = 

11.64, p = .002), reflecting reduced recognition accuracy in TLE compared to HC 

participants. This analysis also identified a significant main effect of confidence (F(1,32) = 

44.27, p < .001), which was driven by higher accuracy for high vs. low confidence 

recognition hits. There was no group by confidence interaction on recognition accuracy.

To unpack the results further, we performed analogous 2 (group) × 2 (confidence) ANOVAs 

on false alarm rates (proportion of new items erroneously endorsed as ‘old’) and hit rates 

(proportion of old items correctly endorsed as ‘old’). For false alarms, the ANOVA revealed 

a significant main effect of group (F(1,32) = 11.23, p = .002), driven by a higher proportion of 

false alarms in TLE compared=to HC participants. There was no effect of confidence, and 

no group by confidence interaction for false alarm rate. For hit rate, we observed a 

Hill et al. Page 9

Neuroimage. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significant main effect of confidence (F(1,32) = 118.65, p < .001), again reflecting a greater 

proportion of hits for high vs. low confidence items. There was no effect of group, and no 

group by confidence interaction for hit rate. One TLE participant demonstrated a particularly 

exaggerated false alarm rate (95%). Closer inspection revealed that this participant exhibited 

an exceptionally liberal response criterion, also endorsing 96% of test items as ‘old’. 

Omitting the participant from the analyses did not however modify group differences in 

recognition accuracy (F(1,31) = 9.88, p = .004) or false alarm rate (F(1,31) = 10.28, p < .001).

Motivated by the observation of a differential false alarm rate in the two groups, we 

computed a response bias estimate, Br (Snodgrass and Corwin, 1998) for each participant. 

Higher values on this index indicate a more liberal bias. As illustrated in Fig. 3D and 

summarized in Table 2, this analysis identified a significant main effect of group (F(1,32) = 

5.43, p = .026) which reflected a more liberal response bias in TLE compared to HC 

participants. The group effect was no longer significant, however, after omitting data from 

the aforementioned outlying TLE participant (F(1,31) = 4.07, p = .052). This result should 

therefore be interpreted cautiously. This analysis also identified a main effect of confidence 

(F(1,32) = 16.42, p < .001), such that participants adopted a more liberal response criterion 

for items recognized with high confidence. This effect was unmodified by the inclusion of 

the outlying TLE participant. The interaction between group and recognition confidence was 

not significant.

Recognition memory response times (RTs) were categorized according to recognition status 

(hit, miss, correct rejection, false alarm) and confidence (high, low) and submitted to a 4 

(recognition status) × 2 (confidence) × 2 (group) factorial ANOVA. The ANOVA revealed a 

significant recognition status × confidence interaction (F(3,84) = 12.09, p < .001). Post hoc 

analyses revealed faster RTs for hits compared to misses, correct rejections and false alarms, 

and slower RTs for misses compared to correct rejections and false alarms, although only for 

those items receiving a high confidence endorsement. Additionally, recognition RTs were 

faster for high than low confidence recognition judgments (F(1,28) = 53.13, p < .001). We did 

not identify any significant effects of group.

The majority of successfully recalled study items went on to be recognized on the 

subsequent recognition memory test (≥90% for both groups). Moreover, recognition 

confidence for a given study item varied according to the item’s prior recall status (Fig. 3E). 

Among HC participants, 48% of study items recognized with high confidence were also 

classified as free-recall hits, while only 24% of low confidence recognition hits had been 

previously recalled. Of the forgotten study items (i.e., old items incorrectly endorsed as 

‘New’ or “DK’), 10% had been previously recalled. The results were strikingly similar for 

the TLE participants: of those study items that were freely recalled, 45% were later 

recognized with high confidence, 24% were recognized with low confidence, and 10% were 

incorrectly classified as ‘New’ or ‘DK’.

3.2. fMRI results

3.2.1. Subsequent recall effects—The results of the whole brain analyses identifying 

subsequent recall effects common to the two groups are illustrated in Fig. 4A and 

summarized in Table 3. Positive effects - regions demonstrating greater BOLD signal for 
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later recalled than later forgotten items - were identified in the left IFG and right cerebellum. 

