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People are capable of robust evaluations of their decisions: they are often aware of their mistakes
even without explicit feedback, and report levels of confidence in their decisions that correlate
with objective performance. These metacognitive abilities help people to avoid making the same
mistakes twice, and to avoid overcommitting time or resources to decisions that are based on unreli-
able evidence. In this review, we consider progress in characterizing the neural and mechanistic basis
of these related aspects of metacognition—confidence judgements and error monitoring—and
identify crucial points of convergence between methods and theories in the two fields. This con-
vergence suggests that common principles govern metacognitive judgements of confidence and
accuracy; in particular, a shared reliance on post-decisional processing within the systems res-
ponsible for the initial decision. However, research in both fields has focused rather narrowly on
simple, discrete decisions—reflecting the correspondingly restricted focus of current models of
the decision process itself—raising doubts about the degree to which discovered principles will
scale up to explain metacognitive evaluation of real-world decisions and actions that are fluid,
temporally extended, and embedded in the broader context of evolving behavioural goals.
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1. INTRODUCTION
(a) Metacognition in perceptual choice

Imagine yourself cycling along a narrow, winding
country lane on a summer’s day. Successfully negotiat-
ing each twist and turn in the road requires the
interpretation of a variety of subtle sensory cues and
their conversion into appropriate motor commands.
For example, incoming visual signals that reveal the
curvature of the road, or motion parallax signals aris-
ing from the trees beyond, allows you to gently
adjust the handlebars towards the left or right to
steer the bicycle smoothly round each bend.

Over past decades, psychologists and neuroscien-
tists have devoted substantial effort to understand
the neural and computational mechanisms by which
actions are selected on the basis of a stream of incom-
ing sensory information [1]. Because this sort of
sensorimotor control often requires an observer to
commit to one discrete action from among several
possible candidates, this literature has been informed
by computational models that offer a formal account
of how categorical decisions are made. These
models, described in more detail below, have provided
an excellent account of the decisions and decision
latencies exhibited by observers selecting actions on
the basis of ambiguous sensory information [2–5].

However, now imagine that as you are cycling, the
sky darkens and it begins to rain—visibility is reduced,
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and the road becomes slippery and wet. The approach
to each bend still requires a deft angling of handlebars,
but now you are less certain about whether each
chosen action is optimized to steer the bicycle in a
fashion that appropriately meets the gradient of the
curve and the camber of the road. Action selection
proceeds as before, but you are unsure whether the
actions chosen are the most appropriate ones. In
fact, you might even experience an immediate sense
that you have just made a poor choice. In short, you
are less confident about your decisions.

Curiously, despite universal agreement that an
accompanying sense of confidence is a subjectively
salient property of almost all our decisions, there is
currently little consensus about how we might incor-
porate decision confidence into formal models of
choice behaviour or explore its biological substrates.
Fundamental questions remain unanswered. For
example, is the information that gives rise to the
‘second-order’ estimate of confidence in a choice iden-
tical to that determining the ‘first-order’ choice itself?
Why are we generally more sure that we are correct
than that we have made an error, even for difficult
choices? Why do we sometimes appear to ‘change
our mind’ after a motor programme has been initiated?
Are these changes of mind necessarily accompanied by
awareness that the initial choice was incorrect?

In what follows, we review the literature that has
posed these and related questions about decision con-
fidence in perceptual choice tasks. Subsequently, we
highlight links between this work and a literature
that has considered how people monitor whether they
have made an error under conditions of uncertainty
This journal is q 2012 The Royal Society
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Figure 1. The drift-diffusion model. Accumulating evidence

(the decision variable, y-axis) over time (x-axis) is shown for
two illustrative trials (marked a and b, grey and black lines),
one on which the choice u is made and the other on which
the choice –u is made. A decision is triggered when evidence
reaches u or –u. Grey line, trial 1; black line, trial 2.
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or conflict. Finally, we propose some potentially fruitful
avenues for research that draw upon common themes
in these two literatures, building on their shared
strengths and addressing their shared limitations.
(b) Formal models of perceptual choice

Even under good viewing conditions, visual infor-
mation is corrupted by multiple sources of noise and
uncertainty, arising both in the external world and in
the dynamics of neural processing. One sensible way
to increase the signal-to-noise ratio of visual infor-
mation is to sample the external world repeatedly
and integrate this information over time, making a
decision only when the information is considered to
be of sufficient quality [5]. This idea forms the basis
of a class of model in which binary choices are
described via an accumulation-to-bound mechanism,
with successive samples of information totted up
until they reach a criterial level or ‘bound’, upon
which a commitment to action is made (figure 1).

Different versions of this model make divergent
assumptions about exactly what quantity is integrated
en route to a decision—i.e. about precisely how the
‘decision variable’ (DV) is composed. To simplify mat-
ters, in this review, we focus on one variant of this
model—the ‘drift-diffusion’ model, or DDM—in
which the DV corresponds to the relative likelihood
of the two choices being correct, given the stimulus
[3]. In the DDM, the DV on sample vt is updated on
each sample t with an increment composed of two
quantities: d, a linear drift term that encodes the rate
of evidence accumulation, and cW, Gaussian noise
with a mean of zero and a variance of c2:

nt ¼ nt�1 þ dþ cW : ð1:1Þ

Decisions are made when the DV exceeds a fixed
deviation from zero, u, such that during evidence
accumulation:

