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Abstract

Background

Pathogenic uncultivable treponemes comprise human and animal pathogens including

agents of syphilis, yaws, bejel, pinta, and venereal spirochetosis in rabbits and hares. A set

of 10 treponemal genome sequences including those of 4 Treponema pallidum ssp. palli-
dum (TPA) strains (Nichols, DAL-1, Mexico A, SS14), 4 T. p. ssp. pertenue (TPE) strains

(CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 T. p. ssp. endemicum (TEN) strain (Bosnia

A) and one strain (Cuniculi A) of Treponema paraluisleporidarum ecovar Cuniculus (TPLC)

were examined with respect to the presence of nucleotide intrastrain heterogeneous sites.

Methodology/Principal Findings

The number of identified intrastrain heterogeneous sites in individual genomes ranged

between 0 and 7. Altogether, 23 intrastrain heterogeneous sites (in 17 genes) were found in

5 out of 10 investigated treponemal genomes including TPA strains Nichols (n = 5), DAL-1

(n = 4), and SS14 (n = 7), TPE strain Samoa D (n = 1), and TEN strain Bosnia A (n = 5).

Although only one heterogeneous site was identified among 4 tested TPE strains, 16 such

sites were identified among 4 TPA strains. Heterogeneous sites were mostly strain-specific

and were identified in four tpr genes (tprC,GI, I, K), in genes involved in bacterial motility

and chemotaxis (fliI, cheC-fliY), in genes involved in cell structure (murC), translation (prfA),
general and DNA metabolism (putative SAM dependent methyltransferase, topA), and in

seven hypothetical genes.

Conclusions/Significance

Heterogeneous sites likely represent both the selection of adaptive changes during infection

of the host as well as an ongoing diversifying evolutionary process.
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Author Summary

The genus Treponema comprises several uncultivable human and animal pathogens
including Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, T. p.
ssp. pertenue (TPE, the causative agent of yaws), and T. p. ssp. endemicum (TEN, the caus-
ative agent of bejel). Simian TPE strain Fribourg-Blanc and T. paraluisleporidarum, the
agents of primate infections and venereal spirochetosis of rabbits and hares, respectively,
represent animal pathogens. In this study, whole genome sequences of 10 treponemal
strains were systematically analyzed for the presence of nucleotide sites where the trepone-
mal strains differed within a single strain. Interestingly, most heterogeneous sites were
identified among TPA and TEN strains but not among tested TPE strains. Although het-
erogeneous sites were found to be mostly strain-specific, several examples revealed the
same heterogeneous site was identified in two genomes. These findings indicate that the
number of intrastrain heterogeneous sites per genome is limited and that different trepo-
nemal strains tend to display variability in the same positions of several genes. The abun-
dance of nonsynonymous mutations, nonconservative amino acid replacements and the
fact that most of the heterogeneous sites were located within coding regions suggest that
the heterogeneous sites represent beneficial adaptive mutations.

Introduction
The genus Treponema comprises several uncultivable human and animal pathogens including
Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, T. p. ssp. pertenue
(TPE, the causative agent of yaws), and T. p. ssp. endemicum (TEN, the causative agent of
bejel). A treponemal isolate Fribourg-Blanc isolated from a baboon (Papio cynocephalus) in
West Africa [1],[2] was recently reclassified as a TPE strain [3]. Another animal pathogen
closely related to uncultivable human treponemal pathogens is T. paraluisleporidarum ecovar
Cuniculus (TPLC; formerly denoted as Treponema paraluiscuniculi) [4–6], the causative agent
of venereal spirochetosis in rabbits. In addition, T. paraluisleporidarum ecovar Lepus [6] causes
venereal spirochetosis in hares [7–10]. The human disease pinta is caused by a morphologically
identical organism called T. carateum, but this organism has not been propagated in experi-
mentally infected animals and has not been characterized genetically.

The first complete genome sequence of TPA strain Nichols was determined in 1998 [11]. In
the last several years, whole genome sequences of twelve treponemal pathogens (including re-
sequenced TPA strains Nichols and SS14) were completed and published [3],[12–20]. In gen-
eral, genome analyses performed in these studies revealed that genome differences between indi-
vidual treponemal strains are very subtle, differing in less than 2% of the genome sequence
between TPA strains and TPLC [21] and 0.2% between TPA and TPE strains [12]. Genetic
diversity among the uncultivable pathogenic treponemes are localized mainly within tpr [22–
25], arp [25–27], TP0470 [25], TP0136 [28],[29], TP0548 [29],[30], tp92 [31],[32], andmcp
genes [15]. In addition, relatively high interstrain genetic diversity has been detected in several
other genes, e.g. in TP0304 (hypothetical protein), TP0346 (lipoprotein), TP0515 (outer mem-
brane protein), TP0558 (nickel-cobalt transporter) [33] and TP0967 (hypothetical protein) [25].