Negative effects - regions where later recalled items elicited lower BOLD signals than did 

forgotten items - were evident in the left superior temporal gyrus and right anterior 

hippocampus (after SVC). Performing separate 2 (group) × 2 (subsequent recall) ANOVAs 

of parameter estimates extracted from each of the clusters yielded non-significant main 

effects of group in the left IFG (F(1,33) = 0.33, p = .567), left superior temporal gyrus (F(1,33) 

= 1.29, p = .265), and right cerebellum (F(1,33) = 3.12, p = .087). We did, however, identify a 

significant main effect of group in the right hippocampus (F(1,33) = 5.85, p = .021) which 

was driven by greater hippocampal activity overall in HC relative to TLE participants. 

Consistent with the impression given by Fig. 5A, the interactions between group and 

subsequent recall were far from significant in all regions (all ps > .1). We thus found no 

evidence that positive or negative subsequent recall effects significantly differed between 

groups.

3.2.2. Subsequent recognition effects—We identified a main effect of subsequent 

recognition in the left IFG, which was evident for both high and low confidence recognition 

hits (Fig. 4B and Table 3). Negative effects were evident in several regions, again common 

to the two groups. These regions included right angular gyrus, medial prefrontal cortex, and 

posterior cingulate. Each of these negative effects was limited to study items recognized 

with high confidence. Submitting parameter estimates extracted from each of the regions to 

separate 2 (group) × 3 (subsequent recognition status) ANOVAs failed to identify either a 

significant main effect of group (all ps > .2) or an interaction between group and subsequent 

recognition (all ps > .3) in any of the foregoing regions (see Fig. 5B). As for the recall task, 

therefore, we found no evidence that the magnitude of subsequent recognition effects were 

significantly moderated by group.

As already noted and illustrated in Fig. 3E, successfully recalled study items were highly 

likely to also be recognized on the subsequent recognition memory test. Motivated by these 

behavioral findings, we performed a follow-up analysis to identify subsequent memory 

effects that varied between the free recall and recognition memory tests (see Methods 

2.5.2.). This analysis demonstrated that, in both groups, increased left IFG activity at 

encoding was predictive of subsequent memory for items that were freely recalled as well as 

those that were later recognized without recall. The magnitude of the left IFG effect was 

graded as a function of subsequent memory success (recalled > recognized without recall > 

forgotten; see Fig. 6).

This analysis also revealed that the aforementioned negative recognition memory effects 

identified in right lateralized posterior cingulate, medial prefrontal cortex, and angular gyrus 

were also evident for the free recall task, but only when contrasting later recalled study items 

with items that failed to be recalled or recognized. There was also evidence for a graded 

negative subsequent memory effect in the left superior temporal gyrus (recall > recognition 

without recall > forgotten; see Fig. 6). By contrast, the negative subsequent recall effect 

identified in the right anterior hippocampus was unique to the free recall task, that is, it was 

unmodified by whether or not non-recalled items were later recognized.
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3.3. Hemisphere of ictal onset

The TLE sample examined in the present study was heterogeneous with respect to the 

hemisphere of epileptogenic origin. Because verbal memory deficits tend to be more 

pronounced in left relative to right TLE patients (e.g. Bonelli et al., 2010), we performed a 

follow-up analysis comparing behavioral and neural subsequent memory effects in TLE 

participants with left/bilateral vs. right ictal onset. Combining left and bilateral participants 

was necessitated by the small sample size of each respective subgroup. For each of the 

regions listed in Table 3, we submitted the extracted parameter estimates to a mixed-factorial 

ANOVA with factors of memory status (R, NR or HiHit, LoHit, Miss/DK) and hemisphere 

of ictal onset (Left/Bilateral, Right). Consistent with the impression given by Fig. 5, these 

analyses did not identify any regions where neural subsequent memory effects were 

significantly moderated by hemisphere of ictal onset (all ps > .1). In addition, side of ictal 

onset did not significantly moderate probability of free recall (t(11.99) = −1.01, p = .331) or 

recognition accuracy (F(1, 14) = 0.72, p = .410).

