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Abstract: A model for capillary phenomena including temperature-dependency and thermal bound-
ary conditions is presented in the numerical framework of smoothed particle hydrodynamics (SPH).
The model requires only a single fluid phase and is therefore computationally more efficient than
surface tension schemes which need an explicit fluid-fluid or fluid-gas interface. The model makes
use of a surface identification mechanism based on the SPH renormalization tensor. All relevant
properties of the continuum surface force (CSF) based approach, i.e., the delta function, normal
vector and curvature, are calculated in a consistent manner. The model is parametrized by physical
material properties and is successfully validated by means of a large set of analytical test cases. The
applicability of the proposed model to more complex scenarios is demonstrated.

Keywords: continuum surface force; contact angle; wetting; Marangoni flow; heat transfer; heat flux;
radiation; coalescence

1. Introduction

Modeling surface tension in the framework of smoothed particle hydrodynamics [1,2]
is generally done using one of the following two approaches.

On the one hand, surface tension can be formulated as a continuum surface force.
This approach introduces a surface delta function to approximate the tension, i.e., a force
per area, in form of a force per volume [3]. A color function is used here to identify
the involved phase and the interface between them. An early SPH implementation of
the CSF approach for two phases was described and analyzed by Morris [4]. Hu and
Adams [5] used an interface stress tensor to avoid the explicit calculation of the curvature
at the phase interface. They also extended the formulation to more than two phase which
allows modeling of contact angles. Adami et al. [6] improved the CSF scheme by an
accurate curvature calculation. Their method is also able to handle large density ratios
of the involved phases of up to 1000. Zhang [7] enabled surface tension modeling in a
single-phase SPH simulation by identifying the boundary particles and reconstructing the
phase surface in two dimensions (2D) or three dimensions (3D). Breinlinger et al. [8] were
able to model wetting effects in two-phase SPH simulations by prescribing the contact
angle with respect to a rigid substrate. Thermo-capillary effects based on a temperature-
dependent surface tension were studied by Tong and Browne [9] using a two-phase SPH
approach. For this purpose, they used a projection of the gradient operator onto the phase
interface. Yeganehdoust et al. [10] developed a method to extrapolate the color function into
a substrate in order to model both static and dynamic wetting phenomena. Huber et al. [11]
introduced a balance equation for the contact line between the two fluid phases and
the substrate to accurately model advancing and receding contact angles in dynamic
wetting situations. Ordoubadi et al. [12] used a single-phase SPH formulation for the CSF
approach in which they identified the surface by a combination of a geometric interface
tracking and the calculation of the position divergence field [13]. Hirschler et al. [14]
formulated a single-phase model which obtains the surface normal and the surface delta
function directly from the SPH kernel gradient. The surface curvature is obtained using a
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corrected kernel gradient [15]. Krimi et al. [16] used an interface stress tensor formulation to
model multi-phase flow situations with large density ratios of the involved phases. Hopp-
Hirschler et al. [17] investigated thermo-capillary phenomena in internal flow situations
or for two-phase systems, respectively. They stabilized the SPH simulations by a particle
shifting technique [18]. Lin et al. [19] proposed the detection of an interface between two
phases as well as the calculations of the interface normal and curvature based on a Delaunay
triangulation. Fürstenau et al. [20] formulated a single-phase description using the position
divergence to identify the surface and SPH kernel gradient to compute the surface normal.
They improved the surface curvature calculation by using a curvature tensor. Liu et al. [21]
proposed a machine learning approach in order to obtain a more accurate local interface
curvature in two-phase simulations. Härdi et al. [22] investigated wetting phenomena of
thin films by using an SPH discretization of the shallow water equation and introducing a
contact line force. Liu et al. [23] proposed a single-phase surface tension model based on
the δ+ SPH scheme [24]. They calculated the surface normal from the kernel gradient and
used a normalization procedure to improve the accuracy of the surface delta function.

On the other hand, a surface tension formulation can be based on an additional
pairwise force which is repulsive at short range, attractive at intermediate range and
vanishing at long range. Such models were developed by Nugent and Posch [25] and
refined by Tartakovsky and Meakin [26] as well as Akinci et al. [27]. A pairwise force
mimics the molecular origin of surface tension [28] and results in a net force towards the
bulk for particles at a curved, convex surface [29]. The pairwise force approach originally
required calibration by adjusting model parameters which have no correspondence in
experiments. Tartakovsky and Panchenko [30] made inroads to overcome this drawback
by deriving relations between the pairwise model parameters and physical properties
for multi-phase systems. Nair and Pöschel [31] extended this approach to single-phase
simulations. Bao et al. [32] improved the pairwise force formulation for dynamic wetting
phenomena by introducing an apparent viscosity at the interface to a rigid substrate which
mimics the effect of a finite slip length.

In this work a CSF single-phase surface tension scheme is presented which is an exten-
sion of an earlier work by the author [33]. The approach for modeling wetting behavior is
adapted from Breinlinger et al. [8] and the method to incorporate thermo-capillarity from
Tong and Browne [9]. The novelty of the present work is the consistent formulation which
is used to compute all surface related properties. The surface identification scheme from
Marrone et al. [34], relying on the renormalization tensor, is used as the basis to obtain the
surface normal, surface curvature and surface delta function in a consistent and accurate
manner. In previous works, at least one of these three surface properties was not based
on the renormalization tensor, leading to an inconsistency in the definition of the actual
surface. The surface delta function is also used to formulate thermal boundary conditions
which take into account heat transfer, heat flux and radiation.

The remaining part of this paper is organized as follows. Section 2 outlines the
governing equations and presents all relevant ingredients of the numerical model. Section 3
uses several benchmark cases to assess the predictive quality of the model. The obtained
results are discussed in Section 4. Section 5 concludes the main part of the paper. Details of
the surface delta function computation are given in Appendix A.