� u . v . u: ð1:2Þ
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This simple model has much to recommend it both
as a normative and descriptive account of categorical
choice. The DDM has been widely and very suc-
cessfully applied to decision-making in a range of
cognitive domains—from low-level perceptual decisions
to retrieval of facts from semantic memory, to econo-
mic decision-making under uncertainty [6–8]—and
accounts neatly for several empirical characteristics of
reaction times (RTs) observed for binary choices in
these tasks. Firstly, the natural geometry of the accumu-
lation-to-bound process predicts the observed rightward
skew in RT distributions. Secondly, varying the bound
offers an elegant account of the economy of speed and
accuracy that characterizes mental chronometry tasks.
Thirdly, by allowing drift rate and origin of accumulation
to vary across trials, the model accounts for the relative
RT of correct and error trials under conditions where
speed or accuracy are emphasized [8]. Moreover, the
model implements a sequential probability ratio pro-
cedure that optimizes speed for a given error rate, and
thus takes its place among a family of statistically
optimal descriptions of the choice process [2].
2. DECISION CONFIDENCE
However, as illustrated above, we not only make
decisions, but also concurrently evaluate the likelihood
that those decisions will result in favourable or
unfavourable outcomes. How, then, can we incorpor-
ate decision confidence into the formal framework
offered by the DDM and other quantitative models
of perceptual choice? In what follows, we review
recent empirical and modelling work that has
attempted to extend this formal framework to account
for metacognitive judgements. Much of this debate has
hinged on a simple question: can confidence be read
out directly from the DV at the time of choice (decisio-
nal locus model), or do confidence judgements
depend on new information arriving beyond the
decision point (post-decisional locus models)? [9].

As an aside, we note that this question only arises
if one is concerned with modelling the dynamics
of the decision process, such as with the DDM or
related evidence-accumulation models. Other decision-
theoretic models, such as signal detection theory
(SDT), have given detailed treatment of how to measure
observers’ metacognitive sensitivity, specifically, their
ability to distinguish their own correct and incorrect jud-
gements [10–12]. However, because SDT is a static
model of the decision process in which the temporal
dynamics of evidence accumulation are ignored, primary
(‘type I’) and metacognitive (‘type II’) judgements
must necessarily be based on the same evidence (albeit
potentially corrupted by different sources of noise
[12]), and thus these models are by definition decision
locus models.

(a) Decisional locus models

The very earliest investigations of decision confidence
revealed that, perhaps unsurprisingly, we are more
certain about our perceptual choices when sensory
inputs are stronger [13], and when we are given
longer to sample sensory information [14]. It thus fol-
lows that confidence should reflect both the quality of
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the evidence (represented by the drift rate, d) and the
quantity of evidence at the choice point (represented
by the absolute value of the decision bound, juj). How-
ever, it is also clear that neither of these quantities
alone is sufficient to describe an observer’s confidence
in their choices. Any diffusion-to-bound model assum-
ing that confidence is directly indexed by the state of
evidence at the time of choice inevitably predicts that
all choices will be made with precisely the same confi-
dence (corresponding to the evidence level required to
reach the bound). Similarly, any model proposing that
confidence reflects evidence quality implicitly assumes
that observers have direct access to this quantity—
which, if they had, would obviate the need for a sequen-
tial sampling approach in the first place (see Pleskac &
Busemeyer [15] for an excellent recent review).

Various accounts dating back over 100 years
have therefore proposed that confidence reflects
some interaction between the quantity and quality of
evidence—for example, that under the DDM, confi-
dence scales with the product of d and u [16,17].
This account has attractive properties—for example,
it predicts that when the observer has the option of
terminating evidence accumulation with a choice at
any point, RTs are faster for high-confidence trials
[18]. Moreover, this view enjoys support from two
prominent neurophysiological studies detailed in §2b.
(b) Neural substrates of decision confidence

Two recent single-cell recording studies, one involv-
ing rats [19] and the other monkeys [20], claim to
have identified neurons encoding subjective decision
confidence. Kiani et al. [20] recorded from neurons
in the lateral intraparietal cortex (LIP) of macaques dis-
criminating the direction of motion in ambiguous
moving-dot arrays [21] with a saccade to one of two
targets placed either side of the motion stimulus. This
experimental approach has previously been used to
demonstrate that LIP neurons whose receptive field
overlaps with the chosen target display a characteristic
acceleration of spiking activity while the monkey views
the moving-dot stimulus, whereas those overlapping
with the non-chosen target show a relative dampening
of activity [22,23]. This build-up scales with signal
strength, and terminates when an action (saccadic eye
movement) is selected, prompting the view that LIP
firing rates encode the level of evidence available for a
choice—in other words, their firing rates form a neural
representation of the DV proposed by the DDM [1].

To investigate decision confidence, Kiani et al.
added a new twist to this protocol. Typically, the
monkey is rewarded for correct but not incorrect
choices, but here, on a fraction of trials, the monkey
was offered a ‘sure bet’ option such that a certain
but lower-valued reward could be obtained via a sac-
cade to a third response option. In ethology, it is
commonly assumed that an animal choosing the safe
option when evidence is scarce must have access to
metacognitive information about the likelihood that
it will make an error on the main task [24]. The
authors found that not only did their monkeys use
this option judiciously—responding when the stimulus
was weak or ambiguous—but also that LIP firing rates
Phil. Trans. R. Soc. B (2012)
on low-confidence trials were substantially attenuated,
falling equidistant between those for the chosen and
unchosen targets. The authors interpret these data as
showing that confidence is a simple product of quan-
tity and quality of the DV, as proposed by early
accounts of decision confidence, obviating the need
for a separate metacognitive monitoring process [20].

