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Diabetic retinopathy occurs as a result of the harmful effects of diabetes on the eyes. Diabetic retinopathy is also a disease that
should be diagnosed early. If not treated early, vision loss may occur. It is estimated that one third of more than half a million
diabetic patients will have diabetic retinopathy by the 22nd century. Many effective methods have been proposed for disease
detection with deep learning. In this study, unlike other studies, a deep learning-based method has been proposed in which
diabetic retinopathy lesions are detected automatically and independently of datasets, and the detected lesions are classified. In
the first stage of the proposed method, a data pool is created by collecting diabetic retinopathy data from different datasets.
With Faster RCNN, lesions are detected, and the region of interests are marked. The images obtained in the second stage are
classified using the transfer learning and attention mechanism. The method tested in Kaggle and MESSIDOR datasets reached
99.1% and 100% ACC and 99.9% and 100% AUC, respectively. When the obtained results are compared with other results in

the literature, it is seen that more successful results are obtained.

1. Introduction

Diabetes occurs as a result of insufficient production of
insulin or insufficient use of produced insulin [1]. There
are many organs damaged by diabetes. For example,
diabetic nephropathy damaging kidney nephrons, diabetic
neuropathy damaging brain neurons, and diabetic retinop-
athy damaging eye retina can be given [2]. Diabetic reti-
nopathy (DR) is a type of type II diabetes in which the
retina of the eye is damaged and if left untreated, the
disease can progress to vision loss [3]. DR’s effect on the
eye is often blurred or complete loss of vision [4]. The risk
of blindness in diabetic patients is many times higher than
in a healthy person. Therefore, DR is one of the leading
causes of blindness in the world between the ages of 20
and 65 [5]. The World Health Organization (WHO) stated
that up to half a million people are at risk of DR [6]. The
economies of low- and middle-income countries suffer
seriously from diabetes. By 2040, it is estimated that 33%
of 600 million diabetic patients worldwide will have
diabetic retinopathy [7].

Deep learning (DL) started with the work of LeCun et al.
[8]. DL’s popularity began in 1998 with the success of the
convolutional neural network (CNN), a DL method used by
his student Krizhevsky [9] at the 2012 ImageNet [10] compe-
tition. In the years after AlexNet on ImageNet, GoogleNet
[11], InceptionV3 [12], VGGNet [13], ResNet [14], and
DenseNet [15], networks were developed, and more success-
ful results were achieved. Improvements in GPU hardware
have a great impact on the success here. Because as the depth
increases in the developed networks, the number of trained
parameters increases in direct proportion. While the number
of parameters in GoogleNet is 6.8 M, there are 144 M param-
eters in the deeper VGG19. While CNN image classification
was done, the CNN structure was modified for segmentation
and object detection in the image. Region-based CNN
(RCNN) [16], Fast RCNN [17, 18], Faster RCNN [19], Single
Shot multiBox Detector (SSD) [20] and You Only Look Once
(YOLO) [21, 22] appeared with this change. Experts believe
that deep learning will facilitate medical studies in the com-
ing years of medicine. The successes obtained in the works
[23-30] on the subject support this idea; it is about the
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Ficure 1: EX, HM, optic disc (OD), and macula in the DR retina.

improvement, classification, segmentation, and detection of
medical images and related to the images and taking vital
precautions. Moreover, Limwattanayingyong et al. showed
that DL was more successful when they compared sight-
threatening DR (STDR) screening with educated human
grading and DL grading [31].

When the studies about DR classification in the literature
were examined in detail, each study performed a preprocess-
ing stage before training the network with CNN. The reason
for this is that the lesions do not have a certain shape or form
and are scattered in the image. This causes classification
errors by reducing the clarity of the lesions in the image.
These preprocessing phases were generally traditional image
processing methods. Also, each study focused on operations
for a particular dataset, and different methods were used for
each dataset. This is because the grading system of each data-
set is different. In this study, we proposed the 2-stage method
that detecting independent from the dataset and classifying
diabetic retinopathy lesions, completely based on deep learn-
ing. In the first stage, we created a pool of selected DR data-
sets and trained with Faster RCNN. We automatically
determined the lesion region of interests in the images with-
out any special process for the images in different DR data-
sets and prepared a pretrained model for the classification
process, which is the second stage of the work. We completed
the classification process by training images with the atten-
tion mechanism we added to pretrained ImageNet models.