2. Materials and Methods

The governing equations with respect to mass balance, momentum balance and energy
balance are presented in Section 2.1 with focus on the surface related terms. The discretiza-
tion of the governing equations using SPH is described in detail in Section 2.2. The main
contribution of the present work is the SPH surface treatment presented in Section 2.2.2. It
forms the basis for modeling surface thermal boundary conditions (Section 2.2.4), surface
tension (Section 2.2.10) and surface wetting (Section 2.2.11).
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2.1. Governing Equations

The evolution of density ρ over time t is given by the mass balance equation,

Dρ

Dt
= −ρ∇ · v, (1)

where v is the velocity.
The Navier–Stokes momentum equation provides the time evolution of velocity,

Dv
Dt

= −1
ρ
∇P +

2 η

ρ
∇ ·E+

1
ρ

FS + g

= −1
ρ
∇P +

η

ρ
∇2v +

1
ρ

FS + g, (2)

with pressure P, dynamic viscosity η, rate of strain tensor E = (∇v+(∇v)T)/2, volumetric
surface tension force FS and gravitational acceleration g. The time evolution of the position
r is simply

Dr
Dt

= v. (3)

The surface tension force can be decomposed into components normal and tangential,
respectively, to the surface,

FS = Fn + Ft. (4)

The CSF model converts a force per area, i.e., pressure or tension, into a force per
volume by multiplication with a delta function δS which marks the location of the surface
in space. This approach yields the following expression for the normal component of the
volumetric surface tension force,

Fn = −σn κ δS n (5)

with σn as the surface tension, κ as the curvature and n as the surface unit normal vector. A
corresponding tangential volumetric force caused by a gradient of the surface tension is
given by

Ft = δS∇S σn (6)

with ∇S as the Nabla operator along the surface. One reason for a non-constant surface
tension is a dependency on temperature T which might be expressed as ∇S σn = σt∇S T
with σt = ∂σn/∂T which is typically negative and causes Marangoni flow along the surface
from warm towards cold regions. The delta function is constructed as the magnitude of the
gradient of a color function which is 1 on one side of the surface (or interface) and 0 on the
other side.

The evolution for the thermal energy per unit mass H is given by

DH
Dt

=
k
ρ
∇2T +

q
ρ

δS −
f
ρ

δS(T − Ta)−
ε

ρ
σB δS(T4 − T4

a ). (7)

Here, k is the thermal conductivity, q is the heat flux, f is the heat transfer coefficient,
ε is the emissivity, σB is the Stefan–Boltzmann constant and Ta is the ambient temperature.

The heat capacity c relates the temperature to the specific thermal energy,

T =
H
c

. (8)
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2.2. SPH Discretization
2.2.1. SPH Kernel Approximation

A quantity A at the position r is interpolated using a weighted sum over the contribu-
tions A(rj) of all neighboring particles j at positions rj with masses mj and densities ρj,

〈A(r)〉 = ∑
j

mj

ρj
A(rj)W(|r− rj|, h), (9)

where W(r, h) is a kernel function. The particle mass is related to the rest density ρ0 and the
initial particle spacing ∆x via mj = ρ0(∆x)d where d is the number of spatial dimensions.

W(r, h) =
ν

hd

{
(1− 1

2 ζ)4 (2 ζ + 1), 0 ≤ ζ < 2,
0, ζ ≥ 2

(10)

is the quintic C2 Wendland kernel [35] with h as smoothing length and ζ = r/h. The
normalization factor is ν = 7/(4π) for d = 2 and ν = 21/(16π) for d = 3.

Equation (9) can be used to obtain a smoothed approximation of a field quantity at
the position of particle i via

〈Ai〉 = ∑
j

mj

ρj
AjWij, (11)

where Aj = A(rj), Wij = W(|rij|, h), and rij = ri − rj.
In order to discretize the governing equations in the SPH scheme, spatial gradients of

field quantities can analogously be expressed via

∇Ai = ∑
j

mj

ρj
Aj∇Wij, (12)

where the kernel gradient ∇Wij is explicitly given by

∇Wij =
ν

hd+1

rij

|rij|

{
5 ζ (ζ − 2)3/8, 0 ≤ ζ < 2,
0, ζ ≥ 2.

(13)

In comparison to the canonical formulation given by Equation (12), the expressions

∇Ai = ∑
j

mj

ρj
(Aj − Ai)∇Wij (14)

and

∇Ai = ρi ∑
j

mj

(
Ai

ρ2
i
+

Aj

ρ2
j

)
∇Wij (15)

prove to be numerically favorable [36] and are therefore used in the following SPH
discretizations.

2.2.2. SPH Surface Modeling

A discretization of the governing equations requires the computation of several surface
related quantities such as the surface delta function δS, the surface unit normal n, the
surface curvature κ and the gradient operating along the surface ∇S. The following section
describes our approach to obtain these quantities.

The present SPH formulation makes use of several aspects introduced in [14,24,34]. A
central feature is given by the method to identify the surface by means of the renormaliza-
tion tensor L. The inverse renormalization tensor for particle i is given by

L−1
i = ∑

j

mj

ρj
∇Wij ⊗ rji. (16)
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The minimum eigenvalue λi of L−1
i defines a scalar field which is 1 inside the volume

and approaches 0 at the surface of the particle distribution [34]. This property makes the λ
field similar to the color function on which the CSF model is based. This analogy is used
as key ingredient of the presented surface tension model. The corrected gradient of the λ
field for particle i is given by

∇λi = ∑
j

mj

ρj
(λj − λi)Li∇Wij (17)

and the surface unit normal vector follows simply as

ni = −
∇λi
|∇λi|

. (18)

Following [24] we identify those particles with λi ≤ 0.2 as free surface particles. For
each particle i with λi > 0.2 and λi ≤ 0.75 an umbrella-shaped region with cone half angle
45◦ and range 2 ∆x in the direction of the normal ni is scanned. If there is no particle j
within this umbrella-shaped region, the particle i is also identified as free surface particle.
We define the set of particles which are at most a distance of 1.5 ∆x away from the free
surface particles as surface region particles, including the free surface particles. Thus, the
surface region is typically composed of two neighboring layers of particles. In order to
avoid numerical problems caused by isolated particles, we exclude particles with λi < 0.1
from the surface region. All further surface related calculations are carried out only for the
surface region particles defined in this paragraph.

Furthermore, we define the surface delta function by

δi = Ξλ |∇λi|, (19)

where Ξλ is a dimensionless normalization factor which depends on the ratio h/∆x and the
actual function used as SPH kernel (see Appendix A). An alternative approach to obtain
the surface delta function follows [14],

δi = Ξ1 |∑
j

mj

ρj
∇Wij| = Ξ1 |∇1i|, (20)

where ∇1i is Equation (12) applied to unity at the position of each particle j, i.e., Aj = 1.
Differences between the approaches given by Equations (19) and (20) are discussed in
Appendix A.

The local curvature of the surface is then calculated following [14] using a corrected
kernel gradient,

κi = ∇ · ni = ∑
j

mj

ρj
(nj − ni) · (Li∇Wij). (21)

The sum in Equation (21) is restricted to the surface region particles. The curvature is
limited by the spatial resolution,

2 h |κi| ≤ 1. (22)

2.2.3. SPH Mass Balance

The mass balance (Equation (1)) is discretized using Equation (14) in the form

Dρi
Dt

= ρi ∑
j

mj

ρj
vij · ∇Wij, (23)

where vij = vi − vj is the relative particle velocity.
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2.2.4. SPH Thermal Energy Balance

The thermal energy balance (Equation (7)) for each SPH particle i takes the form

DHi
Dt

=

(
2 k
ρi

∑
j

mj

ρj

(
Ti − Tj

) rij · ∇Wij

|rij|2 + 1
100 h2

)
+

δi
ρi

(
q− f (Ti − Ta)− ε σB (T4

i − T4
a )
)

. (24)

The first term on the right hand side representing thermal diffusion is calculated using
the approach from [37]. The next three terms for heat flux, heat transfer and radiation,
respectively, make use of the surface delta function given by Equation (19). The temperature
for each particle i is then simply obtained as Ti = Hi/c.