Kepecs et al. [19] employed an odour discrimination
paradigm in conjunction with single-cell recordings in
the rat orbitofrontal cortex (OFC; see also Kepecs &
Mainen [25]). They report an intriguing finding: that
OFC firing rates discriminated between correct judge-
ments and errors after the choice but before the outcome
had been revealed, even when objective difficulty of the
choice paradigm was controlled for. Because variance in
these responses could not be explained by other factors,
such as the reinforcement history over past trials, the
authors suggest that these neurons encode confidence
estimates associated with the current decision. They
show that the activity of these neurons can be explained
by a class of model in which two evidence tallies race to
the decision bound (rather than a single quantity repre-
senting their difference, as in the DDM). Specifically,
neuronal responses reflected the difference between
the two totals at the time of the decision—making this a
decisional locus model, even though the relevant neural
activity was sustained through the post-response
period—and this activity in turn predicted the likelihood
that the choice was correct [19].

At first glance, these two studies offer convincing
evidence that neurons in the parietal and orbitofrontal
cortices encode the subjective confidence associated
with a choice: a graded quantity that can be estimated
directly from the evidence on which the original, first-
order choice was based. In both cases, the authors are
assiduous in attempting to rule out alternative expla-
nations of their findings, such as attention or learned
reward contingencies. However, to return momenta-
rily to our discussion of models of categorical choice,
two well-replicated behavioural phenomena cast
doubt on any model in which subjective confidence
directly reflects the evidence accumulated up to the
choice point. First, it has consistently been shown
that confidence in correct choices is stronger than con-
fidence in incorrect choices, even when choice
difficulty is controlled. As previously pointed out
[15], this finding cannot be explained by decisional
locus models in which confidence is a mere function
of diffusion model parameters, because these para-
meters are invariant across correct and incorrect
trials (but see Galvin et al. [10] for relevant analysis
using SDT). Second, and crucially, subjects occasion-
ally change their mind between the first-order choice
and the second-order estimation of decision confi-
dence. At least on these trials, the decisions must be
influenced by processing that occurs after the first-
order choice point. In §2c, we consider models that
propose such a mechanism.
(c) Post-decisional locus models and changes

of mind

Resulaj et al. [26] report a behavioural experiment in
which human subjects indicated the direction of a
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random dot motion stimulus by moving a handle to a
leftwards or rightwards target some 20 cm away. This
design allowed the researchers to isolate trials on
which subjects began to move towards one target but
then changed their mind and veered-off towards the
other. Careful behavioural analyses demonstrated a
number of interesting phenomena. Firstly, changes of
mind were not symmetric: subjects switched more
often from an incorrect to a correct choice. Secondly,
change-of-mind trials tended to occur when, owing
to stochasticity in the stimulus display, motion
energy began by favouring the initial choice, but sub-
sequently came to favour the alternative, switched-to
option. Because the motion stimulus offset once move-
ment began, subjects must have capitalized on the
balance of information in the immediate pre-decision
period when deciding to change their mind. Notably,
although this motion information was available prior
to the decision, the switch occurred only once move-
ment initiation began, suggesting that evidence
accumulation continued beyond the point at which
the initial choice was made.

To account for these and other data, a number of
researchers have proposed models in which, in con-
trast to the classical DDM, evidence accumulation
continues even beyond the choice point, with this
extra variability in the DV also contributing to esti-
mates of subjective confidence when probed at a
later time point [9,15]. Resulaj et al. propose that
their data can be explained by just this type of
model, with changes of mind occurring when latent
information in the processing pipeline drives the DV
across a second, ‘change-of-mind’ bound. A related
account, the two-stage dynamic signal detection
(2DSD) model [15], likewise proposes that the diffu-
sion process continues beyond initial choice, with
decision confidence reflecting the absolute value of
the DV at the post-decision point at which a second-
order decision is required. Thus, in contrast to discrete
changes of mind that are expressed as overt corrections
of an initial response, the 2DSD model allows for con-
tinuously varying levels of confidence that provide an
explicit judgement about an earlier response.

Behaviourally, these post-decision processing models
are able to account for a broad range of findings con-
cerning decision confidence. Firstly, they correctly
predict that observers will change their mind more
often from incorrect to correct responses than vice
versa, because beyond the bound the DV on error
trials will tend to regress towards the mean, whereas
after correct responses it will continue to grow, driven
by the true underlying drift rate. This observation also
naturally explains another conundrum associated with
decision confidence: that second-order confidence is
generally higher for correct trials than incorrect trials.
Indeed, reconsidering for a moment the data from
Kiani et al., we note that these authors report that
neural activity in the delay between stimulus offset and
movement execution exerted a separate, independent
influence over the decision to choose the ‘sure bet’
option [20]. Thus, although the authors argue that a
mechanistic description of decision confidence does
not require us to invoke a distinct metacognitive process
separate from evidence accumulation, the evidence
Phil. Trans. R. Soc. B (2012)
predicting decision confidence might not be confined
to the stimulation period alone. However, one potential
caveat to this view is that the activity of LIP neurons is
known to drop off sharply once the eye movement is
made [22,23]. Thus, it remains to be shown whether
variation in the post-decisional LIP signal could con-
tribute to a later confidence judgement, or whether a
separate representation of the evolving DV is supporting
the observed changes of mind. This caveat aside, these
emerging findings suggest that post-decisional proces-
sing plays a crucial role in metacognitive judgements,
which can lead to changes of mind or support ratings
of confidence in an initial decision.
3. ERROR MONITORING
People are often aware of their own mistakes; for
example, in choice RT tasks when time pressure is
applied to induce errors in simple judgements. Error
monitoring is the metacognitive process by which we are
able to detect and signal our errors as soon as a response
has been made. This process plays a crucial role in
adaptive human behaviour, allowing our actions to be
shaped by their outcomes both in the short term, for
example, by responding more cautiously to avoid further
errors, and in the longer term, through gradual learning
of appropriate stimulus–response contingencies.