At the request of a reviewer, we performed an identical analysis, but with patients segregated 

according to whether ictal onset was of hippocampal (N = 8) or non-hippocampal (N = 8) 

origin (see Table 1). This analysis did not identify any regions where subsequent free recall 

effects were significantly moderated by site of ictal origin (all ps > .1). We did, however, 

identify a significant effect of ictal origin on the negative subsequent recognition effect in 

posterior cingulate (F(1,14) = 6.28, p = .025), the magnitude of which was stronger in non-

hippocampal compared to hippocampal TLE patients. All other subsequent recognition 

effects were unmoderated by ictal origin (all ps > .08). Nor did the teo patient groups differ 

on behavioral mesures of probability of free recall (t(13.99) = 0.23, p = .863) or recognition 

accuracy (F(1,14) = 0.03, p = .823).

4. Discussion

The present study used fMRI to compare the neural correlates of successful encoding in 

samples of TLE and HC participants. Subsequent memory effects predictive of successful 

free recall and recognition memory were evident in several neural regions in both groups of 

participants, most prominently in left inferior frontal gyrus. Importantly, we were unable to 

identify any subsequent memory effects that differed across the two groups. Behaviorally, 

the groups did not differ in overall recall performance or in the strength of temporal 

contiguity effects. However, group differences in serial position effects and false alarm rates 

were present in the free recall and recognition memory tasks, respectively.

4.1. Behavioral results

As just noted, recall probability did not significantly differ between groups. Both groups 

demonstrated clear primacy and recency effects (though see below regarding group 

differences in the magnitude of these effects) as well as strikingly similar temporal 

contiguity effects. The latter results suggest that the ability to form associations between 

study items and their temporal context (Howard and Kahana, 2002) was largely preserved in 

this selective sample of TLE patients. On their surface, these null effects of recall and 

temporal context may appear surprising given the consistently reported memory 
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impairments in ostensibly similar patient populations (Butler and Zeman, 2008). However, 

as previously noted (see Methods 2.1.1.), our TLE cohort was selected partly on the basis of 

prior success on a similar version of the free recall task and, in addition, did not show 

radiological evidence of hippocampal sclerosis.

Despite the null findings for overall recall performance and temporal contiguity, group 

differences in memory performance were present. Although both groups demonstrated clear 

primacy and recency effects, recall of items occurring in later list positions tended to be 

lower in the TLE participants. Notably, this drop-off in recall performance was evident from 

midway through the study list, negating the possibility that it merely reflected a smaller 

recency effect. Differential serial position effects were also evident for the probability of first 

recall. Although both groups demonstrated a significant tendency to initiate recall with the 

first-presented study item (i.e., primacy bias), the effect was markedly stronger among the 

TLE participants. One possibility is that the attentional resources directed towards each item 

belonging to a study list declined more quickly in the TLE participants, allowing more 

rehearsal of items occurring in the initial list positions at the expense of those occurring later 

in the list. Though speculative, this interpretation would account for the higher probability of 

first recall for initial list items in the TLE group compared to HC, as well as the relative 

decline of recall performance for study items occurring in later list positions.

In contrast to the null findings for free recall, recognition accuracy was markedly lower in 

the TLE relative to HC participants. This difference between the groups was driven by an 

elevated false alarm rate in the TLE participants; hit rates did not significantly differ 

between the groups. This pattern of results is consistent with the notion that TLE 

participants not only demonstrated lower discriminability than HC but also adopted a more 

liberal response criterion. This account is undermined however by the marginal group effect 

in response bias, at least as this was indexed by the Br metric. A second possibility is that 

the elevated false-alarm rate reflects impaired engagement of control processes supporting 

monitoring and evaluation of the outcome of a retrieval attempt (Burgess and Shallice, 1996; 

Rugg, 2004). Although this latter interpretation is speculative, it is consistent with prior 

findings of executive dysfunction in patients with epilepsy (Stretton and Thompson, 2012). 

By this interpretation, the recognition memory impairment we observed in our TLE 

participants is a consequence of a deficit in post-retrieval processing (Rugg, 2004) rather 

than in encoding, storage or the generation of retrieval cues in the test phase.

4.2. Neural subsequent memory effects

We did not identify any neural subsequent memory effects that differed in magnitude or 

location between the TLE and HC groups. The similarity of the effects across the two groups 

suggests that the functional neuroanatomy of successful episodic memory encoding was 

largely unaltered in our (highly selected) sample of TLE patients relative to the controls.