2.2.5. SPH Temperature Gradient

In order to model thermo-capillary effects, we need to obtain the temperature gradient
within our SPH formulation similarly to [9]. A corrected gradient formulation [15] is used
in order to get reliable values at the surface,

∇Ti = ∑
j

mj

ρj
(Tj − Ti)Li∇Wij. (25)

2.2.6. SPH Momentum Balance

The Navier–Stokes momentum balance (Equation (2)) for each SPH particle i takes
the form

Dvi
Dt

= fP
i + fV

i + fA
i + fS

i + g, (26)

with the accelerations caused by pressure, fP
i , by viscosity, fV

i , by artificial viscosity, fA
i and

by surface tension, fS
i .

2.2.7. SPH Pressure

The pressure acceleration [1] is obtained by using the gradient discretization according
to Equation (15),

fP
i = −∑

j
mj

(
Pi

ρ2
i
+

Pj

ρ2
j

)
∇Wij. (27)

The pressure Pi of particle i is related to its density ρi by Tait’s equation of state,

Pi =
s2ρ0

γ

[(
ρi
ρ0

)γ

− 1
]

, (28)

where s is the numerical speed of sound and γ is the dimensionless isentropic exponent.

2.2.8. SPH Viscosity

Depending on the details of the actual simulation scenario, one of two approaches
to model the effect of viscosity on the flow is used. Cleary [37] introduced a formulation
based on the relative normal velocity of each pair or particles i and j,

fV
i =

2(2 + d) η

ρi
∑

j

mj

ρj

vij · rij

|rij|2 + 1
100 h2

∇Wij. (29)

An alternative formulation is given by Sigalotti et al. [38] which is structurally similar
to the pressure term (Equation (27)),

fV
i = 2 η ∑

j
mj

(
Ei

ρ2
i
+

Ej

ρ2
j

)
∇Wij. (30)



Materials 2021, 14, 4530 7 of 29

The rate of strain tensor Ei = (∇vi + (∇vi)
T)/2 of particle i is based on its velocity

gradient tensor,

∇vi = ∑
j

mj

ρj
vji ⊗∇Wij. (31)

2.2.9. SPH Artificial Viscosity

An artificial viscosity formulation is in some situations required to stabilize the nu-
merical simulation by damping high frequency noise. It should not influence the dynamics
of the simulation to a statistically significant extent. The artificial viscosity term is given by
Monaghan [1],

fA
i = ∑

j
mj ΠA

ij ∇Wij, (32)

where

ΠA
ij =

{
2(α s− β φij)φij/(ρi + ρj), vij · rij < 0,
0, vij · rij ≥ 0,

(33)

with α and β as dimensionless control parameters of the order of 10−2 and φij as a rescaled
normal velocity,

φij =
h
(
vij · rij

)
|rij|2 + 1

100 h2
. (34)

2.2.10. SPH Surface Tension

Using the quantities derived in Section 2.2.2 we are able to formulate the expressions
for the normal surface tension acceleration in analogy to Equation (5),

fn
i = − δi

ρi
σn κi ni, (35)

and for the tangential surface tension acceleration in analogy to Equation (6),

ft
i =

δi
ρi

σt (∇Ti − (∇Ti · ni)ni). (36)

The sum fS
i = fn

i + ft
i enters the SPH momentum balance (Equation (26)).

2.2.11. SPH Wetting

Following [3,8] we use a modification of the surface normal ni of a fluid particle i in
the vicinity of a wall in order to enforce an equilibrium contact angle. To do so, we first
extrapolate the surface normal nj of the wall particles j on each fluid particle i,

nw
i =

∑j∈wall nj Wij mj/ρj∣∣∣∑j∈wall nj Wij mj/ρj

∣∣∣ . (37)

A corresponding tangent is then evaluated by

tw
i =

ni −
(
ni · nw

i
)
nw

i∣∣ni −
(
ni · nw

i
)
nw

i

∣∣ . (38)

Similarly to Equation (37) the wall contact angle θj is mapped onto the fluid particles,

θw
i =

∑j∈wall θj Wij mj/ρj

∑j∈wall Wij mj/ρj
. (39)
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In many situations the wall contact angle will be a constant but Equation (39) allows
to model also graded or sharp variations of the wetting behavior. Next, the distance to the
wall is calculated for each fluid particle by

dw
i = min

j∈wall
rij · nw

i . (40)

This wall distance is used to obtain a normalized weight,

ww
i =


1, dw

i ≥ 2h,
dw

i −∆x
2h−∆x , ∆x < dw

i < 2h,
0, dw

i ≤ ∆x.
(41)

Finally, the smooth modification is applied,

n∗i = ni ww
i + (tw

i sin θw
i + nw

i cos θw
i )(1− ww

i ), (42)

and n∗i is used in Equations (35) and (36) instead of ni.

2.2.12. SPH Particle Shifting

A particle shifting technique as introduced by Sun [24] can be used to homogenize the
particle distribution. The position shifting for a particle i inside the material, i.e., not in the
surface region, within a time step ∆t is defined as

∆rPST
i = −0.2 h s ∆t ∑

j

[
1 + 0.2

( Wij

W(∆x, h)

)4
]

2 mj

ρi + ρj
∇Wij. (43)

For particles within the surface region and with λi ≥ 0.4, the position shifting is
modified into (I− ni ⊗ ni)∆rPST

i where I is the identity matrix. In the vicinity of a wall, ni
is replaced by n∗i . For surface region particles with λi < 0.4, no position shifting is applied.

