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Abstract: Personalized medicine requires large cohorts for patient stratification and validation of
patient clustering. However, standards and harmonized practices on the methods and tools to be
used for the design and management of cohorts in personalized medicine remain to be defined.
This study aims to describe the current state-of-the-art in this area. A scoping review was conducted
searching in PubMed, EMBASE, Web of Science, Psycinfo and Cochrane Library for reviews about
tools and methods related to cohorts used in personalized medicine. The search focused on cancer,
stroke and Alzheimer’s disease and was limited to reports in English, French, German, Italian and
Spanish published from 2005 to April 2020. The screening process was reported through a PRISMA
flowchart. Fifty reviews were included, mostly including information about how data were generated
(25/50) and about tools used for data management and analysis (24/50). No direct information was
found about the quality of data and the requirements to monitor associated clinical data. A scarcity
of information and standards was found in specific areas such as sample size calculation. With this in-
formation, comprehensive guidelines could be developed in the future to improve the reproducibility
and robustness in the design and management of cohorts in personalized medicine studies.

Keywords: cohorts; sample size; stratification; personalized medicine

1. Introduction

A personalized medical approach requires patient stratification, leading to identifying
homogeneous patient clusters relevant for diagnosis and treatment. Identification of patient
subgroups based on a limited number of determinants (companion diagnostics) is gradually
being replaced by patient stratification based on complex, multimodal profiling using
biological (genomic, epigenomic, transcriptomic, proteomic, metabolomic, etc.), clinical,
imaging, environmental (microbiome, exposome) and real-world data (wearable sensors
and lifestyle data) [1,2]. Data analysis through conventional methods or machine learning
algorithms establishing complex correlations leads to data-driven patient stratification,
which can be independent of understanding the disease mechanism. Thus, for this initial
phase in the context of personalized medicine, the construction of large cohorts is essential
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to stratify homogeneous patient groups adequately. This stratification can be used to
define a new disease taxonomy, refine diagnostic procedures or propose more specific
treatments for individual patient groups. In addition, a proper validation cohort can assess
the reproducibility, robustness and validity of the grouping in another sufficiently large
sample of patients [3–6].

Patient clusters are helpful in clinical practice if they are adequately defined through
exploratory studies. The criteria to determine the patient strata are suggested, and enough
evidence for their use in patient care is obtained through validation studies. Accordingly, it
is essential to have appropriate methods and tools for the adequate design of stratification
and validation cohorts and the resulting clusters. We have conducted a scoping review
to identify the state-of-the-art and gaps of methods and tools involved in the design,
management and validation of cohorts used in establishing patient clusters.

This scoping review is part of the PERMIT project (Personalised Medicine Trials),
aimed at mapping the methods for personalized medicine (Box 1) research and building
recommendations on robustness and reproducibility of different stages of the development
programs. While several categorizations may be proposed, the PERMIT project considers
four main building blocks of the personalized medicine research pipeline: (1) Design, build-
ing and management of stratification and validation cohorts; (2) application of machine
learning methods for patient stratification; (3) use of preclinical methods for translational
development, including the use of preclinical models used to assign treatments to patient
clusters; (4) evaluation of treatments in randomized clinical trials. This scoping review cov-
ers the first building block in this framework. We considered the scoping review approach
to be the most suitable tool to respond to the broad ambit of these objectives. Compared
to systematic reviews that aim to answer specific questions, scoping reviews are used
to present a comprehensive overview of the evidence about a topic. They are helpful to
examine emerging areas to clarify key concepts and identify gaps [7,8].

Box 1. What is Personalised Medicine?

According to the European Council Conclusion on personalised medicine for patients person-
alised medicine is a medical model using characterisation of individuals’ phenotypes and genotypes
(e.g. molecular profiling, medical imaging, lifestyle data) for tailoring the right therapeutic strategy
for the right person at the right time, and/or to determine the predisposition to disease and/or to
deliver timely and targeted prevention [9].

In the context of the Permit project, we applied the following common operational definition
of personalised medicine research: a set of comprehensive methods, (methodological, statistical,
validation or technologies) to be applied in the different phases of the development of a personalised
approach to treatment, diagnosis, prognosis, or risk prediction. Ideally, robust and reproducible
methods should cover all the steps between the generation of the hypothesis (e.g., a given stratum
of patients could better respond to a treatment), its validation and pre-clinical development, and up
to the definition of its value in a clinical setting. (ref protocol Zenodo) [10].

2. Materials and Methods

We followed the methodological framework suggested by the Joanna Briggs Insti-
tute [11]. The framework consists of six stages: (1) Identifying the research questions,
(2) identifying relevant studies, (3) study selection, (4) charting the data, (5) collating,
summarizing and reporting results and (6) consultation.

We published the study protocol in Zenodo before conducting the review [10]. Due to
the iterative nature of scoping reviews, deviations from the protocol are expected and duly
reported when they occurred. We used the PRISMA-ScR (Preferred Reporting Items for
Systematic reviews and Meta-Analyses extension for Scoping Reviews) checklist to report
our results [12].

2.1. Research Questions

The scope of this review on design, validation and management of cohorts has been
structured through the following research questions:
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1. What are the differences, pros and cons of the prospective and retrospective design of
stratification and validation cohorts?

2. Which are the methods for defining the optimal size of stratification/validation
cohorts? What are the prerequisites and methods used for the integration of multiple
retrospective cohorts?