In the second part of the work, literature research was
made, and DR features, related studies, and results were men-
tioned. In the third chapter, features of the proposed method
used datasets, and DL methods used were mentioned. In the
fourth chapter, the results obtained with the proposed method
and the comparison of the results in the literature were men-
tioned. In the fifth and last section, information was given
about the success, effects, and future works of the method.

2. Literature Review

2.1. Diabetic Retinopathy Datasets. There are many datasets
belonging to DR in open access. Some of these are MESSI-
DOR [32], DIARETDB [33], IDRID [34], and Kaggle 2015
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FiGure 2: Confusion matrix.

DR Competition Dataset [35]. These datasets has been
reviewed and graded by ophthalmologists. Each dataset can
be used in a different grading system. For example, DR levels
were graded from 0 to 4 in Kaggle, while in MESSIDOR, they
were graded from 0 to 3. The MESSIDOR dataset contains
1200 images classified into 4 levels [36]. MESSIDOR was
published in 2008 by Criann [37].

DIARETDB consists of 219 retinal images containing 25
healthy and 194 with DR symptoms. Images were classified
as exudate (soft and hard), spots (red), and bleeding. The
detected lesions were expressed in 5 different degrees with
0.25 intervals between 0 and 1. Kaggle dataset images were
shared with an award-winning DR determination contest.
Approximately, 90,000 right and left eye retinal images were
reserved for the test of approximately 40% and 60% of the
training set. Images were graded in five different classes
according to the ETDRS [38] grading method. IDRID is a
dataset with DR lesions created in India. The dataset pre-
sented for ME detection classified DR in five levels according
to the ETDRS grading method. The dataset contains 516
images (413 training sets, 103 test sets) [39].

2.2. Diabetic Retinopathy Symptoms. Microaneurysms (MA):
these are deformations of the blood vessel walls of 1-3 pixels
in images [40, 41].

Bleeding/hemorrhages (HM): bleeding/hemorrhages is a
blood leaking from damaged capillaries [40, 42].
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TaBLE 1: Studies using MESSIDOR dataset and results.
Authors Training type Method Process type ACC AUC SEN
Zhang et al. [49] ZFNet TL Optic disc localization 99.9 —
Alghamdi et al. [50] CNN EE Optic disc localization 99.2 — —
Xu et al. [51] CNN TL Optic disc localization 99.4 — —
Abramoft et al. [52] CNN EE Lesion detection — — 100
Grinsven et al. [53] CNN EE Lesion detection — 97.9 93.1
Gulshan et al. [54] CNN TL Fundus classification — 99.0 87.0
Costa and Campilho [55] SURF + CNN EE Fundus classification — 90.0 —
Gargeya and Leng [56] CNN EE Fundus classification — 94.0 —
Wang et al. [57] Zoom EE Fundus classification 91.1 95.7 —
Chen et al. [58] SI2DRNet EE Fundus classification 91.2 96.5 —
TaBLE 2: Studies using Kaggle dataset and results.

Authors Training type Method Process type ACC AUC SEN
Grinsven et al. [53] CNN EE Lesion detection - 91.7 84.8
Mansour [59] AlexNet + SVM TL Fundus classification 97.9 - 100
Quellec et al. [60] CNN EE Fundus classification - 95.5 -
Colas et al. [61] CNN EE Fundus classification - 94.6 96.2
Pratt et al. [62] CNN EE Fundus classification 75.0 - 95.0
Jinfeng et al. [63] CNN TL Fundus classification 80.3 - -

=) -

([

Batch_normalizat...

DR images Marked
lesion ROI Pretrained model
i
2
. B 8
Attentlf)n S ) N | / 9
mechanism 3 3 3 bS] a
— i |2k :
o o o o
®) ) ®) )

Dense_4

Dropout_5

Dense_3

;

Dense_2

N

Dropout_3

Dense_1

FIGURE 3: Developed model structure.