2.2.13. SPH Time Integration

The numerical integration time step is based on the fastest physical mechanism in the
simulation. The competing mechanisms are inertia, sound propagation, surface tension,
viscous diffusion and thermal diffusion. Time step conditions leading to stable simulations
involving these mechanisms are given in [1,4,39–41], respectively,

∆t =
1
4

min


√

h
fmax

,
h
s

,

√
ρ0 h3

2π σn
,

ρ0 h2

2 η
,

ρ0 c h2

2 k

, (44)

where fmax is the magnitude of the maximum acceleration of all particles. It is usually
suggested to choose the numerical speed of sound s about 10 times faster than the maximum
particle velocity in the simulation [2]. In our visco-capillary simulations, we found that
also the inequality

s > 3
σn

η
(45)

should be fulfilled in order to maintain stability.
Time integration is done using a velocity Verlet scheme [42]. The density is propa-

gated by

ρi(t + ∆t) = ρi(t) +
∆t
2

(
Dρi(t)

Dt
+

Dρi(t + ∆t)
Dt

)
. (46)

The specific thermal energy is propagated by

Hi(t + ∆t) = Hi(t) +
∆t
2

(
DHi(t)

Dt
+

DHi(t + ∆t)
Dt

)
. (47)
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The velocity is propagated by

vi(t + ∆t) = vi(t) +
∆t
2

(
Dvi(t)

Dt
+

Dvi(t + ∆t)
Dt

)
. (48)

Furthermore, the position is propagated including particle shifting by

ri(t + ∆t) = ri(t) + ∆t vi(t) +
∆t2

2
Dvi(t)

Dt
+ ∆rPST

i . (49)

3. Results

A series of benchmark cases are simulated for which analytical solutions are avail-
able for comparison. In Sections 3.1–3.7 capillary or thermo-capillary benchmarks are
assessed. In Sections 3.8–3.11 the free surface thermal boundary conditions are bench-
marked. Sections 3.12 and 3.13 contain more complex cases which provide suggestions for
further areas of application of the proposed numerical model.

Unless otherwise stated we are using an ethylene glycol parametrization for the
present SPH simulations, i.e., a rest density ρ0 = 1113 kg m−3, a viscosity η = 16.1 mPa s
and a surface tension σn = 48.4 mN m−1. Ethylene glycol is chosen here as an example
for a real fluid which is used in many technical applications. If gravity is used, then
g = (0, 0,−g) with g = 9.81 m s−2. Furthermore, the speed of sound is set to s = 10 m s−1

unless stated otherwise and the isentropic exponent of the equation of state is γ = 1. We
typically use a ratio of smoothing length and initial particle spacing of h/∆x = 1.5 and
accordingly Ξλ = 1.88 for d = 2 and Ξλ = 1.82 for d = 3 (compare Appendix A). In
Sections 3.5 and 3.6 the viscosity model according to Equation (30) is used. For all other
fluidic benchmarks, the viscosity formulation according to Equation (29) is used. For
the benchmark cases in Sections 3.5, 3.6, 3.12 and 3.13 artifical viscosity with parameters
α = 0.01 and β = 0.02 is used. For all other cases artificial viscosity is not activated.

All simulations are carried out using the SimPARTIX software developed by Fraun-
hofer IWM [43].

3.1. Droplet Oscillation

As a first benchmark case we analyze the oscillation of a circular droplet with an initial
divergence-free velocity field [4–6],

vx = v0
x
r0

(
1− y2

r0r

)
exp

(
− r

r0

)
, (50)

vy = −v0
y
r0

(
1− x2

r0r

)
exp

(
− r

r0

)
, (51)

with v0 = 1 m s−1 and r0 = 1 mm. The lateral and vertical coordinates are x and y,
respectively, and r =

√
x2 + y2. The origin is placed at the center of the droplet.

The theoretical oscillation frequency for a 2D droplet is given by

f0 =
1

2π

√
6 σn

R3 ρ0
. (52)

The initial radius of the droplet is R = 4 mm and the resolution is varied between
∆x = 500 µm and ∆x = 125 µm which corresponds to 8 and 32 particles per radius.
Snapshots from the simulation with the finest resolution are shown in Figure 1.
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Figure 1. Oscillation of a free droplet with a divergence-free initial velocity field. The normalized
velocity magnitude is color-coded. The time is normalized by the oscillation frequency (Equation (52)).

The lateral expansion Lx of the droplet as a function of time is shown in Figure 2. The
regular oscillation with decay in amplitude due to viscous dissipation is clearly perceptible.

Figure 2. Normalized lateral expansion of the oscillating droplet as a function of normalized time for
different spatial resolutions.

A Fourier analysis is carried out in order to assess the oscillation behavior in more
detail. The Fourier transform of the droplet expansion, F (Lx), is shown in Figure 3 as a
function of frequency fsim. For the coarsest spatial resolution, the oscillation is too slow.
However, for the two finer resolutions the main frequency peak is in good agreement with
the theoretical prediction given by Equation (52).
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Figure 3. Fourier analysis of the droplet oscillation shown in Figure 2.

3.2. Droplet Formation

The second benchmark is the formation of a droplet from an initial square arrange-
ment of SPH particles as proposed by Adami et al. [6]. The edge length of the square is
L = 6 mm and resolutions between 15 and 60 particles per edge length are used yielding a
particle spacing between ∆x = 400 µm and ∆x = 100 µm. Figure 4 shows a sequence of
characteristic simulation snapshots using 602 particles.

Figure 4. Formation of a droplet from a square under the influence of surface tension. The normalized
velocity magnitude is color-coded. The time is normalized using a characteristic oscillation frequency
according to Equation (52).

The temporal evolution of the two-dimensional kinetic energy of the droplet for the
different spatial resolutions is shown in Figure 5. Following a sharp initial increase of
kinetic energy, a decay can be observed for all cases. The decay amounts to about three
orders of magnitude for the coarsest resolution while it amounts to more than five orders
of magnitude for the finest resolution.
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Figure 5. Normalized 2D kinetic energy as a function of normalized time for different spatial
resolutions of droplets forming from an initial square patch.

The pressure profile in the eventually formed droplet is evaluated using the SPH
approximation according to Equation (9). The results are shown in Figure 6. The finer the
spatial resolution the better is the pressure jump at the droplet surface approximated. The
agreement with the Young–Laplace equation,

P = σn/R = σn
√

π/L, (53)

which relates the pressure P in the droplet to its radius R, also gets better for finer spa-
tial resolutions.

Figure 6. Pressure distribution in the formed droplet as a function of the lateral coordinate at y = 0
for different spatial resolutions.

The convergence of the numerical solution Psim with respect to the theoretical result
Ptheo for the pressure in the droplet is analyzed in Figure 7. It can be observed that the con-
vergence behavior is significantly better than linear and only slightly worse than quadratic.
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Figure 7. Relative error of the numerically predicted pressure in the droplet as a function of the
spatial resolution.

As a final test, the Young–Laplace scaling with R or L, respectively, is tested. In this
case, L is increased by a factor of 10 or decreased by a factor of 0.1 but the particle number
of 302 is kept constant. The droplet radius of the reference case is referred to as R0. Figure 8
shows that the Young–Laplace scaling is well reproduced.

Figure 8. Young–Laplace scaling (Equation (53)) of the normalized droplet pressure as function of
the normalized droplet radius.