3. What type of data (omics, imaging, exposome, lifestyle, etc.) are included and how
are data generated?

4. What are the tools used in personalized medicine for data management and multi-
modal data analysis?

5. What quality of cohort data is needed to obtain a biomarker or multimodal data
profiling? Are there requirements to monitor the collection of associated clinical data?

6. Which current and reliable designs exist for the stratification (or clustering) in person-
alized medicine?

7. Which methods and tools are used to build the cohorts for validation of patient strata?
8. What are the methods for the evaluation of the risk of bias?
9. What is the outlook of data generation seen as (CE-labelled) in vitro diagnostics?

We focused on three case models: Oncology, Alzheimer’s disease (AD) and stroke. We
chose these three fields because they are in different development phases of personalized
medicine, which allows us to explore methods and strategies in the different stages of
progress. These fields also use a different kind of data to stratify patients. Oncology is
where personalized medicine was first applied, and targeted therapies and diagnostics have
been mainly focused on. Moreover, several applications of biomarkers for the successful
stratification of patients with a given type of cancer exist, most of them based on molecular
data, especially genomics [13,14]. AD research in personalized therapies and diagnostics
nowadays is showing its firsts results, based on imaging, cognitive and molecular data [15].
Stroke is currently opening to personalized medicine, with some approaches and studies
in more initial phases. Most of the data used for patient stratification are imaging and
molecular data [16].

2.2. Information Sources and Search of Studies

We limited our search from 2005 to April 2020 and restricted it to English, French,
German, Italian and Spanish. Relevant studies and documents were identified balanc-
ing feasibility with breadth and comprehensiveness of searches. We searched scientific
manuscripts of reviews in the fields of cancer, stroke and AD in PubMed, EMBASE, Web
of Science, Psycinfo and the Cochrane Library (search date: March–June 2020) to answer
the research questions. We used keywords for illnesses, (e.g., “dementia”, “Alzheimer”,
“neoplasms”, “cancer”, “cerebrovascular disorders” or “ischemic attack, transient”), for
design (e.g., “validation studies” “cohorts design”, “prospective cohort” or “retrospective
cohort”), for methods (e.g., “methods”, “data integration” or “bias”) and for personalized
medicine (e.g., “stratified medicine”, “biomarker”, “precision medicine” or “personalised
medicine”). We also searched for grey literature on relevant websites. Table S1 reports the
search strategies applied.

2.3. Selection of Sources of Evidence

We exported the references retrieved from the searches into the Rayyan online tool [17].
Duplicates were removed automatically using the reference manager Endnote X9 (Clarivate
Analytics, Philadelphia, PA, USA) and manually verified. Two reviewers (TTM, AMM)
screened all titles and abstracts of the retrieved citations independently. Papers having a
different study design to those in the inclusion criteria, focusing on other illnesses or clearly
out of our aim, were discarded. In cases of disagreement, a consensus was determined by
discussion. After this selection, a full-text review was conducted by one of the investigators
(TTM) to select the documents included in the review. During this phase, we identified
several papers not solely addressing one of the three case models foreseen in the protocol,
but including at least one of them. They reported information that was deemed relevant to
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the aim of the review. Therefore, the authors agreed on their inclusion and referred to it as
“multiple disease reviews”. This inclusion was a deviation from the protocol.

2.4. Data Charting Process

Information was summarized in tables by one reviewer (TTM) and checked by a
second reviewer (ASN) to ensure data quality. In cases of disagreement, consensus was
obtained through discussion. It was not within the remit of this scoping review to assess
the methodological quality of individual studies included in the analysis.

2.5. Consultation Exercise

The members of the PERMIT consortium, associated partners and the PERMIT project
Scientific Advisory Board discussed the preliminary findings of the scoping review in a
two-hour online workshop.

3. Results

In total, the database searches retrieved 2362 records. Nine additional records were
retrieved through the included reviews and grey literature. After the screening process,
50 reviews and grey literature documents about European regulation were included: Nine-
teen on oncology, two on AD, two on stroke and 27 multiple disease reviews. Figure 1
reports the PRISMA flowchart for article selection. More information about the included
reviews and grey literature is provided, respectively, in Tables S2 and S3. The answers to
each of the research questions raised are presented in the following subsections.
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3.1. What Are the Differences, Pros and Cons of the Prospective and Retrospective Design of
Stratification and Validation Cohorts?

Fourteen reviews addressed this question. We found that the cohorts identified were
primarily prospective [18–31]. Prospective cohorts were predominantly used because they
enable the optimal measurement of predictors and outcomes, the risk of recall bias is
reduced and causality is easier to establish. On the other hand, the main advantage of
the retrospective design is that no follow-up of participants is required. Hence, costs are
lower. In addition, the use of retrospective cohorts facilitates the study of rare diseases.
Further information about the pros and cons of these study designs is provided in Table S4.
Additionally, Table S5 shows different specific subtypes of prospective designs found in
oncology studies with their pros and cons.

3.2. Which Are the Methods for Defining the Optimal Size of Stratification/Validation Cohorts?
What Are the Prerequisites and Methods Used for the Integration of Multiple Retrospective Cohorts?

Five reviews focused on this question. We have not found generic methods for
estimating the optimal size of stratification and validation cohorts, but we have retrieved
different strategies to determine the size of the cohorts [21–23,32,33].