The presence of different treponemal subpopulations infecting the same host has been sug-
gested by several early findings, e.g. by detection of two subpopulations using velocity sedimen-
tation during the Hypaque separation procedure [34], and by the identification of
subpopulation which is resistant to phagocytosis [35]. Genetic diversity within individual trep-
onemal strains, i.e. intrastrain genetic diversity, was first found in tprJ and tprK genes during
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infection of human or animal hosts [36–38]. Several other examples of intrastrain heterogene-
ity were found in the TPA Nichols [21], and in the TPA SS14 genome [14],[16]. In general,
intrastrain heterogeneity was found within tpr genes, in sequences paralogous to tpr genes and
in the intergenic regions between tpr genes [14],[16],[36–40]. Other genes with identified intra-
strain heterogeneity comprised TP0402 (encoding flagellum specific ATP synthase), TP0971
(encoding Tp34 lipoprotein, membrane antigen), TP1029 (encoding hypothetical protein),
TP0341 (encoding MurC), and TP0967 (encoding hypothetical protein) loci [14],[16].

The occurrence of genome heterogeneity (including point mutations, insertions or deletions
and gain and loss of mobile genetic elements such as plasmids or phages) within strains is com-
mon to many pathogenic bacteria [41–44], and has been found to occur during the course of
infection [45–51]. In general, heterogeneous sites may contribute to immune evasion [49] and/
or represent adaptive changes during infection of disparate host tissues and compartments
[52]. The identification of within-host heterogeneity is an important step in studies tracking
transmission networks or in studies mapping bacterial populations during colonization, dis-
semination and immune clearance [53],[54].

In this communication, whole genome sequences of 10 treponemal strains were systemati-
cally analyzed for the presence of intrastrain nucleotide heterogeneous sites. Distinct patterns
in the frequency and locations of intrastrain heterogeneous sites were identified among the
individual genomes examined.

Materials and Methods

Strains used in this study
The original sequencing data obtained during next-generation sequencing of pathogenic trepo-
nemes (Table 1) were used to analyze intrastrain genetic variability. In total, 10 treponemal
strains were examined in this study including 4 TPA strains (Nichols, DAL-1, Mexico A, SS14),
4 TPE strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 TEN strain (Bosnia A) and one
strain of TPLC (Cuniculi A). For the two remaining whole genome sequences (TPA strains Chi-
cago and Sea84-1), the original sequencing data were not deposited in the SRA database.

To examine intrastrain heterogeneity within a single strain, selected intrastrain heteroge-
neous sites were tested in the TPA SS14 strain using four different DNA preparations (4933,
4934, 4950 and 4051), originating from two different rabbit passages. The original treponemal
SS14 cells were obtained from Dr. D. L. Cox as stock 2735 (dated 09/24/97) and 2736 (dated 06/
20/97), which were used to inoculate rabbits and to harvest treponemal cells of stocks 2839 and
2840, respectively. Bacterial stock 2839 of TPA SS14 was used for two independent isolations of
genomic DNA usingWizard Genomic DNA Purification Kit (Promega, Madison, WI, USA),
resulting in DNA isolates numbered 4933 and 4950. Similarly, bacterial stock 2840 of TPA SS14
was used for two independent isolations of genomic DNA designated as 4934 and 4951. At least
one independent rabbit passage between stock 2735 and stock 2736 was performed.

Ethics statement
No animal was used in the study.

Identification of intrastrain heterogeneous sites
To ascertain intrastrain heterogeneity within individual treponemal strains, Illumina and 454
reads obtained during whole-genome sequencing procedures were used. Data analysis work-
flow is depicted in Fig 1. Initially, individual reads were mapped to the corresponding complete
genome sequence using the Borrows-Wheeler Aligner (BWA) [55],[56], using default

Intrastrain Genetic Heterogeneity in Treponemes

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004110 October 5, 2015 3 / 19



parameters, and requiring at least a 95% read identity relative to the reference genome. Dupli-
cated reads were identified with the rmdup algorithm in the SAMtools package [55] and
removed. To determine the frequency of each nucleotide (allele frequency) in every single
genome position, the mpileup function in the SAMtools package and a python script were used
[57]. Because of higher depth coverage and a lower error indel rate, the Illumina sequencing
reads were used for intrastrain allele identifications.

To filter out sequencing errors present in the raw data [58–65], nucleotide positions show-
ing at least six independent (not duplicated) individual reads with a frequency� 20% of the
less frequent allele, were further examined. Moreover, several other restrictions were applied
during identification of treponemal heterogeneous sites (Fig 1). First, nucleotide positions
located within homopolymeric tracts (defined as a stretch of 6 or more identical nucleotides)
or within a 2-nt distance of these tracts were omitted from further analysis. Second, at least
three independent reads from both directions were required. Third, individual reads support-
ing a less frequent allele located at the 3’ terminus of the reads (i.e. four or less nucleotides
from the 3’ terminus) were omitted. And fourth, heterogeneous positions separated from each
other by less than 7 bp were also omitted. The resulting candidate sites for heterogeneous
nucleotide positions were subsequently visually inspected using a Integrative Genome Viewer
(IGV) [63–66].

Using the above mentioned workflow applied on Illumina reads, putative heterogeneous
sites were identified. Identified heterogeneous positions were confirmed using a parallel 454
workflow or by Sanger sequencing (Fig 1 and Table 2 and S2 Table). A detailed description of
regions, comprising paralogous sequence regions or/and direct repeats, omitted from Illumina
analysis are shown in S1 and S2 Tables. Altogether, 32 genomic regions covering 26,636 bp
(2.34% of the entire genome length) were omitted in the TPA Nichols genome (S1 Table).