3.3. Horizontal Substrate Wetting

The third benchmark assesses the wetting behavior of the model similarly to [8]. An
initial circular droplet of particles with a radius of R = 3 mm is placed directly above a
planar substrate. The contact angle parameter is varied between θ = 20° and θ = 160°. No
gravity is applied is order to compare the results with simple analytical solutions. Gravity,
of course, would have an effect on a droplet of this size. The resulting droplet shapes on
the substrate are shown in Figure 9 for a particle spacing of ∆x = 100 µm.

Figure 9. Initial setup and final states of wetting of a substrate for varied numerical contact angle
parameter θ.
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The predictive quality of these simulations is analyzed by measuring the equilibrium
height Heq and base diameter Deq of the resulting droplets and comparing them with the
analytical results

Heq = (1− cos θ)

√
π R2

θ − sin θ cos θ
(54)

and

Deq = 2 sin θ

√
π R2

θ − sin θ cos θ
. (55)

Figure 10 shows the according simulation results in comparison to the theoretical
predictions. The non-trivial shape of both analytical functions is well reproduced up to a
contact angle of θ = 100°. Noticeable deviations occur for larger contact angles and the
error increases with increasing contact angle.

Figure 10. Comparison of simulation results and theory for the wetting of a planar substrate.
(a) Normalized droplet height as a function of contact angle parameter. (b) Normalized droplet base
diameter as a function of contact angle parameter.

3.4. Vertical Plate Wetting

As fourth benchmark, the wetting of a vertically oriented plate immersed into a fluid is
studied. The system is 15 mm wide with periodic boundary conditions in lateral direction.
The initial fluid filling height is 4 mm. A vertical plate is immersed into the fluid down
to a distance of 1.5 mm from the ground. The acceleration of gravity acts in downward
direction and the contact angle is varied between θ = 30° and θ = 150°. A particle spacing
of ∆x = 25 µm is used. Figure 11 shows simulation snapshots after the terminal height of
capillary rise or depression, respectively, is reached.

Figure 11. Final states of wetting of a vertical plate for varied numerical contact angle parameter θ.

The accuracy of the simulations is evaluated by comparing the contact angle θ which
enters the numerical model via Equations (39) and (42) with the effective, measured wetting
angle with respect to the plate. Figure 12 shows that up to θ = 90° the agreement is very
good. For larger contact angles deviations become more pronounced similarly to the
horizontal substrate wetting case in Section 3.3.
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Figure 12. Comparison of simulation results and theory for the wetting of a vertical plate.

3.5. Flow between Parallel Plates

In the fifth benchmark the steady-state flow of a fluid column between parallel plates
is analyzed [26]. The length of the column is h0 = 10 cm and distance of the plates is either
L = 0.5 mm or L = 1 mm. The spatial resolution is ∆x = 25 µm. Different pressure profiles
and steady-state velocities of the fluid column are enforced by variation of the advancing
contact angle θadv and the receding contact angle θrec shown in Figure 13.

Figure 13. Variation of advancing and receding contact angle for flow between parallel plates.

The pressure at the advancing end of the fluid column is given by

Padv = −2 σn cos θadv
L

(56)

and at the receding end of the fluid column by

Prec = −
2 σn cos θrec

L
. (57)

An overview of the pressure drop along the fluid column for all simulated cases in
comparison to the theory is presented in Figure 14. The obtained pressure profiles are
generally in agreement with the analytical predictions. Yet, some finite curvature can be
observed in the simulation results while the pressure gradient should be constant in theory.

The average steady-state velocity of the fluid in the channel is

〈v〉 = L σn

6 h0 η
(cos θadv − cos θrec). (58)

This theoretical prediction is compared to the simulation results in Figure 15. Within
the error bars of the simulation, which represent one standard deviation, agreement with
the theory is obtained. Note that in order to obtain stable simulations for this benchmark
case it is necessary to increase the numerical speed of sound to s = 30 m s−1. For smaller
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values of s, fragmentation of the particle arrangement in the vicinity of the concave surface
is observed. This phenomenon is discussed in Section 4.

Figure 14. Normalized pressure as a function of normalized position along the fluid column from
numerical simulations and according to theory (Equations (56) and (57)).

Figure 15. Normalized velocity as function of normalized pressure gradient in the simulations and
according to theory (Equation (58)).

3.6. Flow into a Nozzle

The sixth benchmark is similar to the previous one with the difference that the parallel
plates are attached to a fluid reservoir resulting in a nozzle geometry. The distance of the
parallel plates is either L = 0.5 mm or L = 1 mm and the spatial resolution is ∆x = 25 µm.
The capillary action of the surface tension with a contact angle θ = 30° causes the fluid
from the reservoir to penetrate the space between the parallel plates. The rise velocity of
the fluid decreases over time as shown in Figure 16.

The rise height hr of the fluid column between the plates and the average rise velocity
vr are obtained by solving the set of differential equations [44]

d
dt

(hr vr) = −hr vr
12 η

ρ0 L2 +
2 σn cos θ

ρ0 L
, (59)

d
dt

hr = vr. (60)
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The according solutions are explicitly given by

hr(t) =
√

L3 ρ0 σn cos θ

6 η

√
12 η t
ρ0 L2 + exp

(
−12 η t

ρ0 L2

)
− 1 (61)

and

vr(t) =

√
σn cos θ

ρ0 L

1− exp
(
− 12 η t

ρ0 L2

)
√

12 η t
ρ0 L2 + exp

(
− 12 η t

ρ0 L2

)
− 1

. (62)

These theoretical predictions are compared with the data obtained from the numerical
simulations in Figure 17. The transient behavior of both height and velocity are satisfactorily
reproduced in the simulations although the actual values are systematically underestimated
to a small extent. Note that in order to obtain stable simulations for this benchmark case it
is necessary to increase the numerical speed of sound to s = 50 m s−1. The reason for this
is the avoidance of fragmentation close to the surface similarly to the case in Section 3.5.
The even higher speed of sound in this case is required because of the strong acceleration
during the initial phase of the flow into the nozzle.

Figure 16. Flow from a reservoir into a nozzle formed by parallel plates. The normalized velocity
magnitude is color-coded. The time is normalized using a Reynolds number.

3.7. Marangoni Flow

The seventh benchmark focuses on the effect of a surface tension gradient caused by
a temperature gradient [9]. A fluid initially rests in a basin of L = 10 mm width. The left
wall of the basin has a constant temperature of Tmin = 300 K and the right wall a constant
temperature of Tmax = Tmin + ∆T = 400 K. The fluid temperature initially describes a
linear profile interpolating between the values of the walls. The basin bottom is adiabatic.
The specific heat capacity of the fluid is c = 1000 J kg−1 K−1, the thermal conductivity
is k = 10 W m−1 K−1 and σt = −1 mN m−1 K−1. The particle spacing is varied between
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∆x = 100 µm and ∆x = 400 µm. The contact angle with respect to both side walls is
θ = 90°.