The first strategy is using pre-selected fixed numbers based on rule-of-thumb ap-
proaches. For example, in retrospective studies in oncology, it has been suggested that
testing samples should include approximately 110 subjects without cancer and 70 subjects
with cancer, and training samples should include at least the same size. In prospective
studies the sample size recommended is larger. Moreover, we found that to validate a
prediction model with a binary outcome, a minimum effective sample size of 100 partici-
pants with and 100 without the outcome event is needed. Furthermore, for each study of a
candidate predictor, at least ten events are required for categorical outcomes [21–23].

Another strategy to determine the appropriate cohort size considers certain aspects,
such as the type of study, the disease of interest and the specific objectives and the statistical
criteria. A review on AD suggested the following aspects to take into account when
calculating the optimal size: The use of two-stage “summary measures” analyses or analysis
based on longitudinal parametric models; the effect size; the type of target population; and
the possibility of conducting a test analysis on pilot data [32].

Given that large sample sizes may be required, one review proposed integrating
multiple retrospective cohorts to obtain a sufficient sample size to achieve the necessary
statistical power for data analyses [33]. This review focused on microarray data integration
and proposed two analysis strategies: One approach consisted of pooling different microar-
ray experiments to form a single dataset which allowed easy clustering or intersection
operations (data aggregation), and the other approach was to analyze each microarray
experiment and then aggregate the statistical results of all separate experiments using meta-
analytic techniques. Some of the methods mentioned are the Mantel–Haenszel method,
meta-regression or the latent variable approach. Moreover, the review mentioned methods
to explore the relationship of the study characteristics, making the integration of cohorts
easier. Finally, this study also highlighted the challenge of ethics and infrastructure for
managing patient data integration. Ideally, it requires institutional commitment to build-
ing a comprehensive and global infrastructure. Still, because global infrastructures are
expensive, the review suggests that a local one could be developed, which would involve
considerably less money and time [33].

Despite the advantages of integrating multiple retrospective cohorts to achieve larger
sample sizes, we did not find more reviews on this topic.

3.3. What Type of Data (Omics, Imaging, Exposome, Lifestyle, Etc.) Is Included and How Are
Data Generated?

We found 25 reviews providing information about this topic. Most of the reviewed
studies used multimodal data (see Table 1). Each type of data has its advantages and
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disadvantages concerning its costs, the data it provides or the difficulty of being quanti-
fied [18,20–24,28,32–49].

Table 1. Summary of the quantity of information found by type of data.

Methods and Tools Most Frequent Strategy Used

Within-Subject Correlation

• To quantify intraclass correlation:
Modifications of Pearson’s product-moment
correlation coefficient.

• Comparisons based on the generalized
estimating equations generated by
mixed-effect models.

• Analysis of data using a mixed-effect
linear model that can accommodate a
dependent variance-covariance
structure.

Multiplicity

• Controlling the family-wise error rate (Tukey,
Bonferroni, Scheffe and other).

• Approach to controlling the false discovery
rate used in biomarker studies: Benjamini
and Hochber.

• Analysis of data using a methodology
that controls the family-wise error rate.

Multiple Clinical Endpoints

• The selection of a single primary endpoint for
formal statistical inference, considering that
the endpoints are possibly biologically
related and positively correlated.

• Creating a univariate outcome by combining
multiple clinical endpoints (weighted
measures taking into account the relevance of
each endpoint).

• To compare the two samples based on the
endpoint of highest priority first, and, if no
winner can be determined, would one move
to the endpoint of the next highest priority.

• Analysis of data by prioritizing the
relevant endpoints or by using a
composite endpoint.

Selection bias

• To adjust for age, stage, treatment and
so forth.

• Matched samples.

• Analysis of data using a multivariate
model to simultaneously adjust
for confounders

• Obtention of matched samples.
• Propensity score weighted.

Publication bias • To publish positive and negative results.

• Encourage the objective assessment of
molecular signatures by reporting both
positive and negative outcomes.

• Make data publicly available
after publication.

Some examples of the type of data and their pros and cons are:

• Genetic variation data. This type of data is an unbiased source of the genetic basis of
disease and allows the direct inference of causality.

• Epigenetics data. It is useful to know the functional impact and makes the inference of
causality easy, but it does not apply to all phenotypes.

• Gene expression data. It shows the picture of an intermediate step towards the phenotype.
• Proteomics and metabolomics data. This type of data is the closest to the phenotype,

but both data are expensive, especially proteomics.
• Microbiome data. It is very close to the phenotype and measures a combination of

genetic and environmental influences. The combination of genetic and environmental
influences makes it difficult to infer the direction of causality.

• Image and environmental data on different biological layers. These two types of data
are hard to measure quantitatively [34].

The aggregation of different type of data has also been studied. Radiogenomic studies
offer the opportunity to assess the relationships between genotype features, intermedi-
ate phenotype features, radiomic features and phenotypic clinical outcomes [37]. One



J. Pers. Med. 2022, 12, 688 7 of 19

review highlighted that the association between the functional properties of the micro-
biome and other features could be helpful to understand the phenotype of the different
illnesses better [36]. Thus, that review found the development of tools and algorithms
to integrate 16S sequence information and metagenomics with metatranscriptomics and
metaepigenomics relevant [36].