Table 1. Treponemal genomes used in this study.

Genome Place and year of
isolation

Reference GenBank Accession number, SRA Accession number (Genome reference)
Average coverage (Illumina/454), average Illumina read length (bp), estimated Illumina
error rate from BWAa (%)

TPA Nichols Washington, D.C., USA;
1912

[93] CP004010.2, SRX012305 [16]
31x/30x, 36, 1.65%

TPA DAL-1 Dallas, USA; 1991 [94] CP003115.1, SRX012302 [18]
38x/33x, 36, 2.07%

TPA SS14 Atlanta, USA; 1977 [95] CP004011.1, SRX012306 [16]
40x/29x, 36, 1.93%

TPA Mexico A Mexico City, Mexico;
1953

[96] CP003064.1, SRX012304 [15]
43x/-, 36, 1.51%

TPE CDC-2 Akorabo, Ghana; 1980 [97] CP002375.1, SRX012301 [12]
38x/28x, 36, 2.07%

TPE Gauthier Brazzaville, Congo; 1960 [98] CP002376.1, SRX104412 [12]
56x/33x, 35, 0.80%

TPE Samoa D Apia, Samoa; 1953 [96] CP002374.1, SRX012307 [12]
42x/21x, 36, 2.19%

TPE Fribourg-
Blanc

Guinea; 1966 [1],[2] CP003902.1, SRX104411 [3]
66x/52x, 35, 0.32%

TEN Bosnia A Bosnia; 1950 [99] CP007548, SRX144510, SRX144511, SRX144514, SRX144515 [20]
194x/72x, 100, 0.30%

TPLC Cuniculi A unknown; before 1957 [96] CP002103.1, SRX012308 [17]
20x/9x, 36, 1.61%

aerror rate per nucleotide was estimated using the Borrows-Wheeler Aligner (BWA) [55],[56]

doi:10.1371/journal.pntd.0004110.t001
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Since paralogous regions in individual genomes are not identical, slightly different regions
were omitted from the automated analyses of Illumina sequencing reads in each examined
genome (S2 Table). Moreover, the TEN Bosnia A genome was sequenced using pooled segment
genome sequencing (PSGS) [12] as separate sequencing runs, therefore the total length of the
excluded regions was lower than in other examined genomes (S2 Table).

DNA amplification and DNA sequencing
Altogether, 26 putative heterogeneous positions identified in the Illumina workflow, but not con-
firmed by the 454 sequences (Fig 2, Table 2 and S3 Table) were subjected to DNA amplification
and Sanger sequencing. Moreover, six heterogeneous positions identified in the TPA SS14
genome in this study or by Matějková et al. [14] were tested in four different SS14 DNA prepara-
tions originating from two different rabbit passages (Table 3). Primers used for DNA amplifica-
tion and sequencing are specified in S4 and S5 Tables. PCR was performed as follows: initial cycle
at 94°C (1 minute), was followed by 30 cycles at 94°C (30 seconds), 55°C (30 seconds), and 72°C

Fig 1. Data analysis workflow. (A) An automated identification pipeline and optimization process. (B) An application of further restrictions and verification of
identified putative candidates.

doi:10.1371/journal.pntd.0004110.g001
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(1 minute), and by the final extension step at 72°C (7 minutes). Sequencing of the PCR products
was performed using primers used for PCR amplifications with the dye-terminator Sanger
sequencing technology. The frequency of alternative alleles in heterogeneous positions was calcu-
lated from the ratio of corresponding areas under the chromatogram curves. Sequence analysis of
Sanger reads was performed using Lasergene software (DNASTAR, Inc., Madison, WI, USA).

Table 2. Summary of the intrastrain variable sites identified within Illumina sequencing reads in investigated treponemal genomes.

T. p. strain
Average
coverage
Illumina/454a

Genome
sequence

Verified by 454 or
Sanger sequencing

Major/
minor
allele

Gene/Genome
position

Amino acid
changeb

Protein function/Functional
group

Cell
localizationc

TPA Nichols T 454 T/C TPANIC_0006/7179 *56S; read through
stop codon

Hypothetical protein/Unknown cytoplasm

31x/30x T 454 T/C TPANIC_0051/59894 S104P PrfA/Translation cytoplasm

A 454 A/C TPANIC_0222/228259 E46D; conservative Hypothetical protein/Unknown unknown

G Sanger G/A TPANIC_0471/500905 D357N Hypothetical protein/Unknown cytoplasmic
membrane

T 454 G/T upstream of
TPANIC_0584/635418

n/ad n/a n/a

TPA DAL-1 C 454 C/T TPADAL_0065/71972 R70W SAM dependent
methyltransferase/General
metabolism

cytoplasm

38x/33x G Sanger G/A TPADAL_0720/789942 A155V;
conservative

CheC-FliY/Motility, Chemotaxis cytoplasm,
flagellar

T 454 T/C TPADAL_0720/790038 N123S CheC-FliY/Motility, Chemotaxis cytoplasm,
flagellar