The most prominent subsequent memory effect - evident for both recall and recognition - 

was observed in the left IFG. Subsequent memory effects in the left IFG have been reported 

across a wide variety of study materials and paradigms, and especially in paradigms 

requiring or encouraging semantically oriented study processing (for reviews, see Kim, 

2011; Spaniol et al., 2009). As has been previously reported (Staresina and Davachi, 2006), 
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activity in this region was graded with respect to subsequent memory performance (recall > 

recognized without recall > forgotten). On the assumption that items needed more effective 

encoding to go on to be successfully recalled than to be later recognized, this finding is 

consistent with the proposal that the magnitude of the left IFG subsequent memory effect co-

varies with subsequent memory strength.

We also identified several regions where a relative attenuation of neural activity was 

predictive of later memory performance (so-called negative subsequent memory effects). As 

with the ‘positive’ left IFG effect just discussed, these effects were also invariant across the 

TLE and HC groups. In the case of recognition memory, we observed negative subsequent 

memory effects in several regions held to belong to the ‘default mode network’ (Buckner et 

al., 2008; Raichle et al., 2001), including the posterior cingulate, medial prefrontal cortex, 

and right angular gyrus. These findings replicate numerous prior reports of similar effects 

(e.g. Daselaar et al., 2004; Huijbers et al., 2011; Otten and Rugg, 2001; for review, see Kim, 

2011), and likely reflect the benefit to encoding resulting from the allocation of attentional 

processes away from internal representations and toward external study events (Rugg et al., 

2015).

Equivalently-sized negative subsequent memory effects in each of the aforementioned 

regions were also evident for the free recall task, but only when contrasting study items that 

went on to be successfully recalled with what might be considered ‘truly’ forgotten items, 

that is, items that failed to be either recalled or recognized (see Fig. 6). Thus, unlike the 

positive subsequent memory effects identified in the left IFG, these negative effects did not 

scale with memory strength, at least when strength is operationalized in terms of successful 

recall vs. successful recognition. One possible explanation for these findings is that the 

neural activity reflected by the negative effects contributed to encoding processes that 

specifically supported subsequent recognition memory and played no role in the encoding 

processes that supported subsequent recall. An alternate explanation is that the neural 

processing reflected by the negative effects contributed to the encoding of later recalled 

items, but that this required supplementation – perhaps from the left IFG – to confer the 

additional memory strength necessary for the items to be accessible to recall. The present 

data do not permit adjudication between these alternative accounts.

We also observed a negative subsequent memory effect in the right anterior hippocampus 

that was unique to the free recall task. As illustrated in Fig. 4A, the effect was driven by an 

increase in hippocampal activity (relative to baseline) for later non-recalled study items. This 

finding is seemingly at odds with prior fMRI studies reporting positive hippocampal effects 

for both subsequent free recall (Brassen et al., 2006; Dickerson et al., 2007; Staresina and 

Davachi, 2006; Strange et al., 2002) and subsequent recollection more generally (Kim, 2011; 

Spaniol et al., 2009). While the present result is surprising, it is not altogether without 

precedent (de Chastelaine and Rugg, 2015; Davachi et al., 2003; Shrager et al., 2008; 

Staresina and Davachi, 2008). One potential explanation (originally proposed by Shrager et 

al., 2008) is that negative hippocampal subsequent memory effects reflect negative transfer 
appropriate processing. By this account, increased hippocampal activity elicited by 

subsequently non-recalled study items reflects encoding of extraneous details of the study 

episode at the expense of item-specific information necessary for later free recall (de 
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Chastelaine and Rugg, 2015; Shrager et al., 2008; Staresina and Davachi, 2008). Thus, the 

increased hippocampal activity identified here for unrecalled items may indeed have 

reflected successful encoding, but of task-irrelevant details that were insufficient to support 

recall in the absence of an explicit retrieval cue. Intriguingly, a prior report of iEEG 

hippocampal subsequent recall effects described power decreases in the 9–28 Hz frequency 

range (Sederberg et al., 2003). It is conceivable that this finding is an electrophysiological 

correlate of the present fMRI findings. We caution however that this interpretation is purely 

speculative and requires further investigation.