3.4. What Are the Tools Used in Personalized Medicine for Data Management and Multimodal
Data Analysis?

Data management and the analysis of data are key factors to make the most of the data.
Therefore a large number of reviews, a total of 24, provided information on the methods
and tools used for this purpose [18,22,24,33,34,37–39,41,43–46,48,50–59]. An outline of
methods and tools has been collected in Appendix A. Methods and tools for data analysis
and methods for different types of data integration are reported separately below.

3.4.1. Methods and Tools for Data Management and Multi-Omics Data Analysis

Regarding data management tools in oncology, some data warehouses, such as Data
Warehouse for Translational Research, enable users to interrogate clinico-pathologic data in
a multidimensional manner dynamically [37]. The Joint Modelling approach was one of
the methods found for analysis, which recommends integrating both large-scale omics and
non-omics data [60]. Other methods involved network analysis, such as Multiblock Partial
Least Squares (or projection to latent structures, MBPLS). This method seeks to maximize
covariance between summary vectors derived from each omics data block and a biological
phenotype or response [34].

One review based on multiple diseases analyzed the tools for an integrative approach
using multi-omics data as repositories or visualization portals and the challenges in in-
tegrating data sets [20]. A standard classification for integrative multi-omics methods
has not been established due to three reasons: The same methods can achieve different
objectives; pipelines presented for addressing a particular problem can also be used to solve
another problem (e.g., other types of omics), and several tools can be used in a supervised
or unsupervised setting [56]. Some reviews also pointed out that uniformity in the process
and analysis of multi-omics data may lead to a reduction in spurious signal (caused by
technical limitations of platforms) and an increase in the identification of associations. The
main difficulty in generating uniform strategies is the inability to know what the models
should include and, therefore, the most effective modelling strategies [18,41].

3.4.2. Methods for Data Integration

One oncology review pointed out that integrative data sets often do not have a
standard format, highlighting the importance of building an infrastructure to house and
manage these data. Further work is needed to create an infrastructure for storing genetic
and transcriptomic data in Electronic Health Records (EHR) [38]. Moreover, there is a need
to determine which information will be reported back to a patient and incorporated into an
EHR, which will require concerted efforts from clinicians and researchers [38]. Despite this,
one review described some strategies for coupling EHRs to genomic datasets to determine
genotype–phenotype associations [60].

Constraint-based modelling methods are relevant for integrating different omics
layers at genome-scale, which provide a mechanistic link between the genotype and their
phenotypic observables [43]. These integration methods can be “vertical”, including omics
layers, or “horizontal”, based on the same model but focusing on different environments
(cancers or growth conditions) [61,62]. Moreover, one review focusing on multiple diseases
classified the integration methods by taking into account the features that these methods
help to improve: Velocity (e.g., anytime algorithms) or variety (e.g., matrix factor-based
methods, or Graph-regularized non-negative matrix tri-factorization). It also pointed out
that integrating many data types, including exposomic and metagenomic data, is a focus
for future studies [51].
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Regarding the tools for data integration, these mainly concentrate on machine learning
and deep learning-based approaches. These approaches allow the computational flexibility
to effectively model and integrate almost any omics type [44,55].

Finally, all reviews indicated that the existing statistical methods mainly address data
analysis and management. Multi-layer data integrative methods for multi-omics-derived
data need to be developed and improved [45].

3.5. What Quality of Cohort Data Is Needed to Obtain a Biomarker or Multimodal Data Profiling?
Are There Requirements to Monitor the Collection of Associated Clinical Data?

Despite the relevance of the quality of data and the monitoring of data collection
for the reliability of the results, we have not found specific information about the quality
of data in the cohort building step. Furthermore, we have also noticed an absence of
information regarding the monitoring of associated clinical data. The closest information
found was related to guidelines regarding sample size [21–23] or to requirements for
statistical analyses [32,33], described in other sections of this article.

3.6. Which Current and Reliable Designs Exist for the Stratification (or Clustering) in
Personalized Medicine?

Four reviews addressed this question. Reliable clustering methods are needed to
develop accurate studies of personalized medicine. Hence information about stratification
methods and their reliability are relevant [35,47,55,63].

3.6.1. Oncology

One review pointed out that staging systems for hepatocellular carcinoma should
be considered important for treatment recommendations, but current methods are not
optimal. Novel methods, such as those based on systems biology, pathology-specific
biomarker panels and multilevel diagnostics, are ongoing and present various degrees
of portability, ranging from general to particular algorithms, and allow a more accurate
patient stratification [35].

3.6.2. Alzheimer’s Disease

We found that pathology-specific PET-imaging data is accurate for understanding the
regional distribution of molecular disease processes for patient clustering. Still, a direct
combination of high-dimensional information from multiple modalities may achieve a
more comprehensive definition of distinct disease subtypes in AD and related dementia.
Several statistical methods for clustering have been found: Ward’s clustering; unsupervised
graph-theory-based clustering approach; non-negative matrix factorization; unsupervised
random-based clustering; and assigning patients to subtypes in a probabilistic fashion
method [47].

3.6.3. Multiple Disease Reviews

In these reviews, the methods to stratify patients were classified in the following types:
One, clustering based on groups of patients with similar disease evolution; two, dimen-
sionality reduction, that is, methods that select the representative features to characterize
specific groups of patients; three, similarity methods, those that define a novel measure of
similarity among patients; four, software tools, or methods based on a software solution
implementing the proposed approach; and finally, a combination of clustering or similarity
metrics and supervised approaches, i.e., methods where the features, that characterize a
group of patients are then used to solve a classification task [55,63].