Whereas the studies described above have typically
asked subjects to report their confidence that they
made the correct choice, studies examining error
monitoring have tended to ask subjects the converse
question—i.e. to report the likelihood that they made
an error. Although these judgements seem like two
sides of the same coin, methods and assumptions in
the two literatures have often been quite different. For
example, decision confidence has typically been studied
using tasks that remain challenging even when extended
processing times are permitted, such as challenging
psychophysical discriminations. Under these circum-
stances, subjects are sometimes sure they responded
correctly and sometimes unsure whether they are right
or wrong, but rarely certain that that they made a mis-
take [15]. In contrast, research on error monitoring
has mostly been studied using simple but time-
pressured tasks in which subjects are usually aware of
their errors and very rarely unsure whether their
decision was right or wrong. Framed in terms of the
DDM, the distinction concerns whether errors and sen-
sitivity to processing noise arise because of low drift rate,
d, in the case of perceptual ambiguity, or adoption of a
low threshold, u, to engender fast responding. There is
nonetheless obvious similarity between metacognitive
judgements of confidence and error likelihood, and it
is therefore unsurprising that models of error monitor-
ing turn out to complement those more recently
developed in perceptual decision-making research.

(a) Post-decision processing in error monitoring

Rabbitt and co-workers’ pioneering work beginning in
the 1960s established that error monitoring relies on
post-decision processing. Their experiments showed
that people can very reliably detect and correct their
own errors without requiring explicit feedback [27],
but that this ability is impaired when stimulus duration
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Figure 2. Theories of error detection within the DDM frame-
work. The drift-diffusion process is illustrated schematically

for two trials, one in which decision u is the correct response
and one trial in which this decision is incorrect. Both decisions
occur at the same time point (a). Following the correct
response (grey line), post-decision processing continues to
accumulate in favour of the decision just made. Following

errors (black line), the drift rate regresses to its true mean,
causing the DV to re-cross the decision bound (b), sub-
sequently cross a change-of-mind bound (c), and finally
cross the originally correct decision bound, –u (d). The grey

shaded area indicates a period of uncertainty, or conflict,
between the re-crossing of the u bound (b) and later crossing
of the –u bound (d).
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is reduced [28], suggesting its dependence on contin-
ued processing of the stimulus after an initial error
(which is curtailed when stimuli are very briefly pre-
sented). Error monitoring is also impaired when
subsequent stimuli appear soon after the initial
response [29], and responses to those later stimuli
are themselves postponed following errors [30], con-
sistent with the notion that this monitoring involves
the same mechanisms as the initial decision.

Summarizing these findings, Rabbitt likened evi-
dence accumulation in decision-making to votes in a
committee, in which incorrect decisions are sometimes
made on the basis of incomplete information, but ‘as
subsequent votes come in, a more accurate consensus
will accumulate and the earlier mistake will become
apparent’ [28]. Thus, errors are characterized by bipha-
sic evidence accumulation, with initial accumulation in
favour of the incorrect response followed by later drift
towards the correct decision (as the trial-average drift
rate regresses to the true mean). By contrast, continued
evaluation following correct responses tends simply
to reinforce the original decision. This model is an
obvious precursor to more recent accounts of decision
confidence [15] and changes of mind [26].

All subsequent models of error detection have
adopted Rabbitt’s broad framework, with debate focus-
ing instead on the precise mechanism by which post-
decision processing leads to error detection. Figure 2
illustrates some key model variants. Within a standard
DDM framework, errors could be detected as successive
crossings of decision boundaries for the two competing
responses [31,32] or as ‘double crossings’ of a single
decision bound [33]—both close relatives of Resulaj
et al.’s notion of a change-of-mind bound. Errors can
also be detected in terms of the occurrence of
Phil. Trans. R. Soc. B (2012)
uncertainty—or conflict—in the decision process after
an initial response [34], or as inconsistency between
the outcomes of parallel decision processes at different
processing stages (e.g. perceptual categorization and
response selection) [35]. While varying in their details
and precise predictions [32,34], common to all pro-
posals is the claim that metacognitive accuracy
judgements depend on post-decision processing.

In effect, applying the framework provided by the
DDM and its variants, one is obliged to assume that
error detection reduces to error correction: that errors
are detected whenever corrective activity reaches a cri-
teria level—the change-of-mind bound. However, this
conclusion is difficult to reconcile with evidence that
error correction and detection are at least partly dissoci-
able, a finding that was again presciently reported in
Rabbitt’s seminal work. Rabbitt’s studies demonstrated
that error corrections are a relatively automatic and
unreflective consequence of post-decision processing.
Thus, they can be extremely fast, occurring within
10–20 ms of the initial error [36], and may be produced
even when subjects are instructed to avoid doing so [37].
In contrast, explicit detection and signalling of errors is
much slower, voluntary, more prone to interference by
distracting tasks, and more sensitive to cognitive decline
in normal ageing [29]. Indeed, people sometimes
remain unaware of errors that they nevertheless correct
[38]. Collectively, these differences suggest that explicit
error detection cannot be a mere consequence of
post-decision correction: further processing or evalu-
ation must intervene between initial correction and
later explicit awareness that an error has occurred.
Consistent with this analysis, recent investigations
have identified dissociable neural correlates of error
correction and detection.