T 454 T/G TPADAL_0897/976768 K338Q TprK/Virulence periplasm [85]

TPA SS14 G 454 G/C TPASS_20117/135108 N533K TprC/Virulence outer membrane
[100]

40x/29x A 454 A/G TPASS_20117/135261 Y483H TprC/Virulence outer membrane
[100]

T 454 C/T TPASS_20341/364888 L64P MurC/Cell structure cytoplasm

A Sanger A/C TPASS_20394/420117 H107P TopA/DNA metabolism cytoplasm

T 454 T/C TPASS_20402/428628 L134P FliI/Motility cytoplasm

G 454 G/T TPASS_20402/428930 A235S FliI/Motility cytoplasm

G 454 G/A TPASS_21029/1125352 D12D;
synonymous

Hypothetical protein/Unknown cytoplasm

TPE Samoa D C 454 C/T TPESAMD_0134/
155544

C284Y Hypothetical protein/Unknown unknown

42x/21x

TEN Bosnia A C 454 C/G TENDBA_0314/331578 E215Q Hypothetical protein/Unknown unknown

194x/72x A 454 A/T TENDBA_0314/331618 H201Q Hypothetical protein/Unknown unknown

A 454 A/G TENDBA_0316/333355 V240A;
conservative

chimeric TprGIe/Virulence unknown

C 454 C/T TENDBA_0621/672156 T104T;
synonymous

TprI/Virulence unknown

S 454 C/G TENDBA_0897/974407 E347Q TprK/Virulence periplasm [69]

TCCTCCCCC 454 9 bp indelf TENDBA_0967/
1049918-1049951

n/a Hypothetical protein/Unknown unknown

Illumina-identified intrastrain variable sites were verified using 454 or Sanger sequencing.
ano intrastrain heterogeneous site were identified in the TPA Mexico A, TPE CDC-2, TPE Gauthier, TPE Fribourg-Blanc and TPLC Cuniculi A genomes
bnonconservative amino acid replacements are not listed
cif not indicated, localization was predicted by PSORTb
dnot applicable
e[20],[23]
fvariable number of direct repeat (TCCTCCCCC)

doi:10.1371/journal.pntd.0004110.t002
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Fig 2. A schematic representation of the identified heterogeneous positions in all investigated genomes. The proportion of alternative alleles is based
on nucleotide frequency within individual Illumina reads. While red cells represent identified sites of intrastrain heterogeneity, grey cells represent sites of
intrastrain homogeneity. The numbers within cells indicate the number of alternative/standard reads in the sites where the number of alternative reads
exceeded 10% but were lower than 20% and therefore remained below the threshold used in this study. Blue cells show nucleotide positions omitted from
analysis due to excluded paralogous sequences (S2 Table). For the Bosnia A strain, the intrastrain heterogeneous sites TENDBA_0314/331578,
TENDBA_0314/331618, TENDBA_0317/333355 and TENDBA_0621/672156 are not shown because in all other genomes these positions were excluded
from analysis due to paralogous sequences. Note that the TPADAL_0897/976678 and TENDBA_0897/974407 positions are the same.

doi:10.1371/journal.pntd.0004110.g002
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Conserved protein domain database search
The NCBI Conserved Domain Database [67] and InterProScan [68] were used to predict pro-
tein domains. Putative protein localization within a cell was determined using the PSORTb
program [69].

Results

Identification of intrastrain heterogeneous sites
A set of 10 treponemal whole genome sequences including those of 4 TPA strains (Nichols,
DAL-1, Mexico A, SS14), 4 TPE strains (CDC-2, Gauthier, Samoa D, Fribourg-Blanc), 1 TEN
strain (Bosnia A) and one strain of TPLC (Cuniculi A) were examined with respect to the
presence of intrastrain heterogeneous sites. All but one (TPA Mexico A) genomes were
sequenced using both Illumina and 454 sequencing methods. Characteristics of the sequence
data obtained with each strain, including the average coverage attained during Illumina and
454 sequencing, are shown in Table 1. Altogether, 890 potentially heterogeneous positions
among investigated genomes were identified using an automated pipeline (Fig 1). Several
criteria (see Materials and methods) were used to filter out sequencing errors from genetic
heterogeneity naturally occurring in treponemal strains (i.e. representing intrastrain hetero-
geneous sites), which reduced the 890 nucleotide positions to 46 candidates (Fig 1). Regions
containing paralogous sequences and tandem repeats (summarized in S1 and S2 Tables) were
omitted from the automated analyses of intrastrain heterogeneity due to the risk of ambigu-
ously mapped reads. Using these criteria, 32 genomic regions covering 26,636 bp (2.34% of
the entire genome length) were excluded from the analysis of Illumina sequencing reads in
the TPA Nichols genome (S1 Table). Except for the TEN strain Bosnia A, similar regions
were also excluded in whole genome sequences in other tested genomes (S2 Table) (see Mate-
rials and Methods).