N

Dropout_2

/

RescaleGAP



Computational and Mathematical Methods in Medicine

[ Softmax |
| FC 1000 |
FC 4096
| ST | : FC 4096 :
fc8 | FC 1000 | Sod] |
fc7 FC 4096

W ome—] o

| Pool | :
Conv5-3 | 3x3cony,512 | { z i i ZZ::’ 2; }

Conv5-2 | 3x3conv,512 | -
Convs-1 [ 3x3con,512 | | Fool |
| ool | [ 3 % 3 conv, 512 |
Conva3 [ 3x3coms1a | L 2x3com5l2 ]
Conva-2[ 3x3convsia ] L 3x3com,512 ]
Conv4-1[ 3 x3conv,512 | l 3 x 3 cony, 512 |
| Pool | | Pool |
Conv3-2[_ 3x3com256 | L 3x3conv25 |
Conv3-1 [ 3x3com,256 | L 3x3conn25 |
[ Pool | | Pool |
Conv2-2[ 3x3com,128 | [ 3x3com, 128 |
Conv2-1[_ 3x3comv, 128 | [ 3x3con, 128 |
| Pool | | Pool |
Conv1-2 | 3 x 3 conv, 64 | | 3 % 3 conv, 64 |
Convl-1 | 3x3conv, 64 | | 3 x 3 conv, 64 |
[ Input | Input |

(@ (b
Output Block Filter
~ concateiation

/_ j‘\

N~y
A
Conv
1x1
A

y

Conv Conv
3%x3 Ix1,s=2
h
Conv
1x1,s=2

A

1x1 convolutions

’\vaduticns

3x3 convolutions

5%5 convolutions

1x1 convolutions

7

2

2

1x1 convolutions

3x3 max pooling

/

Previous layer

(d)

FiGURE 4: Continued.

»
»




Computational and Mathematical Methods in Medicine

T Tensor Y’

ReLu

T

Conv 1x1, relu6 ‘

R

1x1 Conv

3x3 Conv
Dwise 3x3, Lﬁ_
stride = s, relu6
3x3 Conv
1x1 Cony 3x3 Conv
Cnput f 3
1x1 Conv 1x1 Conv
| t f
ReLu
TTensor Y
(e) (f)
3 1
Add In add
Avg 1x3
3x3 3x3
0 Sep
In add 3x3

Convolution

faow

(g)

Sep
3x3

Sep
3x3

FIGURE 4: Pretrained models: (a) VGG16, (b) VGG19, (c) ResNet, (d) Inception, (e) MobileNet, (f) InceptionResNet, (g) DenseNet, and

(h) NasNet.

Exudates/exudates (EX): when blood leaks more through
capillaries, it causes exudates that are usually yellow in the
retina [43].

Macular edema (ME): it occurs when there is leakage
from the vessels around the macula [44].

Neovascularization (NV): it occurs when veins grow into
the vitreous [45].

Figure 1 shows the EX, HM, optic disc (OD), and macula
in the DR retina. The OD is the reference point for DR detec-
tion [45-47].

2.3. Performance Metrics. The confusion matrix in Figure 2
shows the predicted number of outcomes for 2 classes (0
and 1). Accordingly, when the classification value is 1 and
the obtained value is 1 then true positive (TP); else then false

negative (FN) is obtained. When the classification value is 0
and the obtained value is 0 then true negative (TN); else then
false positive (FP) is obtained.

Accordingly, performance metrics can be calculated with
the following equations:

TP
Sensitivity = TP Rate (TPR) = ———, (1)
FN + TP
TN

Specificity (SPE) = ——— 2

pecificity (SPE) P + TN, (2)
TN + TP

A A = > 3

ceuracy (ACC) = G5 EN+ TP+ TN ®)

FP Rate (FPR) = 1 - SPE,
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TaBLE 3: The number of images in datasets and the number of training and test images used for detection and classification.
Dataset Total Number of images for Number of images for Number of images for Number of images for
images  detection stage training detection stage testing  classification stage training  classification stage testing
Kaggle 80,000 100 4900 3920 980
MESSIDOR 1200 100 1100 880 220
IDRiD 516 100 -
DIARETDB 219 100 - - -

AUC (area under curve) is the area under the receiver
operator characteristics (ROC) curve obtained with the
change rates of FPR and TPR.