(b) Neural substrates of error monitoring

Research interest in error monitoring increased substan-
tially following the discovery of scalp EEG potentials
that reliably occur time-locked to decision errors.
Most studies have used the Eriksen flanker task, in
which subjects perform a speeded categorization of a
central target (e.g. H or S), while ignoring flanking dis-
tractors that are sometimes compatible (e.g. HHH) and
sometimes incompatible (e.g. SHS) with that target.
With modest speed pressure, error rates on incompati-
ble trials can exceed 20 per cent. Following such
errors, a negative event-related potential over frontocen-
tral sites is observed within 100 ms of the incorrect
response, followed by a later positive wave peaking
200–400 ms later over parietal cortex [31]. Labelled
the error-related negativity (ERN/Ne) and error positiv-
ity (Pe), respectively, these EEG components have been
widely studied to provide insight into error monitoring
in healthy and clinical populations.

Converging evidence has identified anterior cingu-
late cortex (ACC) as the source of the ERN. For
example, in simultaneous EEG–fMRI recordings,
single-trial ERN amplitude correlates reliably only
with activity in a focused ACC source [39]. The
source of the Pe is less well characterized, but evidence
that it is a variant of the well-studied P3 component
[40] would imply widely distributed neural generators
in parietal and prefrontal cortex [41]. The P3 has been
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suggested to reflect the distributed action of norepi-
nephrine released by the locus coeruleus brainstem
nucleus in response to motivationally salient events
during decision-making [42].

The functional significance of the ERN and Pe is a
matter of ongoing debate. Competing theories of the
ERN propose a role in error detection, reinforcement
learning and conflict monitoring; while theories of
the Pe include conscious awareness of errors, affective
responses and behavioural adjustments to avoid
further errors [43]. These debates notwithstanding,
it is now clear that the ERN and Pe dissociably map
onto processes related to error correction and error
detection, respectively. Thus, ERN onset coincides
with the onset of error-correcting activity as revealed
through EMG recordings [44], typically around the
time of error commission [31], and its amplitude
varies with both the speed [45] and probability [46]
of error correction. In contrast, Pe amplitude is insen-
sitive to the strength of correcting activity when error
detection rates are controlled [47]. Conversely,
although both the ERN and Pe are found to covary
with subjective ratings of response accuracy [46,48],
correlations involving the ERN disappear when the
two components are carefully dissociated. In antisac-
cade tasks in which subjects correct all of their errors
but detect only half of them, ERN amplitude is equiv-
alent for aware and unaware errors, whereas the Pe is
robustly observed only when subjects detect their
errors [38]. Taken together, these findings suggest
that whereas the ERN directly indexes automatic
post-decision processes leading to rapid error correc-
tion, the later Pe is selectively associated with explicit
detection and signalling of errors. These results thus
provide converging evidence for the view that error
correction and detection reflect distinct processes.

A recent study has shed light on specifically how the
Pe relates to error detection [49]. Subjects performed a
difficult brightness discrimination under speed pressure
to induce a mixture of errors resulting from perceptual
ambiguity and decision urgency. After each response,
they made a binary correct/error judgement, with
monetary incentives varied across blocks to encourage
either liberal or conservative error signalling. Signal
detection analysis indicated that subjects’ accuracy jud-
gements could be well fit by assuming that these
judgements reflected a continuum of confidence (from
sure correct to sure incorrect), with subjects applying
a criterion—a metacognitive u—that varied according
to the incentive regime. Critically, error signalling per-
formance was closely related to between-condition and
trial-by-trial variation in Pe amplitude (but not the
ERN). That is, Pe amplitude appeared to provide a
direct neural index of continuously varying decision
confidence on which subjects based their metacognitive
judgements, with categorical signalling of errors occur-
ring when confidence that the response was wrong
exceeded some criterial level.

(c) Impact of error monitoring on behaviour

The research described above documents the mechan-
istic and neural basis of error monitoring. A parallel
line of research has considered the impact of error moni-
toring on future behaviour. Much of this work has
Phil. Trans. R. Soc. B (2012)
focused on the finding that subjects usually respond
more slowly on trials immediately following errors
[27]. Although this effect at least partly reflects the dis-
tracting occurrence of a rare event [50], as errors
typically are, a consensus view holds that post-error
slowing reflects strategic adaptation to prevent further
errors [51]. EEG studies have subsequently shown
that the degree of observed slowing scales with the
magnitude of error-related ERN/Pe activity [46]. Com-
putational models implementing error-related control
over distance-to-bound, juj, account for detailed prop-
erties of empirically observed post-error slowing. In
one class of model, detection of response uncertainty
(conflict) immediately following error commission
leads to an increase in the bound—and, hence, more
cautious responding—on subsequent trials [52].
Recent extensions of this idea suggest that conflict
detection may also be used to adjust the bound
dynamically even as a decision is being made [51,53].

Error signals not only support subtle adjustments
that optimize online decision-making, they also play a
key role in longer term adjustments during learning.
Holroyd & Coles [35], for example, suggest that the
ERN reflects reinforcement learning of action values.
They showed that the ERN migrates in time as new
stimulus–response mappings are learned, from initially
being triggered by environmental feedback to later
being driven by internal representations of the learned
mappings, a pattern that mimics the migration of
dopaminergic reward prediction error signals from
unconditioned rewards to predictive stimuli during con-
ditioning [54]. Meanwhile, fMRI activity in ACC and
neighbouring cortex at the time of an incorrect response
have been shown to predict response accuracy on later
presentations of the relevant stimulus [55,56].