Figure 17. Flow into a nozzle. Normalized rise height (a) and normalized rise velocity (b) as functions
of normalized time in simulations and according to theory (Equations (61) and (62)).

Images from the simulation using the spatial resolution L/∆x = 100 are displayed in
Figure 18. The fluid strongly rises on the left wall due to the Marangoni effect which drives
the fluid at the surface from the warm region towards the cold region. The last snapshot
shows the steady state where an eddy has formed below the surface.

Figure 18. Flow in a basin driven by Marangoni surface current. The normalized temperature is
color-coded and the size of the velocity vectors is proportional to the velocity magnitude. The time is
normalized by a characteristic Marangoni time scale.

The model is quantitatively assessed by evaluating the Marangoni tension at the sur-
face at the beginning of the simulation using different spatial resolutions as well as different
ratios of smoothing length and particle spacing. For this purpose, the tangential volumetric
surface force (Equation (6)) is evaluated using SPH interpolation and then integrated along
a line perpendicular to the surface. The result τ should be equal to |σt∇ST| = 10 Pa.
Figure 19 shows that the theoretical result is met for all studied resolutions and smoothing
length ratios.
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Figure 19. Tangential surface tension induced by temperature gradient. Normalized tension as a
function of the spatial resolution (a) and as a function of the normalized smoothing length (b).

3.8. Plate with Double-Sided Heat Transfer

The eighth to eleventh benchmark case do not involve any fluid flow but assess
the predictive quality of the thermal boundary conditions at the surface as introduced in
Section 2.2.4. A convenient parameter for these cases is the thermal diffusivity, a = k/(ρ0 c),
as it allows to normalize the time and a characteristic length scale in terms of a Fourier
number. In all of these four cases the thermal conductivity is k = 1 W m−1 K−1, the specific
heat capacity is c = 100 J kg−1 K−1 and the density is ρ0 = 7800 kg m−3.

As eighth benchmark an infinite plate with heat transfer on both surfaces is analyzed.
The plate thickness is 2L = 2 mm and its initial temperature is T0 = 300 K. The heat transfer
coefficient is f = 1× 104 W m−2 K−1 and the ambient temperature is Ta = 400 K.

The analytical solution for this case is given by the series

T(x, t)− T0

Ta − T0
= 1− 2

∞

∑
n=1

sin(γn) cos(γn x/L) exp(−γ2
n a t/L2)

γn + sin(γn) cos(γn)
, (63)

where γn is the nth root of the implicit equation

f L
k

= γn tan(γn). (64)

The solution is calculated up to nmax = 500 and compared with the simulation results
for different spatial resolutions in Figure 20. While for the lowest spatial resolution the
transient temperature is overestimated, differences between theory and simulation vanish
for a sufficiently fine resolution.

Figure 20. Comparison of simulation results (dots) and analytical solution (solid lines, Equation (63))
for the temperature distribution in a plate with double-sided heat transfer. The spatial resolution is
varied between L/∆x = 20 (a), L/∆x = 50 (b) and L/∆x = 100 (c).

3.9. Plate with Double-Sided Heat Flux

The ninth benchmark is similar to the eighth one with the difference that instead of
heat transfer a heat flux q = 1× 104 W m−2 is prescribed at both surfaces of the plate.
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The solution for this situation is given by

(T(x, t)− T0) k
q L

=
a t
L2 +

x2

2 L2 −
1
6
− 2

∞

∑
n=1

(−1)n

γ2
n

cos(γn x/L) exp(−γ2
n a t/L2), (65)

with γn defined by
γn = n π. (66)

Again, the series is evaluated up to nmax = 500 and simulation and theory are com-
pared in Figure 21 for different spatial resolutions. Perfect agreement is found independent
of the actual resolution.

Figure 21. Comparison of simulation results (dots) and analytical solution (solid lines, Equation (65))
for the temperature distribution in a plate with double-sided heat flux. The spatial resolution is
varied between L/∆x = 20 (a), L/∆x = 50 (b) and L/∆x = 100 (c).

3.10. Plate with Heat Transfer and Heat Flux

The tenth benchmark is a combination of the two previous ones. An infinite plate of
thickness L = 1 mm experiences heat transfer with f = 1× 104 W m−2 K−1 and Ta = 300 K
at x/L = 0 and heat flux with q = 1× 104 W m−2 at x/L = 1. The initial temperature of
the plate is T0 = Ta.

The analytical series solution is given by

(T(x, t)− T0) f
q

= 1 +
f x
k
−

∞

∑
n=1

(
cos(γn x/L) +

f L
k γn

sin(γn x/L)
)

2 sin(γn) exp(−γ2
n a t/L2)

γn + sin(γn) cos(γn)
, (67)

with the roots γn given by
f L
k

= γn tan(γn). (68)

A comparison between simulation and theory (nmax = 500) for different spatial
resolutions is provided in Figure 22. For too coarse resolutions and Fourier numbers
ta/L2 & 1 the temperature is underestimated by the simulation. Yet, similarly to the
benchmark case with double-sided heat transfer (Section 3.8), the analytical solution gets
better approximated with finer spatial resolution.

Figure 22. Comparison of simulation results (dots) and analytical solution (solid lines, Equation (67))
for the temperature distribution in a plate with heat transfer and heat flux. The spatial resolution is
varied between L/∆x = 20 (a), L/∆x = 50 (b) and L/∆x = 100 (c).
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3.11. Rod with Heat Flux

In the eleventh benchmark an infinite rod of radius R = 1 mm and initial temperature
T0 = 300 K is heated by the surface heat flux q = 1× 104 W m−2.

The according analytical solution for the temperature distribution along the radial
coordinate r is given by

(T(r, t)− T0) k
q R

=
2 a t
R2 +

r2

2 R2 −
1
4
− 2

∞

∑
n=1

J0(γn r/R) exp(−γ2
n a t/R2)

γ2
n J0(γn)

, (69)

with the nth root γn given by
J1(γn) = 0. (70)

Due to the rotational symmetry of this benchmark case, the Bessel functions of the
first kind J0 and J1 appear in the solution. The comparison between the simulation results
and the analytical solution in Figure 23 reveals that the temperature is underestimated
for too coarse spatial resolutions. However, for finer resolution the analytical result is
well predicted.

Figure 23. Comparison of simulation results (dots) and analytical solution (solid lines, Equation (69))
for the temperature distribution in a rod with surface heat flux. The spatial resolution is varied
between R/∆x = 20 (a), R/∆x = 50 (b) and R/∆x = 100 (c).

For this case, the accuracy of the surface heat transfer in the simulation is assessed
by evaluating the rate of change of thermal energy in the simulation. As heat transfer is
the only active heating mechanism, the rate of thermal energy change should be directly
proportional to the applied heat flux. An according convergence analysis is plotted in
Figure 24. The effective heat flux in the simulation converges approximately linear with
the spatial resolution.