An instance of intrastrain heterogeneity was considered to be present if 1) two different
nucleotides (or an indel) were detected at a given genome coordinate, and 2) this heterogeneity
was present in at least two sequencing analyses using different sequencing chemistry. The auto-
mated analysis of Illumina reads revealed 46 candidates (Fig 1), of which 20 heterogeneous
sites were directly verified by automated analysis of 454 reads. The remaining 26 candidate

Table 3. Selected intrastrain heterogeneous sites identified in TPA SS14, examined in four different DNA preparations.

Bact erial
stock no.

DNA
preparation no.

G/Ca, c, d A/Gc, d T/Cc T/Cc, d G/Tc, d T/Cd

TPASS_20117/
135108

TPASS_20117/
135261

TPASS_20341/
364888

TPASS_20402/
428628

TPASS_20402/
428930

TPASS_20971/
1056002

2839 4933 G/C (0.0–0.1) A/G (0.0–0.2) T/C (0.5–0.6) T (0.0) T (1.0) T/C (0.5–0.6)

4950b G (0.0) A (0.0) T/C (0.5–0.6) T (0.0) T (1.0) T/C (0.7)

2840 4934 G/C (0.3–0.4) A/G (0.4–0.6) T/C (0.7) T/C (0.2–0.3) G/T (0.4–0.7) T/C (0.3)

4951b G/C (0.3–0.4) A/G (0.4–0.5) T/C (0.5) T/C (0.3–0.4) G/T (0.3–0.6) T/C (0.1)

DNA preparations originated from two different rabbit passages. Relative proportions of alleles not stated in the reference genome are shown in

parentheses as derived from repeated Sanger sequencing.
athe first nucleotide corresponds to the sequence published in the SS14 genome sequence CP004011.1 [16]
bDNA preparations 4950 and 4951 were used for whole genome sequencing of the TPA SS14 strain by Matějková et al. [14]; preparation 4951 was used

for re-sequencing of this strain [16]
cheterogeneous positions identified in this study (Table 2)
dheterogeneous positions identified by Matějková et al. [14]

doi:10.1371/journal.pntd.0004110.t003
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sites, solely found in Illumina reads, were sequenced using Sanger technology, and in three of
them, heterogeneous sites were identified (Tables 2 and S3).

Intrastrain heterogeneous sites are mainly present in TPA and TEN but
not in TPE strains
The 23 intrastrain heterogeneous sites, identified using the automated analysis of Illumina
sequencing reads and either 454 or Sanger sequencing reads, were found in 5 out of 10 investi-
gated treponemal genomes (Table 2), including TPA strains Nichols, DAL-1, and SS14, TPE
strain Samoa D and TEN strain Bosnia A. No intrastrain heterogeneous sites were identified in
TPAMexico A, TPE CDC-2, Gauthier, Fribourg-Blanc and TPLC Cuniculi A genomes. Up to
7 intrastrain heterogeneous sites were identified in individual genomes. Whereas only one het-
erogeneous site was identified in the 4 examined TPE strains, 16 heterogeneous sites were
detected among the 4 TPA strains analyzed. The TEN strain Bosnia A contained 5 single nucle-
otide heterogeneous sites, however, four of these heterogeneous sites (TENDBA_0314/331578,
TENDBA_0314/331618, TENDBA_0317/333355 and TENDBA_0621/672156) were located
within paralogous regions that had been excluded from analysis in all other genomes (S2
Table). In contrast to other genomes, the TEN Bosnia A genome was sequenced using the
pooled segment genome sequencing method (PSGS) [20] as four distinct samples, whereas
other treponemal genomes were not subdivided prior to Illumina sequencing. Therefore,
orthologous genes to TENDBA_0314, TENDBA_0317 and TENDBA_0621 genes were not
completely analyzed in other genomes. In contrast, the same heterogeneous site found in the
tprK gene of TEN Bosnia A (TENDBA_0897/974407) was also identified in the TPA DAL-1
strain (TPADAL_0897/976768). Interestingly, this genome position is included in tprK vari-
able regions of the TPA SS14 and Mexico A genomes, however, it was included in non-variable
regions in all other genomes [37]. Therefore, in TPA SS14 and Mexico A genomes, these tprK
hypervariable regions were excluded from analyses (Fig 2). In four cases, comprising genes
TPASS_20117 (tprC), TENDBA_0314 (hypothetical gene), TPASS_20402 (fliI) and TPA-
DAL_0720 (fliY), two heterogeneous sites were found in each gene (Fig 2 and Table 2).

Characteristics of identified intrastrain heterogeneous sites
All but one heterogeneous sites represented alternative nucleotides resulting from substitu-
tions, while one indel-variable site was found (Table 2). Out of 23 identified heterogeneous
sites, one was localized in an intergenic region and all others (n = 22) were within the predicted
coding regions comprising 17 genes. The heterogeneous genes encode Tpr proteins (TprC,
TprI, TprK and a chimeric TprGI), proteins involved in bacterial motility and chemotaxis (FliI
and CheC-FliY), translation proteins (PrfA), peptidoglycan synthesis (MurC), general metabo-
lism (putative SAM dependent methyltransferase), DNA metabolism (TopA), and hypothetical
proteins of unknown function (TPANIC_0006, TPANIC_0222, TPANIC_0471;
TPASS_21029; TPESAMD_0134; TENDBA_0314, TENDBA_0967).