3.7. Which Methods and Tools Are Used to Build the Cohorts for the Validation of Patient Strata?

Eleven reviews dealt with the building of validation cohorts [20,22,25,27,35,40,49,57,63–65].
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3.7.1. Oncology

Reviews on oncology conclude that statistical methods to correct the potential effect
of multiple analyses (such as Bonferroni or Hochberg’s correction) prevent the reporting of
false-positive results. External validation on comparable series of patients is at best ade-
quate but rarely possible. Alternatively, complex internal cross-validation procedures could
ensure biomarker stability. The methods defined in the reviews have been schematized in
Table S6 [25,27,35,64].

3.7.2. Multiple Disease Reviews

One review suggested that internal validation often gives exaggerated estimates of
biomarker performance, probably due to feature selection bias, population selection bias or
optimization biases [22,65]. External validation is the most rigorous form of model validity
assessment. However, biases may also be introduced in this type of validation and may
have different levels of rigor (e.g., replication by the same team of investigators or not).
Despite the importance of replication, it is important to note that most biomarker studies
never have independent replication [22,40,57,65]. Moreover, another review focused on
propensity score methods and methods for matching. Both choices are good for enrolling
matched control groups in biomarker studies [63].

Another review focused on the different designs of pharmacogenetic studies, each
design having a different structure of validation of cohorts. The aforementioned review
classified the designs into targeted or enriched designs (pre-screening step in which patients
are selected for the study based on genotype), stratification design (pre-screening step
where all subjects are assigned to groups based on genotype and then randomly assigned
to treatment) and adaptive design (enrolled patients are randomly assigned to treatment
groups and treatments are compared as part of a primary study objective) [20].

3.7.3. Stroke

One review concluded that both propensity score matching and one-to-one matching
are suitable approaches [49]. The propensity score estimates the probability that one
participant belongs to the stroke group only considering their baseline characteristics.
This approach aims to match each participant with stroke with the available control with
the closest propensity score. Worth noting is that a large pool of enrolled controls is
required to obtain patients and controls with similar scores. In one-to-one matching, the
investigator enrolls control participants that are perfect or nearly perfect matches for each
stroke participant based on their demographic features and other potential confounders.
This approach requires computer programming support to manage all the EHR information.
According to the review, one-to-one matching is a much more targeted approach than
propensity score matching [49].

3.8. What Are the Methods for the Evaluation of the Risk of Bias?

Eight reviews were related to this question. They reported that most of the studies in
personalized medicine do not publish a complete analysis of the risk of bias. However, it is
important to evaluate and analyze the risk of bias to minimize it [18,19,24,26,27,29,42,57].

In the oncology reviews, there were two methods to avoid the bias caused by the
lack of data: Inverse probability weighting and multiple imputation [24]. The conclusion
reached was that there are unavoidable sources of bias, but the above approaches can reduce
them. Other conclusions were that general scientific standards should be established for
scientific rigor and reproducibility and that there is a need for standardization of statistical
tools and methodologies in specific fields [24,29].

Multiple disease reviews reported different methods to mitigate different kinds of
bias (Table 2) [18,19,42,57]. Some reviews suggested that the main problem is the unavoid-
able errors in fundamental data, which can be mitigated using extensive cohort studies.
Separating bench researchers and clinical epidemiologists is a suitable approach to cover
both kinds of research [42]. Another bias with a non-statistical origin is the “publication
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bias”, which occurs because research groups tend to report only the best results. Publishing
positive and negative outcomes is a need to reduce this kind of bias [18]. Another review
noted the relevance of detecting the type of bias, analyzing its possible cause and devising
a strategy to address it [19].

Table 2. A summary of methods, tools and strategies proposed to avoid different types of bias.

Methods and Tools Most Frequent Strategy Used

Within-Subject Correlation

• To quantify intraclass correlation:
Modifications of Pearson’s product-moment
correlation coefficient.

• Comparisons based on the generalized
estimating equations generated by
mixed-effect models.

• Analysis of data using a mixed-effect
linear model that can accommodate a
dependent variance-covariance
structure.

Multiplicity

• Controlling the family-wise error rate (Tukey,
Bonferroni, Scheffe and other).

• Approach to controlling the false discovery rate
used in biomarker studies: Benjamini
and Hochber.

• Analysis of data using a methodology
that controls the family-wise
error rate.

Multiple Clinical Endpoints

• The selection of a single primary endpoint for
formal statistical inference, considering that the
endpoints are possibly biologically related and
positively correlated.

• Creating a univariate outcome by combining
multiple clinical endpoints (weighted measures
taking into account the relevance of
each endpoint).

• To compare the two samples based on the
endpoint of highest priority first, and, if no
winner can be determined, would one move to
the endpoint of the next highest priority.

• Analysis of data by prioritizing the
relevant endpoints or by using a
composite endpoint.

Selection bias
• To adjust for age, stage, treatment and so forth.
• Matched samples.

• Analysis of data using a multivariate
model to simultaneously adjust
for confounders

• Obtention of matched samples.
• Propensity score weighted.

Publication bias • To publish positive and negative results.

• Encourage the objective assessment of
molecular signatures by reporting
both positive and negative outcomes.

• Make data publicly available
after publication.