Figure 24. Relative error of the numerically predicted heat flux in a rod as a function of the spa-
tial resolution.
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3.12. Droplet Deformation and Splitting

The twelfth case is intended to study the usage of the presented model in a more com-
plex three-dimensional situation. A droplet of fluid with a diameter of 1 mm is discretized
using ∆x = 20 µm. The droplet floats above a substrate initially. Gravity pushes the droplet
onto the substrate which consists of hydrophilic regions with a contact angle of θ = 45° and
hydrophobic regions with a contact angle of θ = 135°. Two different substrates are used.
One is composed of square regions having a certain contact angle. The other substrate
consists of striped regions with a width of 400 µm. The numerical speed of sound in the
simulation is s = 3 m s−1. Figure 25 shows the temporal evolution of the fluid droplet
on both substrates. For the square regions, the wetting and de-wetting behavior leads
eventually to a splitting of the droplet into two. For the striped regions, the droplet does
not split up but ends up with a very peculiar shape of its perimeter.

Figure 25. Wetting behavior of a droplet on substrates composed of hydrophilic regions (green,
θ = 45°) and hydrophobic regions (orange, θ = 135°).

3.13. Thermo-Visco-Capillary Droplet Coalescence

The thirteenth and final case contains the most complex simulation setup. Two
droplets of fluid with diameters of 1 mm are discretized using ∆x = 20 µm. The droplets
touch a substrate below as well as each other initially. Gravity acts normal to the sub-
strate surface. The fluid has an initial temperature of Tmin = 300 K and the substrate a
constant temperature of Tmax = Tmin + ∆T = 500 K. The specific heat capacity of the
fluid is c = 1000 J kg−1 K−1 and the thermal conductivity of both fluid and substrate is
k = 10 W m−1 K−1. The surface tension of the fluid is

σn(T) = σ̃n + σt(T − Tmin) (71)

with σ̃n = 48.4 mN m−1 and σt = −0.2 mN m−1 K−1. The contact angle with respect to
the substrate is θ = 45°. The ambient temperature is Ta = Tmin and the fluid is cooled
by surface heat transfer with f = 1× 102 W m−2 K−1 and by radiation with ε = 0.5. The
viscosity of the fluid is temperature-dependent in the form of an Arrhenius relation,

η(T) = η̃ exp
(

Ea

R

(
1
T
− 1

Tmin

))
, (72)

with η̃ = 16.1 mPa s, the activation energy Ea = 1× 104 J mol−1 and the universal gas
constant R = 8.314 J mol−1 K−1. The numerical speed of sound is s = 3 m s−1. The thermo-
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visco-capillary coalescence behavior of the droplets is shown from different perspectives in
Figure 26.

Figure 26. Coalescence of two droplets under the influences of temperature-dependent viscosity and
surface tension.
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4. Discussion

The presented consistent modeling of thermo-capillary effects and thermal boundary
conditions within the SPH method could be verified and validated by the extensive analyses
in Section 3. In the following, we would like to address some details which could be
highlighted by the analyses.

For free droplets, the visco-capillary oscillation frequency and the Laplace pressure
are adequately reproduced by the simulations with sufficient spatial resolution. For the
Laplace pressure, a near quadratic convergence with spatial resolution has been found.
At the finest resolution used, the relative error is less than 10−2, which is typically an
acceptable tolerance for SPH simulations [2].

The investigations on static wetting have shown that contact angles up to θ ≈ 100°
are well reproduced in the simulation. Larger contact angles are increasingly poorly
reproduced. A comparable observation was made by Breinlinger et al. [8]. This is appar-
ently a systematic weakness of the submodel for imprinting the desired contact angle in
Section 2.2.11. The reason for this is that in the approach used to determine the free surface
and the quantities derived from it, the fluid and the substrate are initially considered as a
common phase. As a result, it is not possible to identify free surfaces that are only separated
by small gaps. However, precisely this situation exists in the case of large contact angles.
Alternatively, the fluid and the substrate could be considered as distinct phases from the
beginning. In that case, however, the reproduction of small contact angles would become
increasingly inaccurate, which has been observed in corresponding tests.

In the dynamic wetting scenarios, a satisfactory overall agreement of the simulation
with theoretical predictions for the pressure and velocity has been observed. A slight,
systematic deviation in the dynamic wetting case in Section 3.6 can be explained by the fact
that the momentum of the reservoir is not considered in the respective balance equation
(Equation (59)). The strong tensile stresses caused by the surface tension in the dynamic
wetting scenarios are seen as the reason why it is necessary to slightly increase the numerical
speed of sound in these cases. Without such an increase, fragmentation of the particles near
the surface has been observed. In this context, the used approach of a surface delta function
based on the minimum eigenvalue λ of the inverse renormalization tensor has proved to be
helpful. As shown in the Appendix A, the surface delta function is more evenly distributed
among the particle layers on the surface than when using a delta function which is based
only on the kernel gradient. This attenuates the tensile forces acting on the individual
particles, which helps to stabilize the simulation. The use of a weak artificial viscosity and
the viscosity formulation of Sigalotti et al. [38] have also proved to stabilize the dynamic
wetting scenarios.

A fundamental strength of the presented model is that only one phase has to be
modeled. This saves computational time, since especially for systems consisting of a fluid
and a gas, the low density of the gas requires a very small time step, as shown by Colagrossi
and Landrini [45]. However, even the presented model may require a relatively small time
step due to a high numerical speed of sound, as described in the previous paragraph. For
such a situation, the use of an implicit SPH formulation can be useful, such as the ones used
by Nair and Pöschel [31] or Fürstenau et al. [20] in the context of capillary phenomena.

The investigations on the heat transfer boundary condition have shown that agree-
ments with analytical results are obtained by simulations with sufficiently fine spatial
resolution. In the case of a pure heat flux boundary condition on a flat surface, excellent
accuracy of the numerical simulations has been found regardless of the spatial resolution.
This can probably be attributed to the fact that the heat input is independent of the tem-
perature computed in the numerical simulation. In the case of a curved surface, a linear
convergence of the relative error of the heat flux with the spatial discretization could be
determined. This convergence behavior can be considered a measure of how well the
surface delta function describes a curved surface.

The two cases in Sections 3.12 and 3.13 are not intended to validate the model but to
provide ideas for application in more complex scenarios. Use cases for thermo-capillary
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SPH simulations offer, for example, welding processes (Hu and Eberhard [46]) or additive
manufacturing processes (Russell et al. [47], Fürstenau et al. [48], Meier et al. [49]). The
presented method has already been applied by the author and coworkers to derive universal
process maps for laser powder bed fusion of polymers [50].