One alternative allele resulted in replacement of a stop codon and resulted in protein elon-
gation, while the others resulted in synonymous (n = 2) or nonsynonymous mutations
(n = 18). Of the nonsynonymous mutations, 3 resulted in conservative and 15 in nonconserva-
tive amino acid replacements (Table 2). Transitions (n = 13) were found more frequently than
transversions (n = 9). Most frequent were C!T and G!A (n = 9) transitions while T!C and
A!G transitions were less frequent (n = 4). C!A and T!A transversions were not found.
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Identification of the intrastrain heterogeneous sites in different passages
of TPA SS14
To test whether intrastrain heterogeneous sites were present stably within different rabbit pas-
sages, a set of intrastrain heterogeneous sites identified in the TPA SS14 were examined in
four different DNA preparations originating from two different rabbit passages (see Materials
and methods, Table 3). While DNA samples 4933 and 4950 were isolated from the same batch
of treponemal cells (batch 2839), DNA samples 4934 and 4951 were prepared from bacterial
stock 2840. Only minimal differences in the presence and frequency of alternative alleles were
found between 4933 and 4950 (and also between 4934 and 4951), whereas clear differences
between DNA preparations obtained from bacterial stocks 2839 and 2840 were found
(Table 3).

Discussion
In this study, correct identification of intrastrain variable sites was considered of critical impor-
tance. To filter out sequencing errors, several restrictions in detecting algorithms were applied.
Paralogous genome regions were omitted from analyses due to the risk of incorrect mapping of
individual reads belonging to different genome regions. Duplicated reads, i.e. reads that showed
identical start and end points were automatically identified and removed from further analyses
in order to analyze only uniquely generated sequencing reads and to remove potential bias dur-
ing DNA amplification. Since most of the Illumina errors are nucleotide substitutions located
at the 3’ DNA end [58],[70], sequence differences close to the 3’ DNA end (at positions that
were 4 or less nucleotides from end) of individual reads were filtered out. An increased error
rate, within and in close proximity to homoplymeric regions, was also reported in the original
Solexa chemistry [71]. Therefore, we also filtered out differences in homopolymeric tracts and
in close vicinity (defined as 2-nt distance) to homopolymeric tracts although we are aware that
the variations in length of homopolymeric tracts, especially those composed of guanosine tan-
dem repeats, are of biological importance. These tandem repeats are known to regulate tran-
scription (if located in promoter regions) and have been identified in the T. pallidum genomes
[72],[73]. To further increase validity of the results, only alternative reads reaching at least a
20% frequency were analyzed. In summary, these relatively stringent measures certainly led to
a number of missed heterogeneous sites both in the analyzed and in the non-analyzed genome
regions. In addition to missed single nucleotide heterogeneous sites, larger sequences showing
genetic heterogeneity were likely also missed due to the relatively short length of Illumina reads
and due to applied restrictions in the detection algorithm. An example of such sites could be
the 1.3 kb-long tprK-like sequence between TP0126 and TP0127 or the 64 bp-long indel
between TP0135 and TP0136, previously identified in the TPA Nichols genome [25],[39].
Another example comes from this work where one region of intrastrain heterogeneity compris-
ing a 9 nt-long insertion sequence in TENDBA_0967 was found in the Bosnia A strain during
manual inspection of individual reads. The insertion represents an additional tandem repeti-
tion within a larger region between coordinates 1044918 and 1044951. Despite the possibility
of missed sites of intrastrain heterogeneity, the automated analysis pipeline used in this study
revealed 46 putative heterogeneous sites and 23 of them (50.0%) were verified using an inde-
pendent sequencing method with different sequencing chemistry. The remaining, non-verified
23 positions likely represent falsely identified sites, likely as a consequence of accumulated
error-containing Illumina reads. The majority of heterogeneous sites identified in this study
represented transitions and not transversions, which, in general, are common Illumina
sequencing errors; A!C was most common, followed by G!T transversions [59],[70]. The
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number of heterogeneous sites in a particular genome did not correlate with average sequenc-
ing coverage nor with estimated percent Illumina error rate per nucleotide (Table 1).

Although heterogeneous sites were found to be mostly strain-specific, several examples
revealed the same heterogeneous site was identified in two genomes. The same heterogeneous
site was found in the tprK gene of the DAL-1 and Bosnia A genomes. Interestingly, the same
position was also found to be heterogeneous in the Nichols genome, although the number of
Illumina reads supporting the less frequent nucleotide remained below threshold (SRX012305,
Fig 2). A similar situation was also found in two other sites, one in SS14 and Cuniculi A
genomes and the other one in Samoa D and Nichols genomes (Fig 2). These findings indicate
that the number of intrastrain heterogeneous sites per genome is limited and that different
treponemal strains tend to display variability in the same positions of several genes. The abun-
dance of nonsynonymous mutations, nonconservative amino acid replacements and the fact
that most of the heterogeneous sites were located within coding regions suggest that the hetero-
geneous sites represent beneficial adaptive mutations [74].