Finally, some reviews on oncology focused on how to measure the risk of bias. The
tool Quality in Prognosis Studies (QUIPS) assesses the risk of bias in six domains: Study
participation, study attrition, prognostic factor measurement, outcome measurement, study
confounding and statistical analysis and reporting. In addition, the reviews concluded that,
although there is a black box in the analysis of the risk of bias, three sources of risk of bias
are usually analyzed:Ooutcome measurement, study confounding and statistical analysis
and reporting [26,27].

3.9. What Is the Outlook of Data Generation Seen as (CE-Labelled) In Vitro Diagnostics?

The new European regulatory framework for in vitro diagnostics will be fundamental
when designing and implementing further studies and advances in personalized medicine.
In vitro diagnostics are frequently used in personalized medicine to identify patients
likely to benefit from specific treatments or therapies [66]. We found five grey literature
documents about European regulation [66–70].
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The new regulation for in vitro diagnostics is meant to be applied in the European
Union before May 2022 [69,70]. This new regulation will likely improve the quality and
effectiveness of these instruments by increasing the requirements in their development and
approval, which will translate into advances in drug developmental and diagnostic tests,
fostering personalized medicine.

In 2017, 35% of all new drugs approved by the FDA were personalized, and this
number will continue growing [67,68]. It is likely that in vitro diagnostics will go through
an exponential increase, leading to the market authorization of new drugs that rely on them
in the near future [71–74]. At the moment, some techniques such as CRISPR Technology [75],
liquid biopsy [76] and epigenetics [77] are advancing particularly fast.

4. Discussion
4.1. Summary of Evidence

We have mapped the characteristics of cohorts used in studies of personalized medicine,
the methods and tools involved in the design and selection of these cohorts and the vali-
dation and analysis of data. Finally, we have examined the regulatory framework for the
development of cohorts in the field of personalized medicine. Further efforts are required
towards the unification and organization of the existing information to be easily used in
the initial stages of personalized medicine. Regarding the cohort design, we have explored
three aspects: The pros and cons of a prospective or retrospective design, the calculation of
sample size and assessing the risk of bias.

We have found that the retrospective design requires fewer resources than the prospec-
tive one, but the risk of recall bias should be carefully considered. Moreover, it has been
found that the choice of study design depends not only on the study’s objective but also on
its feasibility [18–31].

We have not retrieved a standardized approach to sample size calculation to be explic-
itly applied to cohorts in personalized medicine. This gap may be due to the complexities
of estimating the sample size in analyses with widely different variables. There are, how-
ever, two different perspectives to calculate the appropriate sample size. One is to use
pre-selected fixed numbers based on rule-of-thumb approaches [21–23], and the other is to
consider certain aspects of the study, such as type of study, specific objectives or statistical
criteria, to decide the appropriate sample size [32].

The type of study, the objectives, if the parameters are study-specific driven, the type
of data and the choice of statistical methods should be considered for an adequate sample
size calculation [33]. Other factors that may influence the sample size requirements are
whether the final intervention will be pharmacological or non-pharmacological or whether
the setting is supervised or unsupervised [78].

In order to build a cohort with a large sample size, a proposed helpful strategy is
to integrate existing multiple retrospective cohorts. This is one of the multiple reasons
why it is essential to develop strategies and tools that facilitate the integration of multiple
retrospective cohorts [33]. Despite its importance, we have found a lack of reviews on this
topic, suggesting a need for research to standardize the prerequisites and find new tools to
integrate different cohorts.

A narrative review about methods for harmonizing cohorts classified the advantages
of data integration into three types. The first type concerns advantages related to the theo-
retical rationale to increase representativeness. For example, to cover different populations,
to be able to know the source of heterogeneity, to understand complex illnesses through
different data types better and to be able to identify the natural gaps in research. The sec-
ond concerns advantages related to statistical issues, for example, that larger samples are
required to obtain sufficient data for the analysis. Finally, there are the advantages related
to practical issues. Obtaining existing data is an opportunity to reach results faster, com-
pared to initiating a new study. Thus, it may be a more cost-effective and an unnecessary
duplication of work or an additional burden on the target population [79].
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Another helpful tool proposed in other reviews to estimate the suitable sample size
for different settings is the use of pilot data simulation [80–86].

As with any other research projects, cohorts for stratification and clustering may
be affected by various biases. Careful planning and conduction of studies can mitigate
them, and there are tools available for the analysis of that risk [26,27]. Despite this, only a
minority of studies conduct and publish a complete analysis of the risk of bias. Therefore,
it is recommended that researchers conduct and report complete analyses of the risk of bias
in their studies.

We have also explored the data used in personalized medicine studies, finding that
each type of data has its particular and unshared characteristics. Technically, image and
environmental data on different biological layers are the hardest to measure [34]. Concep-
tually, these differences make the studies with different types of data challenging, driving
to new and emerging research fields [37].

We have not found specific information about the quality of cohort’s data or the
requirements to monitor the collection of associated clinical data. This gap is of utmost im-
portance because any stratification study should rely on high-quality data to be meaningful.
Monitoring of data is relevant for traceability, and more research in this field is needed to
understand the requirements of monitoring for the different kinds of omics data.

Considerable diversity of methods has been identified regarding the tools used for
data management and multimodal data analysis. The strengths and limitations of the
different methods have been meticulously detailed. To approach the choice of one method
or another, it is important to consider if it is necessary to conduct an analysis or only to
integrate data. Moreover, it is also important to consider other factors, such as the type of
data (e.g., omics or non-omics) or the aim of the study (e.g., to find an association between
omics data and the biological phenotype or to understand the mechanism of the illness). It
is important to point out that integrative data sets often do not have a standard format for
research use in oncology [38]. In other areas, results show a need to develop and improve
multi-layer data integrative methods for multi-omics-derived data to provide tailored
therapies [45].