Based on the identified weakness of the presented model, a more accurate description
of large contact angles is considered as a future field of development. In addition, the
modeling of dynamic wetting phenomena can be improved by considering the dynamic
contact angle as in Huber et al. [11]. A fundamental problem for single-phase models based
on the CSF approach is the lack of possibility to formulate the surface tension forces in
a momentum-preserving way. As a consequence, sooner or later a non-physical drift of
free-floating droplets or of droplets on flat substrates occurs in the simulations. A solution
to this problem would be highly desirable in terms of a more universal applicability of
the method.

5. Conclusions

The main contributions of the present work are summarized in the following list:

• The surface delta function, surface normal and surface curvature are derived in a
consistent manner from the renormalization tensor in single-phase SPH simulations.

• Thermo-capillarity, wetting and thermal boundary conditions are formulated in a
uniform way based on these surface properties.

• The quantitative agreement of corresponding simulations with a large number of
analytical test cases demonstrates the validity of the presented approach.
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Appendix A. Surface Delta Function

Different approaches exist in order to evaluate a suitable surface delta function.
Equations (19) and (20) are two possibilities for this purpose. We consider using Equation (19)
to be a consistent choice, because this way the surface normal (Equation (18)) and the
surface delta function are derived from the same quantity, namely λ. However, as other
authors [14,20,23] use Equation (20) to obtain the surface delta function, we compare these
two approaches in the following.

The half space x < 0 is filled with SPH particles at positions xn = (0.5− n)∆x, n ∈ N.
In Figure A1 the SPH interpolations of λ,

〈λ(r)〉 = ∑
j

mj

ρj
λj W(|r− rj|, h), (A1)

and of unity,

〈1(r)〉 = ∑
j

mj

ρj
W(|r− rj|, h), (A2)

are plotted as functions of a coordinate |r| perpendicular to the surface for different ratios
of smoothing length and particle spacing. Both for λ and unity the functions drop from
1 to 0 in the vicinity of the surface. Yet, there are subtle differences. The descent appears
to be steeper for the case of unity. Furthermore, the inflection point is located exactly at
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|r| = 0 for the unity field while it is shifted somewhat towards the half space filled with
particle for the λ field.

Figure A1. Functions that are approximately 1 inside and 0 outside the particle distribution for
different ratios of smoothing length and particle spacing. The 3D Wendland kernel is used as an
example. The particle positions are indicated by the circles. (a) Minimum eigenvalue of the inverse
renormalization tensor (Equation (A1)). (b) Unity field (Equation (A2)).

The functional forms of the corresponding gradients are obtained by applying Equation (9)
to either |∇λi| defined by Equation (17) or to |∇1i| defined by Equation (20). The results
are plotted in normalized form in Figure A2. The overall shape of the gradients for both
fields is similar. While the gradients are symmetric for the unity field, they are a bit skewed
for the λ field. In addition, finite values for the gradients are more localized at the surface
for the unity field. As to be expected, the smaller the ratio h/∆x the more localized are the
gradients of both fields.

The skewedness in case of the λ field is another reason why we prefer it over the unity
field. Due to this property the magnitude of the delta function is more evenly distributed
over the two layers of surface region particles. The delta function of the unity field is more
localized on the outermost particle layer. We found that it is beneficial for the stability of
the numerical simulations if the action of the surface tension is more evenly distributed
over two particle layers.

Figure A2. Normalized gradients of the functions from Figure A1. (a) Based on the minimum
eigenvalue of the inverse renormalization tensor. (b) Based on the unity field.

In order to obtain the normalization factors Ξλ in Equation (19) and Ξ1 in Equation (20)
the gradient magnitudes |∇λi| and |∇1i| are summed over a column of particles i per-
pendicular to the surface similar to the in [23]. The inverse sums yield the normalization
factors shown in Figure A3 for four different kinds of SPH kernel functions. For the case of
the λ field, the normalization factor increases with the ratio h/∆x and appears to reach a
plateau for large ratios. For the case of the unity field, the normalization factor oscillates
around 2 for ratios h/∆x < 1.5 and is close to 2 for larger ratios.
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Figure A3. Normalization factors for the surface delta functions for different 3D kernels. (a) Based
on the minimum eigenvalue of the inverse renormalization tensor. (b) Based on the unity field.

As mentioned in Section 2.2.2, we restrict all surface related calculations to those
particles which are no more than 1.5 ∆x away from the free surface particles. Consequently,
the normalization factors must reflect this restriction. In Figure A4 the corresponding
results are presented. The normalization factors are in good approximation linear functions
of the ratio h/∆x for the case of the λ field. For the unity field the normalization factors
deviate systematically from 2 and increase with h/∆x if this ratio is larger than ∼1.4.

Figure A4. Normalization factors for the surface delta functions for different 3D kernels if the surface
calculations are restricted to two particle layers. (a) Based on the minimum eigenvalue of the inverse
renormalization tensor. (b) Based on the unity field.

The linear function to approximate the normalization factor for the λ field as plotted
in Figure A4 is given by

Ξλ(h/∆x) = aλ
h

∆x
+ bλ. (A3)

The slope and intercept values for different SPH kernel functions in two and three
dimensions are listed in Table A1.

Table A1. Parameters for the Ξλ approximation function (Equation (A3)).

2D 3D

Kernel Function aλ bλ aλ bλ

Wendland (Equation (10)) 1.324 −0.108 1.328 −0.174
Cubic spline (Equation (A4)) 1.504 −0.273 1.437 −0.231
Quintic spline (Equation (A5)) 1.771 −0.173 1.744 −0.177
Gaussian (Equation (A6)) 1.805 −0.185 1.807 −0.187
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The cubic spline (M4) with ν = 5/(14π) for d = 2 and ν = 1/(4π) for d = 3 is
defined by

W(r, h) =
ν

hd


(2− ζ)3 − 4(1− ζ)3, 0 ≤ ζ < 1,
(2− ζ)3, 1 ≤ ζ < 2,
0, ζ ≥ 2.

(A4)

The quintic spline (M6) with ν = 7/(478π) for d = 2 and ν = 1/(120π) for d = 3 is
defined by

W(r, h) =
ν

hd


(3− ζ)5 − 6(2− ζ)5 + 15(1− ζ)5, 0 ≤ ζ < 1,
(3− ζ)5 − 6(2− ζ)5, 1 ≤ ζ < 2,
(3− ζ)5, 2 ≤ ζ < 3,
0, ζ ≥ 3.

(A5)

The Gaussian kernel function with ν = 1/π for d = 2 and ν = 1/π3/2 for d = 3 is
defined by

W(r, h) =
ν

hd

{
exp(−ζ2), 0 ≤ ζ < 3,
0, ζ ≥ 3.

(A6)
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