Most studies of post-error adjustments have focused
on the ERN and ACC, reflecting wide interest in the
role of ACC in reinforcement learning [35,57],
rather than on the later Pe component. However, the
ERN and Pe typically covary across conditions and,
when the two components are dissociated, post-error
adjustments are only observed following detected
errors on which a Pe component is present [38],
suggesting that the latter may be a more direct corre-
late of the learning mechanisms by which future
behaviour is adapted following an error.
4. INTEGRATIVE MODELS OF DECISION
CONFIDENCE AND ERROR MONITORING
The discussion above highlights convergent evolution
in work on decision confidence and error monitoring,
suggesting that common principles govern metacogni-
tive judgements regardless of whether errors arise
because of intrinsic task difficulty (low drift rate, d)
or because of externally imposed decision urgency
(low threshold, u). In what follows, we consider the
implications of this convergence for future research,
both positive (in terms of mutually informative les-
sons) and negative (in terms of shared limitations).

(a) Converging themes

Theories of decision confidence and error monitoring
each emphasize the importance of post-decision
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processing, and likewise point to a key dissociation
between, on the one hand, continued processing of
stimulus information within the decision-making
system (leading to changes of mind and error correc-
tions) and, on the other, the formulation and
expression of explicit judgements of confidence and
accuracy. The literatures have developed these ideas
in complementary directions, such that each literature
offers valuable lessons for the other. First, whereas
confidence is typically characterized as varying along
a continuum, and formalized as such in accounts
such as the 2DSD model [15], error detection is
often characterized as an all-or-none process [32,33].
Thus, according to many current theories of error
monitoring, binary yes/no error judgements are an
intrinsic feature of the monitoring system rather than
a reflection of the arbitrary metacognitive decision
that subjects are asked to make. As such, these theories
cannot explain how subjects are able to express graded
confidence in their accuracy judgements [48,49].

Conversely, the preceding review of work on error
monitoring identifies important limitations in current
theories of decision confidence. This review suggests
that the current debate between decisional locus and
post-decisional models of decision confidence will
very likely be resolved in favour of the latter, but that
even these post-decisional theories will need modifi-
cation to accommodate evidence that metacognitive
awareness (cf. error detection and the Pe) cannot be
reduced simply to post-decision processing (cf. error
correction and the ERN)—the two are at least partly
dissociable. Perhaps more informative still will be
exploration of the role of confidence judgements in
guiding future actions: whereas research on decision
confidence has largely focused on how confidence esti-
mates are derived, a major focus of error-monitoring
research has been on how this kind of metacognitive
information might be used to modify behaviour both
in the short- [27,52,53] and long-term [35,55,56].
Borrowing these insights, we might predict that para-
metric estimates of confidence could support finer-
grained control of behaviour than can be achieved
through binary categorization of responses as correct
or incorrect—for example, by allowing parametric
variation in post-error slowing or by providing a
scalar prediction error signal to support reinforcement
learning. Thus, confidence estimates could provide
useful information in optimizing the rate of learning:
one might predict that people will pay greater attention
to environmental feedback following responses in
which they have less confidence.
(b) Shared limitations

As well as sharing complementary strengths, the the-
ories also share common weaknesses. In particular,
like the models of decision-making on which they are
based, current theories of confidence and error moni-
toring have focused almost exclusively on decisions
that are discrete and punctate in time: a decision is
made when a boundary is reached [3]; errors are
detected when a second change-of-mind bound is
crossed [26]; and confidence is estimated at the time
of a later metacognitive probe [15]. Characterizing
Phil. Trans. R. Soc. B (2012)
behaviour as a series of discrete decisions, each subject
to independent metacognitive scrutiny, is a useful con-
venience when developing experimental tests and
formal models. However, it remains unclear whether
the findings will scale up to explain real-world
decisions and actions that are fluid, temporally
extended and embedded in the broader context of
evolving behavioural goals.

Let us revisit for a moment our opening example of
cycling along on a winding country lane. Obviously,
we do make occasional discrete categorical
decisions—for example, when choosing between two
available paths at a fork in the road. However, most
of our decisions and actions unfold gradually, shaped
by our interactions with the environment and an
ever-changing stream of incoming sensory infor-
mation, as exemplified by the continuous, subtle
adjustments of handlebars and brakes needed to main-
tain direction and balance when cycling. Current
theories of metacognition require a clear division in
time between cognitive decision-making and meta-
cognitive evaluation, with the latter beginning when
the former ends (‘post-decision processing’). However,
for continuous and extended actions, there is no
definable time-point at which a specific decision is
finalized and metacognitive evaluation begins. Most
current theories are therefore ill-suited to describing
the temporally extended actions, comprising hundreds
or thousands of micro-decisions, that characterize
everyday behaviour.

Indeed, decisions that initially appear discrete and
categorical may turn out, on closer inspection, to be
graded and transitory. For example, in the Eriksen
flanker task, overt responses occur tightly time-
locked to the point at which lateralized activity in
motor cortex exceeds a threshold value [58], just as
saccadic eye movements appear to be triggered accord-
ing to a threshold firing rate for LIP neurons [1],
suggestive of a fixed decision point after which an
action is initiated. However, fine-grained analyses
reveal graded and continuous information flow at
every stage, even downstream of motor cortex. Thus,
within a single trial, motor cortex activity may latera-
lize first towards one response then towards the
other; small EMG twitches in one finger may be fol-
lowed by full movements of another; and overt
actions themselves may vary in force in a graded
manner, for example, with incorrect actions executed
less forcefully than correct ones [44,58,59]. Mean-
while, categorical or economic judgements about
visual information are often preceded by exploratory
eye movements, which may themselves constitute
interim decisions en route to the eventual choice [60].
In such systems, there is no single, final decision
point that could mark the beginning of metacognitive
evaluation. Detailed analyses of neural markers of
metacognition point towards a similar conclusion:
error-related EEG activity is not only observed follow-
ing overt incorrect actions, but also following ‘partial’
errors in which the incorrect muscles twitch, but the
incorrect action is not produced [61] and, crucially,
in a graded fashion as a function of the level of sub-
threshold cortical activity favouring an incorrect
response [34]. Metacognition appears to be graded
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and continuous in just the same manner as the
underlying decision process.