In addition to the aforementioned negative subsequent memory effects identified in default 

mode regions, we also observed a negative effect in the left superior temporal gyrus in the 

vicinity of auditory cortex. The magnitude of the effect was graded with respect to 

subsequent memory status (free recall > recognition without recall > forgotten), suggesting 

that activity in this region covaried negatively with subsequent memory strength. The 

location of this effect in auditory cortex raises the possibility that successful encoding was 

more likely on trials on which there was suppression of auditory processing and, perhaps, a 

suppression of the otherwise distracting influence of scanner noise. This account is of course 

speculative, but it is consistent with a prior report that a relative enhancement of auditory 

cortex activity was predictive of encoding failure in older adults, a finding that, as here, was 

taken to reflect the deleterious effects of failing to suppress task-irrelevant, distracting 

sensory input (Stevens et al., 2008).

A potential caveat to interpretation of the current results is the small size and heterogeneity 

of the TLE cohort. Although heterogeneity has not generally precluded identification of 

reproducible subsequent memory effects in TLE patients who perform memory tasks during 

iEEG recordings, future studies controlling for factors such as hemisphere of ictal onset may 

be more sensitive to potential epilepsy-related changes in the neural circuitry supporting 

memory encoding. Another potential limitation stems from the relatively short study-test 

delays that were employed here (<1 min for recall, and <30min for recognition). Further 

research with TLE patients is required to characterize encoding-related activity that is 

predictive of memories that survive over longer study-test durations (see Uncapher and 

Rugg, 2005, for evidence of a dissociation between subsequent memory effects predictive of 

memory after short and longer delays), and to determine whether this activity differentiates 

TLE patients from healthy controls. Lastly, we reiterate that the sample of TLE participants 

reported here were free from hippocampal sclerosis and were selected on the basis of their 

ability to perform the free recall task. It is therefore premature to conclude that the null 

behavioral and neural findings reported here will generalize to a broader and even more 

heterogeneous TLE patient population. However, the characteristics of the present TLE 

sample are consistent with those of samples that typically contribute data to iEEG studies. 

Future studies will be necessary to establish whether similar behavioral and neural effects 

are evident in other forms of focal epilepsy.

5. Summary

Using fMRI, we identified several subsequent memory effects that were common to TLE 

and HC participants. Crucially, we did not identify any differences in encoding-related 

Hill et al. Page 15

Neuroimage. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity between the two groups. These results help to bridge a critical gap in an emerging 

literature that describes findings from analogous subsequent memory procedures in the 

context of intracranial recordings employed to functionally map (Burke et al., 2014; 

Kucewicz et al., 2019; Kragel et al., 2017; Lega et al., 2012, Lega et al., 2016; Long and 

Kahana, 2015) or augment (Ezzyat et al., 2017, 2018; Kucewicz et al., 2018) memory 

encoding in patients with TLE. The present findings provide reassurance that the functional 

neuroanatomy supporting successful episodic memory encoding is largely unaltered in a 

selective sample TLE patients. Consequently, strategies initially developed to treat memory 

dysfunction in TLE patients may be transferable to individuals suffering memory disorders 

as a consequence of other etiologies.
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Fig. 1. 
Schematic of the free recall and recognition memory tasks. Participants performed 18 study-

test cycles divided evenly over six functional scanner runs. During each cycle, participants 

first studied lists of 15 concrete nouns followed by a 15s arithmetic distractor task. 

Participants were then given 30s to freely recall items from the previously studied list in any 

order. After the scanning session, participants performed a recognition memory task 

requiring old/new judgments and confidence ratings.
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Fig. 2. 
Behavioral performance on the free recall task. For display purposes, data are collapsed 

across sessions for each subject and then averaged across subjects within each group. Error 

bars represent 1 SE. (A) Probability of freely recalling a study item. (B) Serial position 

curves showing recall performance as a function of list position demonstrate primacy and 

recency effects in each group. (C) Probability of first recall curves indicate a tendency to 

initiate recall with the initial item from the study list. (D) Lag-CRP curves demonstrating 

temporal contiguity effects in each group. Both groups show canonical asymmetric peaks 

around zero indicating a tendency to recall items studied in adjacent positions, but with a 