3. Related Works

There have been 747 studies on about DR in the literature
[48]. In this section, studies on DR detection with deep learn-
ing are examined. Some of the studies created their own CNN
models and used end-to-end learning (EE), while others used
transfer learning (TL) using pretrained models available on
ImageNet. In the studies, optic disc localization, lesion detec-
tion, and fundus classification procedures were performed on
the DR images. Most of the studies used the MESSIDOR
dataset. In end-to-end training, there are studies that create
their own special models such as Zoom, ZFNet, and
SI2DRNet.

The authors in [49] developed the ZFNet based on the
Faster R-CNN in their work on the localization of the
optical disc using a Hessian matrix. This study was con-
ducted using the MESSIDOR dataset. Alghamdi et al.
[50] first classified the images as OD or non-OD with
the CNN they developed. Detected OD locations were
classified by the second CNN module as normal, suspect,
or abnormal. The MESSIDOR dataset was used in this
study. In [51], the authors made changes before the last
FC layer of the VGG model to find the OD, thresholding
the probability map and obtaining the center of gravity of
the pixels. This study was conducted using the MESSI-
DOR dataset. The authors in [52] developed a controlled
CNN model to classify the ME lesion type. This study

FIGURE 6: DR image, whose lesions are detected automatically with
the trained model.

was conducted using the MESSIDOR dataset. In [53],
HM is detected, and a 41-pixel square image containing
HM was extracted from the original image. The resulting
image was classified and labeled according to the number
of HM removed. It was then given to the CNN network
for training. The method was tested on a Kaggle and
MESSIDOR datasets using a 10-layer CNN model. The
authors in [54] used TL to determine DR in 1748 samples
from the MESSIDOR dataset and DR in 9963 samples
from the EyePACS dataset. Each image was graded 3 to
7 times by ophthalmologists. In [55], they created a
CNN model by extracting rare local features with the
structure they call Bag of Visual Words (BoVW) and
Speed-Up Robust Properties (SURF). This study was con-
ducted using the MESSIDOR dataset. Gargeya and Leng
[56] proposed a CNN for DR detection by modifying
ResNet. They evaluated the method with MESSIDOR.
The authors of [57] proposed a pretrained CNN model
that includes the attention network and crop network to
detect suspicious patch sites called Zoom for DR detection.
The management was developed using the MESSIDOR
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FIGURE 7: Proliterative DR images.

dataset. The authors in [58] created SI2DRNet-v1l by scal-
ing the kernel size from 3 x 3 to 5x5 after each pooling
layer in CNN. MESSIDOR was used in the model. The
author in [59] developed a method for localizing blood
vessels and a pretreatment for bound component analysis.
Linear separation analysis was then used to reduce dimen-
sionality. SVM was used for classification in this method.
Kaggle dataset was used in this study. Quellec et al. [60]
developed a CNN model to detect DR lesions. Heat maps
created by this method were not optimized for diagnosis.
In this study, Kaggle dataset was used. The authors of
[61], proposed a method for EX detection using the LeNet
model. They dismissed the EX zones and gave them input
to the LeNet network for training. They made data repli-
cation before the training. The work was developed using
the Kaggle dataset. In [62], the authors dealt with overfit-
ting and skewed datasets in DR detection. They used data
amplification to train the CNN model, which consists of
13 layers. Kaggle dataset was used in this study. In the
work of Jinfeng et al.'s [63], an ensemble technique and two
deep CNN models were proposed to detect all stages of DR
using balanced and unbalanced datasets. First, they created 3
sub-datasets by dividing the Kaggle dataset into 3 parts. In
the first model, they trained 3 datasets separately with
DenseNet-121 and ensembled their results. In the second
model, they trained 3 dataset separately with DenseNet-121,
ResNet50 and Inception-V3, and ensembled their results.
Then, the models were compared with each other.

When examined Table 1, the highest SEN value among
the studies was 100, and Abramoft et al. have achieved. With
the highest AUC of 99.0, Gulshan et al. have achieved. The
highest ACC value of 99.4 was obtained by Xu et al. that
have achieved.

When Table 2 was examined, the highest SEN and ACC
values were 100 and 97.9, respectively, Mansour; with the
AUC value of 95.5, Quellec et al. have achieved.