Human decision-making also has a continuous
quality when viewed over longer timescales, with indi-
vidual decisions chained into sequences that serve
longer-term behavioural goals. Thus, actions that
reflect definitive choices at a lower goal level (e.g.
movements of the arm, shifts of posture) may consti-
tute reversible, interim choices at a higher goal level
(e.g. turning left at a fork in the road), and even a com-
mitment to an individual right or left turn might be
just a partial commitment to a yet higher level goal
(e.g. reaching a specified destination) [62]. This
form of hierarchical structure is built into many
recent theories of the computational and neural basis
of action selection [63], in which common principles
of selection and control are held to operate at each
level of hierarchical abstraction [64]. Recent findings
indicate that metacognitive processes are similarly sen-
sitive to this hierarchical structure [65]. For example,
errors that are equally discrepant in terms of low-
level actions are treated very differently according to
their impact on global task performance [66]. Little
is currently known about the mechanisms by which
metacognitive judgements might be embedded in
ongoing higher level behaviour in this way.

Thus, a crucial limitation of current metacognitive
theories is that they do not reflect the way that our con-
fidence in our actions contributes to fluid, structured
sensorimotor behaviour. Rather, they consider that
errors are processed in an all-or-nothing fashion, for
example, when a post-decision process crosses a meta-
cognitive decision bound. In what follows, we consider
another way of thinking about decision confidence that
is not subject to these limitations.
5. FUTURE DIRECTIONS
Addressing the challenges outlined above will require
the development of new models that consider not
just discrete, binary choices, but also the kinds of
extended, goal-oriented actions that characterize
everyday human behaviour. We conclude by consider-
ing one promising extension of current decision
models, which addresses the issue of the reliability of
evidence in a manner that opens intriguing new ave-
nues for understanding how metacognitive evaluation
might occur for continuous, extended actions.

(a) Evidence reliability

Formal accounts of categorical decisions, such as the
DDM, are often illustrated by analogy to court of
law, in which the jury weighs up evidence favouring
the innocence or guilt of the defendant [1]. However,
this analogy also highlights an inconsistency between
current decision models and choices made in the real
world: that in the latter, we usually consider the
extent to which we trust the evidence relevant for a
decision. For example, in a law court, evidence from
a trustworthy source (for example, official telephone
records) might weigh more heavily in a jury’s delibera-
tions than evidence from an unreliable source (for
example, a witness with a vested interest). Corre-
spondingly, careful signal detection analyses have
Phil. Trans. R. Soc. B (2012)
revealed that human observers are exquisitely sensi-
tivity to evidence reliability when sampling from
multiple sources of information [67].

Yet, most currently popular models of perceptual
decisions offer no way of expressing the trust or dis-
trust associated with the evidence accumulated; all
sources of evidence are combined in the common cur-
rency of the DV, which then gives the strength of
evidence as a simple scalar value (the vertical location
of the diffusing particle in the DDM, or the magnitude
of the evidence variable in SDT). Once factored into
the DV in this way, the reliability of evidence has no
further impact on the decision-making process. This
feature contrasts with some accounts of economic
choices, in which sensitivity to risk (i.e. outcome var-
iance) as well as value (i.e. outcome mean) has been
documented at the behavioural and neurophysiological
levels [68,69].

Mathematically, the reliability of perceptual evi-
dence is orthogonal to its strength, because the mean
and the variance represent different moments of a
probability distribution. Bayesian models that exploit
this point—representing evidence as a probability dis-
tribution with a given mean (evidence strength) and
variance (evidence reliability)—have been used to cal-
culate ideal estimates of expected value in economic
choice tasks [70]. Applied to perceptual decision
tasks, the notion would be that the diffusing parti-
cle of the DDM is more accurately conceived of as a
probability distribution that evolves across samples
(figure 3), with the central tendency of that distri-
bution analogous to the vertical location of the
particle. Crucially, the variance of this distribution
provides additional information—specifically, a rep-
resentation of evidence reliability in terms of the
precision of the mean—that is not made explicit in
the standard DDM (by precision, we mean the inverse
of the standard deviation).

Recently, it has been shown that neural network
models in which LIP neurons encode the full posterior
probability distribution associated with a stimulus can
capture behaviour and neural dynamics occurring
during psychophysical discrimination tasks in primates
[71]. This result suggests that precision may be
encoded in the variance of firing rates across a neural
population, thus signalling evidence reliability in
much the same way that mean firing rate of the popu-
lation encodes evidence strength [72]. Relatedly,
Ratcliff & Starns [73] have recently proposed a
model of decision confidence in which the decision-
relevant evidence on a single trial is not a scalar esti-
mate, but a distribution of possible values, allowing
parametric estimates of confidence in the choice to
be calculated as the integral of this distribution falling
within graded confidence bounds. Together, these
findings open promising new avenues for research
into the neural basis of categorical choice.
(b) Confidence revisited