In this study, 23 intrastrain heterogeneous sites in 17 genes were identified in 5 out of 10
investigated treponemal genomes, predominantly in TPA strains. The reason why most of the
heterogeneous sites were identified in the TPA, but not in TPE strains, is not clear, however, it
might reflect different tissue tropism of TPA and TPE strains, different growth rate in experi-
mental rabbits, differences in pathogenesis or other reasons. Regardless, this finding indicates
distinct genetic characteristics of TPA and TPE strains. Although the TEN strain Bosnia A
resembled TPA strains in this respect, most of the heterogeneous positions were identified in
paralogous regions which were excluded from the automated analysis of other genomes (Fig
2). The single heterogeneous site identified in nonparalogous regions in the Bosnia A genome
thus resembles TPE strains. In fact, the Bosnia A genome is more related to TPE strains than to
TPA strains, although several sequences similar to TPA sequences were identified in the Bosnia
A genome [20]. In contrast to other TPA strains, analysis of the TPAMexico A strain did not
reveal any heterogeneous sites (Fig 1 and Table 2). Unlike other TPA strains, the Mexico A
genome has been shown to contain two TPE-like sequences [15]. However, it remains unclear
whether these two observations are related.

A comparison of our results with a previously published paper describing heterogeneous
sites in the TPA SS14 strain [14] is shown in the Table 4. In the analyzed portion of the SS14
genome, Matějková et al. found 18 heterogeneous sites. Out of these 18 sites, we automatically
detected 5 sites. In other 4 sites, the frequency of the alternative allele was below threshold and/
or did not meet restriction criteria, nonetheless manual inspection revealed the presence of the
alternative allele. In additional two cases, the heterogeneity was identified in 454 reads
(SRX000109), but not by Illumina reads. Comparison of our results with those published by
Matějková et al. [14] identified a substantial overlap, however, 7 sites (38.9%) detected by
Matějková et al. were not found in our study. Interestingly, all non-detected heterogeneous
sites were located in tpr genes (including tprC,I,J) or in the intergenic regions between them. At
least two independent explanations can be proposed; one explanation involves the fact that the
BWA (Borrows-Wheeler Aligner) mapping algorithm used in this study was not able to detect
closely spaced heterogeneous sites representing a specific haplotype in relatively short Illumina
or 454 reads, due to alignment restrictions. To align an individual read to the reference
sequence, a 95% identity with the reference genome sequence was required in our study. How-
ever, no such reads were found in the raw data set (SRX012306, SRX000109). The other expla-
nation involves falsely identified heterogeneous sites as a result of PCR-based errors
introduced during amplification of diluted target DNA and subsequent cloning of PCR prod-
ucts, as was done in the work of Matějková et al. [14]. The latter explanation is also supported
by the fact that the undetected heterogeneous sites were often supported by low numbers of
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alternative clones (Table 4). Deeper sequencing of identified heterogeneous genome sites will
be needed to answer these questions.

In bacterial genomes, most mutations represent C!T transitions arising via deamination of
cytosine [75], T!C transitions via oxidation of thymine and/or inefficient DNA repair [76],
A!G transitions via deamination of adenine [76], and G!T transversions via oxidization of
guanine [76]. In fact, these 4 (out of 12 possible) mutations were observed in 11 out of 22 single
nucleotide substitutions (50%) indicating that most common types of substitutions overlap
with the most frequently seen bacterial mutations. In contrast, sample oxidation frequently
results in C!A and G!T changes [77], while Illumina errors are predominantly A!C trans-
versions [59],[70]. Only three such substitutions (out of 22; 13.6%) were, in fact, found in this
study indicating that these substitutions are not overrepresented. Interestingly, the candidate
sites identified using the Illumina pipeline, but not verified by other sequencing techniques (S3
Table), frequently (in 73.9%) included these types of mutations, which points to Illumina as a
source of errors and false-positive results.

Table 4. Comparison of heterogeneous positions identified in TPA SS14 strain by Matějková et al. [14] and by the automated pipeline used in this
study.

Gene Genome position in the SS14
genome CP000805.1 (CP004011.1)a

Heterogeneity identified by
Matějková et al. [14]b

Nucleotide frequency
identified in this studyb

Heterogeneity detected in
Illumina reads

TPASS_20117 135098 (135108) G or C (5/6) G or C (32/12) yes

135107 (135117) T or C (3/4) T or C (50/1) Yesc

135235 (135245) G or A (2/10) A (46) no

135239 (135249) C or T (2/10) T (49) no

135251 (135261) A or G (6/6) A or G (41/11) yes

TPASS_20402 427435 (428628) C or T (NA) C or T (15/21) yes

427737 (428930) G or T (NA) G or T (25/14) yes

TPASS_20620 671746 (673228) T or C (9/3) T (23) no

671751 (673233) T or G (19/10) T (22) no (but detected by 454)d

671753 (673235) T or C (19/10) T (22) no (but detected by 454)d

671763 (673245) C or T (8/4) C or T (24/5) yesc (also detected by
454)d

672286 (673768) G or A (4/12) A (29) no

Upstream of
TPASS_20620

672916–7 (674399–674400) (-) or C (6/6) (-) or C (7/5) yesc

672944 (674427) A or G (14/6) A (14) no

TPASS_20621 673425 (674908) C or T (2/8) T (44) no

673428 (674911) A or G (2/8) G (44) no

TPASS_20971e 1054447 (1056002) T or C (NA) T or C (35/3) yesc

TPASS_21029 1123796 (1125352) G or A (5/6) G or A (24/18) yes

aadditional intrastrain heterogeneous genome positions identified by Matějková et al. [14] including 135141, 135144, 135149, 135220, 135227, 671982,