4. Materials and Methods

Based on the abovementioned shortcomings, a 2-stage
method was proposed where all types of DR datasets could
be trained using DL completely without preprocessing in tra-
ditional ways. If it is explained in more detail, since the use of
CNN directly to classify DR is insufficient, the lesions should
be clarified by preprocessing. In order to clarify the lesions,
the region of interests(ROIs) of the lesion must be deter-
mined first. These regions can be made clear by using
regional CNN with DL. As the regional CNN only detects
objects, a CNN structure is needed for classification. For

FIGURE 8: DR image with marked lesion region of interest.

these reasons, Faster RCNN and CNN were used together,
and a 2-stage method was developed. The first stage of the
2-stage method is the automatic detection of lesions and
marking of the lesion ROIs, and the second stage is the clas-
sification of marked images with a model created by transfer
learning and attention mechanism [64] (Figure 3).

4.1. Used DL Methods. CNN has a structure that learns these
properties by determining the image properties. CNN consists
of certain layers. The convolution layer (conv), as evident from
its name, performs a filter operation by convolution of the
input image with the kernel matrix. This layer reveals the
details in the image. Pooling layer pools the input image with
one of the maximum (max pool) or global average pooling
(global avg pool-GAP) methods, resulting in an image smaller
than the image size. The aim is to delete unnecessary details
and make learning easier. The fully connected (FC/Dense)
layer helps the classification process by image features at the
end of the network. In this study, VGG [65], DenseNet [66],
ResNet [67], Inception [68], NasNet [69], MobileNet [70],
and InceptionResNet [71], which are pretrainig models in
ImageNet, were used in order to make faster training (Figure 4).

Regional training in CNN is needed to focus on specific
objects in the image and to identify and segment them.
RCNN structures have been developed to perform these
operations. In simple terms, RCNN returns the box corridors
of the regions detected in the image and the classification
results. The first developed RCNN [72] creates weak candi-
date regions, while Fast R-CNN [73] feeds an input image
directly to the CNN and reshapes it to be passed to the FC
layer by ROI pooling. Faster R-CNN [74] uses region pro-
posal network (RPN) instead of the selective search algo-
rithm, unlike Fast R-CNN (Figure 5).

5. Results and Discussion

5.1. Used Datasets. In the proposed 2-stage method, a total of
6400 image data were used, including 1200 from MESSIDOR,
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5000 from Kaggle, and 100 from DIARETDB and IDRiD data-
sets. In the first stage, the dataset was divided into 400 training
and 6000 tests to determine DR lesion ROIs. In the second
stage, the marked 6000 data used for testing in the first stage
were used. In the first stage, MESSIDOR, Kaggle, DIARETDB,
and IDRID datasets were used together to automatically detect
lesions in different datasets. Since MESSIDOR and Kaggle
datasets were used in the second phase, the test data of the first
phase were used from these datasets. The training, test, and
validation set of the data used in the two DL methods were
given in detail in the relevant sections. Table 3 shows the num-
ber of images in the datasets used in the proposed method and
the number of training and test images used for each stage.

5.2. Detection of Lesions with Region-Based CNN. In this
stage, EX and HM lesion ROIs on DR datasets were deter-
mined by training with Faster RCNN. For Faster RCNN

TaBLE 4: Results obtained by using MESSIDOR dataset and
different pretrained models on the proposed method.

Model TP FN TN FP ACC AUC SEN
VGG16 220 660 0 100 100 100
VGG19 220 660 0 100 100 100
DenseNet201 217 650 10 985 100 985
DenseNet121 195 25 658 2 969 976 88.6
DenseNet169 192 28 647 13 953 913 872
MOBILENET 192 28 574 86 87.0 945 872
NASNet 190 30 570 90 863 965 86.4
InceptionV3 200 20 593 67 90.1 942 90.1
InceptionResNetV2 192 28 574 86 87.0 87.0 872
Resnet50 186 34 560 100 847 89.8 845
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training, a total of 400 data including EX and HM lesions from
MESSIDOR, Kaggle, DIARETDB, and IDRIiD datasets were
selected randomly and labeled as EX and HM. 1100 remaining
data from MESSIDOR and 4900 remaining data from Kaggle
were used for the test of 6000 data in total. 80 of the 400 data
used for training were used for validation. The purpose of
using all datasets together in training is to diversify training
and to automatically detect lesions for any dataset related to
DR. With the trained model in the first step, the lesion ROIs
were predicted in 6000 data as EX or HM and marked on
the images as in Figure 6.