To our knowledge, only one review covers some of the topics that we have developed
here from the same angle. It is a narrative review that focuses on methods for harmonization
of previous retrospective cohorts. Interestingly, it presents an in-depth analysis of the causes
of the need for data integration, focusing on the advantages of heterogeneity and population
representativeness, statistics and cost efficiency [79].

4.2. Gaps Detected in Stratification and Validation Cohorts in Personalized Medicine

The present scoping review has found a lack of standards and a shortage of information
in the areas described below.

First, we have found different approaches to determine the optimal size, but they are
rather generic, as rules of thumb that depend on various aspects of the target study. It
could be advantageous to record and prioritize the factors to be considered to calculate the
minimum necessary sample size. For this, further studies are needed to determine standard
approaches as a reference.

Second, we have noticed a lack of methodological recommendations to integrate
data from different cohorts and a lack of standards of homogeneity between cohorts to be
integrated in the way of collecting the data. Taking this into account, it would be helpful
to work on three aspects: The most relevant items to consider when collecting data, how
data from different cohorts are integrated and the elements contemplated to integrate data
from different cohorts. Moreover, it would be helpful to know the non-specified standards
currently followed to collect data and the provider of such standards.

Third, we have detected a lack of harmonization tools for biological data and a lack of
tools and methods to evaluate the similarity between cohorts. Further research could help
identify tools in development for harmonizing biological data, and which approaches are
currently used to evaluate the similarity between cohorts.
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Fourth, no specific information about standards for minimum experimental data
quality has been found, and requirements for monitoring associated clinical data were also
missing. In the design of cohorts, the minimal sample size was not regulated; and during
the conduction of the analysis in the biomarker or multimodal data profiling studies, no
uniform requirements prevailed regarding statistics. In addition, no regulation has been
found about the quality of cohorts in terms of revision or validation of data. For this reason,
it is necessary to establish standards of minimum experimental data quality that allow the
conduct of biomarker or multimodal data profiling. Regarding monitoring of the clinical
data collection associated with biomarker studies, there is an important gap to be covered,
and clear regulation on this would be widely advantageous.

4.3. Future Research and Guidelines Proposals

The final objective of the PERMIT project is to write guidelines and recommendations
to improve research in personalized medicine. This scoping review has identified gaps
and needs for standards regarding stratification and validation cohorts, and it defines the
areas where these guidelines can be especially relevant. Useful guidelines would include
information regarding sample size, gathering the factors to consider for its calculation.
Regarding the integration of multiple retrospective cohorts, these guidelines would collect
the existing methods and create methodological standards for integration. Finally, regarding
quality of data, they would develop standards on data quality and requirements to monitor
the collection of associated clinical data.

4.4. Limitations

This review focuses on three case models: Oncology, Alzheimer Disease and stroke.
These three illnesses have a significant impact on public and individual health. They are in
three different phases of maturity within personalized medicine, and this allows the study
of methods and strategies in different levels of development, using different kinds of data
to stratify patients. However, they are not necessarily representative of the entire field of
personalized medicine.

Another limitation is that, given the quantity of information and the breadth of this
scoping review, the information presented was extracted only from reviews; information
was not retrieved directly from the primary studies of the reviews.

5. Conclusions

This scoping review collects and presents an analysis of the methods and tools cur-
rently used to design, build and analyze stratification and validation cohorts. It explores
the current use of these tools and methods, the criteria to consider when applying them
and the existing regulation that affects them.

Gaps and lack of uniformity have been found in sample size calculation, integration
of multiple retrospective cohorts, quality of data of cohorts needed to obtain a biomarker
or multimodal data profiling and the requirements to monitor the collection of associated
clinical data in biomarkers studies. These gaps have led us to suggest the creation of more
comprehensive and specific guidelines in the future.
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Appendix A. Outline of Methods and Tools for Data Analysis and for Data Integration

Appendix A.1. Methods and Tools for Data Analysis

Appendix A.1.1. Oncology

Strategies:
Independent modelling, conditional modelling and joint modelling.
Methods and tools:

(A) Statistical method approaches.

- Dimension reduction Principal Component Analysis (PCA) and Factor Analysis
and variations. These variations include Multiple Factor Analysis (MFA), con-
sensus PCA (CPCA), multiple-block PCA (MBPCA) and non-negative matrix
factorization (NMF).

- Data integration or data fusion. Multivariate, concatenation-based and transformation-
based methods. Tools: R/Bioconductor packages MultiDataSet and Mullti-
Assay experiment (between others), and some tools more specific: Caleydo
StratomeX, CAS-viewer, cBio Cancer Genomic Portal, Genboree Workbench,
MARIO, mixOmics, ModulOmics, Omics Integrator and XENA UCSC browser.

- Causal inference Parallel regression, Bayesian networks, sparse generalized
canonical correlation analysis (sGCCA), Multi-omics factor analysis (MOFA),
Mendelian randomization, and Joint and Individual Variation Explained (JIVE),
Inverse probability weighting and component-based method.