We propose that evidence strength and reliability are
encoded in parallel during evidence accumulation,
and that this framework provides an intriguing new
way of thinking about decision confidence—as the
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Figure 3. Schematic of a model in which both the mean and
variance of information in an array are estimated in a serial

sampling framework. (a) The left panel shows the posterior
probability distribution p (H j data) over a continuous
space of possible perceptual hypotheses (e.g. these dots are
moving to the right with 30% coherence; this signal is 40%
visible; etc.) at a given time, t. This distribution reflects the

evidence sampled from the stimulus thus far, i.e. between
onset and time t (grey dots). The new sample received at
time t is shown in red. Right panel: at time t þ 1, this distri-
bution (light grey) is updated in the light of the newly
sampled information, giving rise to a new probability distri-

bution. In this model, confidence is reflected in the precision
of the posterior distribution, i.e. the reciprocal of its standard
deviation. (b) The evolving posterior probability distribution
over perceptual hypotheses (y-axis) for each successive time
point (x-axis; blue–red colourmap; red values indicate

higher probabilities). The posterior distribution is updated
following the arrival of successive samples with low variance
(left panel) or high variance (right panel). Precision of the
probabilistic representation of evidence strength increases

more rapidly for the low-variability samples.
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precision of evidence accumulated during a single trial.
This representation of confidence differs in two critical
respects from the models described above: it is based
on an intrinsic feature of the decision process—var-
iance in the evidence encountered—and it is
available continuously and instantaneously. In con-
trast, existing models suggest that metacognitive
evaluations are derived indirectly by comparing rep-
resentations of the DV from two (or more) discrete
time points. Precision thus provides a more suitable
basis for metacognitive evaluation in the kinds of tem-
porally extended tasks discussed above, in which no
discrete decision point divides cognitive decisions
from metacognitive evaluation.

This hypothesis, though speculative at this point,
has several attractive features. Firstly, it is consistent
with the evidence described above on post-decision
processing because instantaneous precision will tend
to be highly correlated with later variability in the
DV (the basis of most current models of metacognitive
judgements): variable evidence will give rise to fre-
quent errors, and these errors will be accompanied
by low estimates of precision at the time of the initial
response and a high probability of later changes of
mind or error correction. Thus, the precision account
agrees that existing theories fit the data well, but
suggests that they may do so for the wrong reasons.
Phil. Trans. R. Soc. B (2012)
Secondly, the model is able to describe situations in
which evidence quality varies even within a single
trial [71], something that standard models cannot
achieve. In fact, by keeping track of the likely variabil-
ity of information in the external world, Bayesian
accounts can optimally distinguish true state changes
in the generative information giving rise to the senses
from noise [74]. Precision estimates are thus particula-
rly useful in situations where the causes of perceptual
evidence may change unpredictably over time, and as
such may provide a better account of the sort of fluid,
ongoing sensorimotor integration that characterizes
everyday activities such as riding a bicycle.

The hypothesis also leads to clear and testable
predictions about the sensitivity of human decision-
making to evidence reliability. Firstly, it predicts that
variability of evidence within a trial should both reduce
accuracy and lengthen RT, because during sequential
sampling, the precision of the mean increases more
slowly when the samples are drawn from a more variable
distribution. This prediction has recently been con-
firmed in an experiment in which observers made
discrimination judgements on the average feature (e.g.
colour) of an array of multiple elements presented
simultaneously on the screen [75]. Critically, this
multi-element averaging task allowed the experimenters
to manipulate the mean and the variance of the relevant
feature in an orthogonal fashion. The results showed that
observers were slower to discriminate more variable
arrays, a result that is predicted by the precision account
but not by standard accumulation models such as the
DDM. Moreover, observers in this study tended to
downweight outlying or otherwise untrustworthy evi-
dence, much like a statistician might exclude an outlier
from a sample of data. Although this study did not
assess subjects’ second-order confidence in their
decision, the precision account makes the clear predic-
tion that in the multi-element task, both subjective
confidence and the rate of occurrence of changes of
mind will depend on array variability to a greater extent
than on its mean, a prediction ripe for future testing.

Finally, this conception of decision confidence
makes direct contact with broader theories of the
role of metacognitive evaluation in behavioural con-
trol. In particular, because precision is closely related
to the concept of decision conflict [52]—greater var-
iance in evidence should result in greater conflict
between competing response options—the theory can
inherit ideas from research on decision conflict about
how precision estimates might be used to guide both
current performance (e.g. through dynamic modu-
lation of decision bounds) [51,53] and future
behaviour (e.g. through modulation of learning rate
in relation to environmental signals of success or fail-
ure) [70]. As such, the precision model not only
provides a formally specified account of decision con-
fidence, but also leads to immediate suggestions about
the use of confidence judgements in the optimization
of behaviour.
6. CONCLUSION
Formal models such as the DDM have proved extre-
mely valuable in understanding human and animal
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decision-making, by situating experimental observations
of behaviour and neural activity within a precisely speci-
fied and normatively motivated framework. Direct
extensions of these models have proved equally useful
in probing the metacognitive processes by which we
evaluate and express our degree of confidence in our
decisions. In particular, significant convergence in
methods and theories of decision confidence and error
monitoring suggest that common principles may
govern different types of metacognitive judgements.

There is nonetheless important scope for current
models to consider decision-making and metacognitive
evaluation in situations that encompass not only simple,
punctate choices, but also the kinds of extended,
goal-directed decisions and actions that typify human
behaviour outside the experimental laboratory. We
have proposed one such extension: the hypothesis that
people are sensitive not only to the strength of evidence
they encounter as they make a decision, but also to the
reliability of that evidence. This simple proposal has
far-reaching implications: it immediately suggests a
novel source of information—evidence precision—that
could guide metacognitive evaluation. Future develop-
ments in theories of human decision-making promise
to have similarly profound implications for our under-
standing of the way in which people evaluate their
decisions in the service of adapting and optimizing
those decisions in the face of an uncertain, complex
and ever-changing environment.
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