The marked images obtained in the first stage will be clas-
sified in the second stage by adding the attention layer to the
pretrained ImageNet models. In the proposed model, the
lesion ROIs were made clear so that the attention mechanism
can work more efficiently.

When Figure 7 is analyzed, some images of proliterative
DR are EX-weighted, and some are HM-weighted; some have
only EXs while some have only HMs. With this information,
it is seen that when grading DR, the density of the lesions is
taken into account, not the type. Therefore, the ROIs in the
lesion were displayed in one color, and the training phase
was started as shown in Figure 8.

5.3. Classification of Detected Lesions. In this stage, the lesion
ROIs detected in the DR images were classified by adding the
mechanism of attention to the pretrained ImageNet CNN
models. In this section, MESSIDOR and Kaggle datasets,
which were used for testing at the first stage and marked on
the image of the ROIs of the lesion, were used for DR classi-
fication. By ophthalmologists, the MESSIDOR dataset was
divided into 4 classes (0-3) and the Kaggle dataset into 5 clas-
ses (0-4). The grading was not based on EX or HM lesions
detected in the retina, but according to the intensity of any
of the lesions in the retina, as seen in Figure 7. Therefore,
lesion ROIs detected in the first stage are marked with the
same color. During the training phase, the model was aimed
to learn the lesion density by focusing on the marked lesion
ROIs on the image and to give more accurate results. For this
reason, the last layer of ImageNet models was changed with
the mechanism of attention. The reason for the addition of
the mechanism of attention is that the GAP added after pre-
trained models is simple because the prominent lesion ROIs
are more important than others. Therefore, 4 convolution
layers were added to unlock pixels in space before pooling.
Then, the global weighted average pooling (GWAP) layer is
created in which attention was multiplied by features and
then divided by the sum of attention. Let {x,, x,, x5, --*..x,,]
be a finite nonempty array and the weights of the x in this
array be {w;,w,,ws, - w,]. In this case, the weighted
average (x) of the array is calculated as follows [75]:

ZIn:nl W;X; ) (5)
Qi W

Let the dimensions of a 3D image be expressed by x, y,
and z, respectively. Let IF (x, y, z) expresses image features,

TaBLE 5: Results obtained by using Kaggle dataset and different
pretrained models on the proposed method.

Model TP FN TN FP ACC AUC SEN
VGG16 971 9 3887 33 991 999 99.1
VGG19 969 11 3889 31 991 99.7 989
DenseNet201 919 61 3865 55 976 986 938
DenseNet121 952 28 3894 26 989 996 97.1
DenseNet169 836 144 3811 109 948 985 853
MOBILENET 684 296 3630 290 88.0 926 698
NASNet 508 472 3496 424 81.7 838 51.8
InceptionV3 674 306 3683 237 889 923 68.8
InceptionResNetV2 540 440 3726 194 87.0 843 55.1
Resnet50 202 778 3142 778 682 824 20.6

Eye image Attention map

class: 1 pred: 100.00%

Eye image Attention map
class: 3 pred: 100.00%

Eye image Attention map
class: 2 pred: 100.00%

-

F1GURE 10: The predicted results of the training using the VGG16
model of the proposed method and the MESSIDOR dataset and
the attention map obtained in the attention layer.

and AF (x, y, z) expresses attention features. GWAP in image
pixels is calculated according to Equation (5) as follows:

2. (Z,AF(x 3, 2)IF(x, 3, 2))

Zx (ZyAF(x’y’ Z)) (6)

GWAP(x,y,2) =
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TaBLE 6: Comparison of studies conducted with the MESSIDOR dataset and the proposed study.
Authors Training type Method Process type ACC AUC SEN
Gulshan et al. [54] CNN TL Fundus classification — 99.0 87.0
Costa and Campilho [55] SURF + CNN EE Fundus classification — 90.0 —
Gargeya and Leng [56] CNN EE Fundus classification — 94.0 —
Wang et al. [57] Zoom EE Fundus classification 91.1 95.7 —
Chen et al. [58] SI2DRNet EE Fundus classification 91.2 96.5 —
Ours Faster RCNN + CNN TL Fundus classification 100 100 100
TaBLE 7: Comparison of studies conducted with the Kaggle dataset and the proposed study.