more pronounced tendency for forward transitions. For (B) and (C), orange circles HC, 

green triangles = TLE.
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Fig. 3. 
Behavioral performance on the post-scan recognition memory task collapsed across 

confidence ratings. For display purposes, data are collapsed across sessions for each subject 

and then averaged across subjects within each group. (A) Recognition accuracy was 

calculated as the proportion of old and new items endorsed as old. (B) The false alarm rate 

was computed as the probability of erroneously endorsing a new item as old. (C) The hit rate 

was computed as the probability of correctly endorsing an old item as old. (D) An estimate 

of response bias. Higher values reflect a more liberal response bias. (E) Stacked bar plots 

showing item recognition as a function of prior recall status.
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Fig. 4. 
Clusters demonstrating across-group subsequent memory effects displayed on sections of the 

across-group mean T1-weighted structural image. Warm and cool colors correspond to 

positive and negative subsequent memory effects, respectively. (A) Subsequent recall effects. 

Mean parameter estimates and standard errors for subsequently recalled (R) and forgotten 

(NR) study items are plotted for left inferior frontal gyrus (i), left superior temporal gyrus 

(ii), and right anterior hippocampus (iii). (B) Subsequent recognition effects. Mean 

parameter estimates and standard errors for study items recognized with high (HiHit) and 

low (LoHit) confidence as well as recognition misses (Miss/DK) are plotted for left inferior 
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frontal gyrus (i), posterior cingulate (ii), medial prefrontal cortex (iii), and right angular 

gyrus (iv). *p < .01, **p ≤ .001.

Hill et al. Page 24

Neuroimage. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Parameter estimates for each participant corresponding to events of interest from the (A) free 

recall and (B) recognition memory tests are plotted separately for HC (top panels) and TLE 

(bottom panels) participants. TLE participants were further segregated into subgroups 

according to the hemisphere of ictal onset. Left/bilateral TLE participants (LTLE) are 

plotted in red. Right TLE participants (RTLE) are plotted in blue.
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Fig. 6. 
Mean parameter estimates and standard errors for study items that were recalled, recognized 

without recall, and forgotten (neither recalled nor recognized). Parameter estimates are 

plotted for the left inferior frontal gyrus (i), averaged across right posterior cingulate, medial 

prefrontal cortex, and angular gyrus (ii), left superior temporal gyrus (iii), and right anterior 

hippocampus (iv).
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Table 2

Means (standard deviations) of recall and recognition memory estimates.

High Confidence Low Confidence

HC TLE HC TLE HC TLE

Recall Probability .36 (.16) .30 (.11) – – – –

Intrusions (Total #) 5.47 (6.24) 4.92 (5.62) – – – –

Temporal Clustering Factor .61 (.06) .64 (.09) – – – –

Recognition Accuracy .78 (.10) .67 (.08) .84 (.13) .69 (.11) .68 (.13) .59 (.08)

Hit Rate .79 (.12) .78 (.11) .90 (.10) .88 (.09) .58 (.12) .62 (.15)

False Alarm Rate .23 (.12) .41 (.19) .18 (.20) .43 (.23) .29 (.15) .45 (.21)

Response Bias .53 (.16) .63 (.17) .64 (.30) .74 (.21) .40 (.18) .53 (.19)
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Table 3

Loci of subsequent memory effects.

Contrast MNI Peak z Cluster Size Region

x y z

Recalled > Not Recalled −45 29 8 4.61 335 L. Inferior Frontal Gyrus

33 −67 −28 4.38 104 R. Cerebellum

Not Recalled > Recalled −54 −28 11 4.63 307 L. Superior Temporal Gyrus

24 −16 −19 3.69 13
R. Anterior Hippocampus

t

HiHit + LoHit > Miss/DK −48 26 20 4.83 452 L. Inferior Frontal Gyrus

Miss/DK > HiHit 57 −55 29 5.81 148 R. Angular Gyrus

9 −49 29 5.22 641 R. Posterior Cingulate

9 50 −7 4.42 202 R. Medial Prefrontal Cortex

Notes: height threshold p < .001 (uncorrected), cluster-extent threshold p < .05 (FWER corrected).

t
Significant after a priori small volume correction.

R = right, L = left, B = bilateral.
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