672004, 672016, 672025, 672026, 672027, 672028, 672036, 672039, 672040, 672041, 672042, 672043, 672044, 672154, 673088, 673119, 673511,

673545, 673550, and 673554 (according to the CP000805.1) were located in paralogous regions and therefore were excluded from the automated

pipeline (S2 Table)
bnumbers in parentheses show numbers of sequenced clones [14] or nucleotide frequency within individual Illumina sequence reads (this study); NA—not

available
cnot present in Table 2; heterogeneous positions were detected in raw Illumina sequencing reads but were excluded due to study criteria
d these heterogeneous sites were not found among Illumina reads, but were identified among 454 reads (SRX000109)
esee also Table 3; independent DNA preparations showed clear differences in proportions of alternative alleles, ranging from 0.1 to 0.7

doi:10.1371/journal.pntd.0004110.t004
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TPA SS14 bacterial stocks 2839 and 2840 differed in at least 12–14 treponemal generations
of separated cultivation corresponding to two rabbit subcultivations each, of approximately
100-fold increase, in the number of treponemes per subcultivation. Heterogeneous sites were
clearly different in DNA preparations obtained from different bacterial stocks, indicating the
dynamic nature of this heterogeneity. This observation could also explain the strain-specificity
of intrastrain heterogeneous sites identified in this study. The role of rabbit passages in the
occurrence of heterogeneous sites remains unknown, however, genetic heterogeneity has also
been identified in treponemes isolated directly from human host (Natasha Arora, personal
communication). The occurrence of intrastrain heterogeneity in TPA from human samples
suggests its potential significance for molecular typing of syphilis treponemes by both sequenc-
ing approach [78],[79] and RFLP analysis of amplified genes [80],[81].

Out of 22 heterogeneous sites showing alternative nucleotides, 16 heterogeneous sites were
found in conserved genome positions (where all investigated genomes had identical
sequences), while 6 were found in genome positions in which the analyzed genomes differed in
sequence. In 5 out of 6 sites, alternative nucleotides of heterogeneous positions matched nucle-
otide sequences present in analyzed genomes. Considering the highest divergence observed in
treponemal genomes, which represents 0.84% sequence diversity between the conserved
regions of the TPA and TPLC genomes [17], the theoretical probability that a heterogeneous
site would be located at a nonconserved genome position is 8.4 x 10−3. In our study, heteroge-
neous sites were found more frequently (in 6 out of 22) in nonconserved genome positions (2.7
x 10−1; p< 0.001), suggesting the role of heterogeneous sites in the process of treponemal
genome diversification.

This study identified heterogeneous sites in four tpr genes, in genes involved in bacterial
motility and chemotaxis (2), in cell structure (1), translation (1), general and DNA metabo-
lism (2), and in seven hypothetical genes. The average expression rate of these 17 genes (1.33)
during experimental rabbit infection was greater than the whole genome average (1.0) [82]
indicating that these genes are expressed during host infection. Interestingly, heterogeneous
sites were identified in tprC, tprI, tprK and chimeric tprGI genes. Several studies have shown
that Tpr antigens are expressed during infection and are able to elicit antibody and cellular
immune responses in the infected host [23],[83],[84]. Moreover, several Tpr proteins have
been predicted to be outer membrane proteins [23],[85]. In addition, the tprK gene undergoes
antigenic changes in seven variable regions and TprK variants are selected by the immune
response [86],[87]. It has also been shown that tprK variants accumulate during infection of
the host [88],[89] and that individual TprK variants helped to disseminate T. pallidum infec-
tions [87]. As demonstrated by LaFond et al. [90], variable regions elicited a variant-specific
antibody response indicating that minor sequence changes may affect antibody binding. In
this context, nonconservative changes could result in strain-specific surface-exposed epitopes
that are crucial for immune evasion as previously predicted for discrete variable regions
within TprC and TprD [23]. In E. coli, the topA (corresponding to TPASS_20394) mutation
has been shown to affect fitness relative to isogenic constructs [91]. Moreover, topA and
genes involved in cell wall biosynthesis and translation have been shown to repeatedly mutate
in independent lines of E. coli during long-term cultivation experiment [74]. Heterogeneous
sites in pathogenic treponemal strains may therefore represent adaptive changes that take
place during infection of various host tissues and compartments as described in other bacteria
[52]. At the same time, these sites may represent snapshots of an ongoing evolutionary trajec-
tory. Advances in deep sequencing techniques and prospective whole genome sequencing or
metagenomic studies will help, in the future, to identify a larger and perhaps more complete
set of treponemal intrastrain heterogeneous sites [53],[54],[92].
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