Authors Training type Method Process type ACC AUC SEN
Mansour [59] AlexNet + SVM TL Fundus classification 97.9 - 100
Quellec et al. [60] CNN EE Fundus classification - 95.5 -
Colas et al. [61] CNN EE Fundus classification - 94.6 96.2
Pratt et al. [62] CNN EE Fundus classification 75.0 - 95.0
Jinfeng et al. [63] CNN TL Fundus classification 80.3 - -
Ours Faster RCNN + CNN TL Fundus classification 99.1 99.9 99.1

The Lambda layer was then added to the rescaling results by
pixel count to include the missing values in the attention model.
Finally, the model was obtained by adding 4 dense layers. The
resulting model’s hyper parameters were finely tuned for each
ImageNet model individually to achieve the best results.

For classification, a total of 6000 data were used 1100
from MESSIDOR and 4900 from Kaggle whose lesion ROIs
were marked on the image as a result of the test in the first
stage. Since DR classes for MESSIDOR and Kaggle are not
the same, they were evaluated by training and testing sepa-
rately for the two datasets. In MESSIDOR, 880 data were
used for training, and 220 data were used for testing. 176 of
the 880 data used for training were used for validation. In Kag-
gle, we used 3920 data for training and 980 data for testing.
784 of 3920 data used for training were used for validation.

Figure 9 shows the ROC curve and AUC values drawn
with the classification prediction results for the non-DR
(DR level 0) and proliterative DR (MESSIDOR DR level 3,
Kaggle DR level 4) classes in the MESSIDOR and Kaggle
datasets in the second stage. While calculating the ROC
curve, the average of each FPR and TPR prediction result
formed with 980 test data in Kaggle and 220 test data in MES-
SIDOR reserved for the classification test was taken. Detailed
performance criteria obtained as a result of the prediction in
the second stage were explained in Tables 4 and 5.

Table 4 shows the results obtained by using the method
with different pretrained models in the MESSIDOR dataset.
According to the results, VGG16 and VGGI19 achieved 100%
value in all metrics. DenseNet201 achieved 100% in AUC.

Table 5 shows the results obtained by using the method
with different pretrained models in the Kaggle dataset.
According to the results, the best result in the SEN value was
obtained with VGG16 with 99.1%, and the best results in the
AUC value with 99.9% in VGG16 and the best results in the
ACC value with 99.1% were obtained in VGG16 and VGGI9.

Figure 10 shows the prediction results of marked
DR images selected randomly and in different classes,
obtained with the test data of the trained model using
VGG16 and MESSIDOR dataset in the proposed method.
The figure also shows the attention map obtained in the
attention layer.

In Table 6, the results obtained in the studies that made
the MESSIDOR dataset fundus classification were compared
with our proposed study. Accordingly, our method achieved
a better result than other methods in all metrics.

In Table 7, the results obtained in studies developed with
the Kaggle dataset were compared with our proposed study.
Accordingly, our method achieved a better result than other
methods with 99.1% in ACC and 99.9% AUC values. With
a sensitivity value of 100%, Mansour achieved better results
than our method.

6. Conclusions

Deep learning gives successful results in disease detection. In
this work, a deep learning-based method has been proposed
in which diabetic retinopathy lesions were detected automat-
ically and independently of datasets, and the detected lesions
were classified. In the first stage, lesions were detected with
the regional CNN, and the images obtained in the second
stage were classified using the transfer learning and attention
mechanism for diabetic retinopathy grading. When the
method tested in Kaggle and Messidor datasets was evalu-
ated, 99.1% and 100% ACC, and 99.9% and 100% AUC were
obtained, respectively. When the obtained results were com-
pared with other results in the literature, it was seen that
more successful results were obtained.

In future studies, the algorithms using the method will be
developed to use minimum system resources.
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Previously reported diabetic retinopathy datasets were
used to support this study and are available at https://
www.adcis.net/en/third-party/messidor/, https://www.kaggle
.com/c/diabetic-retinopathy-detection/data, https://www.it.Iut
fi/project/imageret/diaretdb0/, https://www.it.lut.fi/project/
imageret/diaretdbl/, and  https://ieee-dataport.org/open-
access/indian-diabetic-retinopathy-image-dataset-idrid. These
datasets are cited at relevant places within the text as refer-
ences [32-35].
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