

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202002928

Biomimetic human disease model of SARS-CoV-2 induced lung injury and immune responses on organ chip system

Min Zhang^{1,4}†, Peng Wang¹†, Rong-Hua Luo^{5,6,7}†, Yaqing Wang^{1,4}†, Zhongyu Li¹, Yaqiong Guo^{1,4}, Yu-Lin Yao^{6,8}, Ming-Hua Li⁵, Tingting Tao^{1,4}, Wenwen Chen^{1,4}, Jian-Bao Han⁵, Haitao Liu^{1,4}, Kangli Cui^{1,4}, Xu zhang¹, Yong-Tang Zheng^{5,6,7*}, Jianhua Qin^{1,2,3,4,*}

Supplementary Information:

Biomimetic human disease model of SARS-CoV-2 induced lung injury and

immune responses on organ chip system

Min Zhang^{1,4} †, Peng Wang¹ †, Rong-Hua Luo^{5,6,7} †, Yaqing Wang^{1,4} †, Zhongyu Li¹, Yaqiong Guo^{1,4}, Yu-Lin Yao^{6,8}, Ming-Hua Li⁵, Tingting Tao^{1,4}, Wenwen Chen^{1,4}, Jian-Bao Han⁵, Haitao Liu^{1,4}, Kangli Cui^{1,4}, Xu zhang¹, Yong-Tang Zheng^{5,6,7*}, Jianhua Qin^{1,2,3,4,*}

†These authors contributed equally to this work.

¹Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

²Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China

³CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China

⁴University of Chinese Academy of Sciences, Beijing, China

⁵Kunming National High-level Bio-safety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China

⁶Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China

⁷KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.

⁸Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China

*Correspondence:

Jianhua Qin, Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. E-mail: jhqin@dicp.ac.cn. Tel: 86-0411-84379650.

Yongtang Zheng, Kunming Institute of Zoology, 32 Jiaochang Donglu Kunming, Yunnan, E-mail: zhengyt@mail.kiz.ac.cn. Tel: +86 0871 65295684.

Figure S1. Schematic diagram of porous PDMS membrane used in alveolus chip. The diameter of the pore is 5 μ m, and the center-to-center spacing between the two adjacent pores is 70 μ m. The thickness of the membrane is 25 μ m.

Figure S2. Characterization of the formed alveolar epithelium and pulmonary microvascular endothelium in the human alveolus chip by confocal immunofluorescent imaging. (A) The full scanning of epithelial layer (E-cadherin) and endothelial layer (VE-cadherin) in the parallel channel. (B) The formation of adherent junctions in alveolar layer (E-cadherin) and microvascular endothelium (VE-cadherin) on alveolus chip.

Figure S3. Permeability testing of the formed alveolar-capillary barrier within alveolus chip under different culture conditions. After cell loading for 3 days, the medium with FITC-dextran (40 kDa, 1 mg/mL) was infused into the vascular channel of device. Then, the media was collected from the alveolar channel at different time points (0, 1, 2 h) and the fluorescence intensity was measured to evaluate the permeability of the alveolar capillary barrier. Data were presented as mean \pm SD. N=2.

Figure S4. The expression levels of ACE2 and TMPRSS2 proteins in HPAEpiC cells were examined by western blot under mono-cultures or co-cultures with HULEC-5a cells in Transwell for 3 days.

Figure S5. Confocal immunofluorescent images of THP-1 monocyte adhesion to HULEC-5a cells after exposure to IL-6 or IL-2 in the microfluidic chip. (A) The HULEC-5a cells were treated with 30 ng/mL IL-2 or 30 ng/mL IL-6 for two days. Then the THP-1 cells were introduced into the vascular channel of the chip. Before infusion into the vascular channel, THP-1 cells were activated with 10 ng/mL phorbol myristrate acetate (PMA). Confocal immunofluorescent micrographs showed the adhesion of THP-1 cells (Red) on the surface of HULEC-5a cell layer (Green). Scale bars: 100 μm. (B) Quantitative analysis of the number of adherent THP-1 cells per image in the control and groups treated with IL-2 and IL-6. Data were presented as mean ± SD. Data were analyzed using one-way ANOVA with Bonferroni post-test (***: p<0.001). Eight chips were quantified for each group.

Figure S6. Examination of cytokines produced from epithelium effluence after SARS-CoV-2 infection in the presence or absence of PBMCs on the alveolar chip. Quantitative analysis of the secreted inflammatory cytokines (A) IL-1 β , (B) IL-6, (C) IL-8, and (D) TNF- α in media from the alveolar layer. Data were presented as mean \pm SD. Data were analyzed using a one-way ANOVA with Bonferroni post-test (***: p<0.001). Six chips were quantified for each group.

 $\label{thm:continuous} \textbf{Table S1. List of antibodies used for Western blot (WB) and immunofluorescence (\textbf{IF}). }$

Primary	Supplier	Cat #	Species	Purpose	Dilution
antibodies					
ACE2	Proteintech	21115-1-AP	rabbit	WB	1:1000
	Group				
TMPRSS2	Proteintech	14437-1-AP	rabbit	WB	1:1000
	Group				
GAPDH	CWBIO	CW0100	rabbit	WB	1:5000
Nucleoprotein	SinoBiological	40143-R019-100	rabbit	WB	1:1000
(NP)					
E-caherin	Proteintech	60335-1-Ig	mouse	IF	1:200
	Group				
VE-cadherin	Proteintech	66804-1-Ig	mouse	IF	1:200
	Group				
CD14	Abcam	Ab183322	rabbit	IF	1:200
Spike	Sino	40150-R007	rabbit	IF	1:200
	Biological				

Secondary antibodies	Supplier	Cat #	Dilution
Anti-Rabbit IgG(H+L),	Cell	4412	1:1000
F(ab')2 Fragment (Alexa	Signaling		
Fluor® 488 Conjugate)			
Anti-Rabbit IgG(H+L),	Cell	8889	1:1000
F(ab')2 Fragment (Alexa	Signaling		
Fluor® 594 Conjugate)			
Anti-mouse IgG (H+L),	Cell	8890	1:1000
F(ab')2 Fragment (Alexa	Signaling		
Fluor® 594 Conjugate)			
Anti-mouse IgG (H+L),	Cell	4408	1:1000
F(ab')2 Fragment (Alexa	Signaling		
Fluor® 488 Conjugate)			