- Criterion for predictor selection: Method of predictor selection used within multi-
variable analysis Backward selection, forward selection, added value of a specific
predictor to existing predictors or model, all predictors included regardless of
statistical significance and similar predictors combined Criterion for selection
of predictors in multivariable analyses p-Value cut-off at, 0.05 or lower, p-Value
cut-off higher than 0.05, Akaike’s information criterion, Bayesian information
criterion, explained variance (R2) and change in C-statistic.

- Multiple imputation

(B) Machine learning approach
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• Support vector machine (SVM)
• Random forest (RF)
• Convolutional neural network (CNN)
• Deep learning

(C) Network modelling approach Types of networks: Protein–protein interaction (PPI) net-
work, miRNAmRNA regulatory network and gene co-expression network. Analysis
methods for networks:

• Network analyses Tools: Cytoscape, ARACNe, WGCNA, IPA, Bibliosphere
• Enrichment analysis (Gene Set Enrichment Analysis) Tools: DAVID, g:Profiler,

AmiGO, Onto-Tools, ClueGO Golorize, FatiGO, GoStat
• Analysis of protein interactions Tools: HPRDR, Bioconductor, Matlab, GenePat-

tern, BIND, DIP, BioGRID, STRING, Annotator, Pfam, PROSITE, InterPro, ProDom,
SMART, BLOCKS, UniProt

• Pathway analysis Tools: Reactome, Cancer Cell Map, PathwayExplorer, GenMAPP,
INOHGEO, ArrayExpress, SMD, Oncomine, PANTHER, Science signaling map

• Multistage or meta-dimensional fashion (as an example, for drawing inferences
from these data, involves pairwise analyses of data sets).

Appendix A.1.2. Multiple Diseases

Methods and tools:

(A) Statistical method approaches

• Dimension reduction

Principal Component Analysis (PCA) and Factor Analysis and variations. These
variations include Multiple Factor Analysis (MFA), non-negative matrix factorization
(NMF) of different kinds: iNMF, Joint NMF and regularized NMF.

• Data integration or data fusion.

Multivariate analysis: Multiple co-inertia analysis (MCIA), Joint and Individual
Variation Explained (JIVE), Joint NMF, Single vector decomposition (t-SVD), Sparse
multi-block partial least squares (smBPLS), Penalized multivariate analysis (PMA),
Feature selection multiple kernel learning (FSMKL), Non-negative matrix factorization
(NMF), Graph-regularized non-negative matrix tri-factorization (GNMTF), Multiple
factor analysis (MFA), Mocluster and Regularized multiple kernel learning- locality
preserving projection (rMKL-LPP), Joint kernel matrices, Multiple similarities collab-
orative matrix factorization (MSCMF), CNAmet Multivariate, concatenation-based
and transformation-based methods: Tools: R/Bioconductor packages mixOmics,
Integromics, iPAC, Camelot

• Causal inference
• Bayesian inference

Joint and Individual Variation Explained (JIVE), multi-omics factor analysis (MOFA)
Bayesian consensus clustering (BCC), patient-specific data fusion (PSDF), Pathway
Recognition Algorithm using Data Integration on Genomic Models (PARADIGM),
iCluster, iClusterPlus, LRAcluster, Joint Bayesian factor, multi-omics factor analy-
sis (MOFA), Multiple dataset integration (MDI), Molecular Regularized Consensus
Patient Stratification (MRCPS), factor analysis-linear discriminant analysis (FALDA)

(B) Machine learning approach Classification considering five specific computational
challenges associated with integrative analysis:

• Curse of dimensionality

Feature extraction (FE) or feature selection (FS)

• Data heterogeneity

Tree-based learning, penalized linear models, Multiple Kernel Learning, Graphs and
Networks, Latent Sub-space Clustering and Deep Learning)
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• Missing data

Single Imputation, Maximum likelihood, Multiple imputation, Matrix Factorization,
Deep Learning/Autoencoder, Integrative imputation

• Class imbalance

Data Sampling, Cost-Sensitive Learning and Evaluation Measure-based

• Scalability issues

Efficient Algorithms for Big Data, Online Machine Learning, Distributed ML imple-
mentations and Cloud computing solutions

• Specific methods of deep learning

Autoencoder, convolutional neural network, recurrent neural network, DNN-MDA
(DNN, deep neural network; MDA, mean decrease accuracy) and DeepNovo.

(C) Network modelling approach Pathway Recognition Algorithm using Data Integration
on Genomic Models (PARADIGM), similarity network fusion (SNF), network-based
(NBS), Coupled network propagation, Network completion, and NetICS.

Appendix A.1.3. Stroke

Methods and tools:

(A) Statistical method approaches

- Causal inference

Mendelian randomization: Analytical tool to dissect the roles of risk factors, to separate
causal markers from only markers (those without causal relation).

Appendix A.2. Methods for Different Kinds of Data Integration

Appendix A.2.1. Multiple Disease

• Genetic risk scores, regression methods and Bayesian networks.
• Constraint-based modelling
• Methods that allow to overcome multicollinearity problem while modelling huge

number of variables:

Regularized regression methods, such as ridge regression, the Least Absolute Shrink-
age and Selection Operator (LASSO), a combination of the last two, the Elastic Net (ENET),
the Bayesian LASSO, or other Bayesian regularized regression methods such as Reproduc-
ing Kernel Hilbert Spaces Regression models (RKHS).

Appendix A.2.2. Oncology

Similarity Network Fusion and Multiblock Partial least squares (or projection to latent
structures, MBPLS), Naïve Bayesian integration model.
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