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Objectives. MicroRNA-125b (miR-125b) has been recognized as one of the key regulators of the inflammatory responses in
cardiovascular diseases recently. .is study sought to dissect the role of miR-125b in modulating the function of endothelial
progenitor cells (EPCs) in the inflammatory environment of ischemic hearts. Methods. EPCs were cultured and transfected with
miR-125b mimic and negative control mimic. Cell migration and adhesion assays were performed after tumor necrosis factor-α
(TNF-α) treatment to determine EPC function. Cell apoptosis was analyzed by flow cytometry. .e activation of the NF-κB
pathway was measured by western blotting. EPC-mediated neovascularization in vivo was studied by using a myocardial in-
farction model. Results. miR-125b-overexpressed EPCs displayed improved cell migration, adhesion abilities, and reduced cell
apoptosis compared with those of the NC group after TNF-α treatment. miR-125b overexpression in EPCs ameliorated TNF-
α-induced activation of the NF-κB pathway. Mice transplanted with miR-125b-overexpressed EPCs showed improved cardiac
function recovery and capillary vessel density than the ones transplanted with NC EPCs. Conclusions. miR-125b protects EPCs
against TNF-α-induced inflammation and cell apoptosis by attenuating the activation of NF-κB pathway and consequently
improves the cardiac function recovery and EPC-mediated neovascularization in the ischemic hearts.

1. Introduction

.e role of EPCs in vascular and tissue repair in ischemic
conditions, such as coronary or peripheral vascular diseases,
has been well recognized [1]. Circulating EPCs are recruited
into the ischemic sites, and they enhance repair through
paracrine effects or by incorporating into newly formed
vessels after ischemic injury [2–4]. Of note, the functional
activities of EPCs are impaired in patients with coronary
artery disease (CAD). Compelling evidence suggests that the
number and function of EPCs inversely correlate with risk
factors for CAD, such as hypertension, diabetes, dyslipi-
demia, smoking, and age [5–7]. Furthermore, the hostile
inflammatory environment in the ischemic sites can induce
the apoptosis of EPCs and, consequently, impede the EPC-
mediated repair [8, 9]. Hence, improving the function and
survival of EPCs in the ischemic sites is critical for EPC-
mediated repair.

MicroRNAs (miRNAs) are known as a class of non-
coding RNAs that modulate the gene expression at a
posttranscriptional level. miR-125, known as one of the
major regulators in the development of hematological
malignancies, is a family of highly conserved miRNAs
throughout diverse species [10]. Emerging evidence suggests
that miR-125 is involved in the regulation of the innate
immune and inflammatory responses [11, 12]. More im-
portantly, the role of miR-125b in cardiovascular diseases
has been drawing increasing attention recently. Dr. Wang
et al. reported that the target of miR-125b in the mouse heart
is TNF receptor-associated factor 6 (TRAF6), an adaptor
molecule in the NF-kB pathway. Overexpression of miR-
125b in the mouse heart protects the myocardium from
ischemia/reperfusion injury by suppressing the TRAF6-
mediated NF-kB activation [13]. However, the role of miR-
125b in the regulation of EPCs is still unclear, and further
studies are required to study its role.
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In the present study, we focused on the role of miRNA-
125b in regulating the inflammatory response and function
of EPCs in the ischemic hearts. Our results confirmed that
upregulation of miRNA-125b ameliorated TNF-α-induced
functional defects in EPCs in vitro and enhanced EPC-
mediated neovascularization in the ischemic hearts. miR-
125b-mediated inhibition of TNF-α/NF-κB pathway acti-
vation is involved in the beneficial effects we observed.

2. Methods and Materials

2.1. Cell Culture and miRNA Transfection. Bone marrow
mononuclear cells were isolated by density gradient cen-
trifugation from the mouse bone marrow and cultured in
endothelial cell basal medium-2 (EBM-2) supplemented
with endothelial growth medium SingleQuots as indicated
by the manufacturer (Clonetics, San Diego). After 4 days of
culture, nonadherent cells were removed by washing the
plates with phosphate-buffered solution (PBS), and a new
medium was applied. EPCs were transfected for 24 h on day
6 with 50 nmol/L microRNA mimics for miR-125b
(MC10148, Ambion) or miR-negative control (AM17010,
Ambion), using the Lipofectamine RNAiMAX reagent
(Invitrogen) according to the manufacturer’s protocol [13].
Cells were treated with or without 10 ng/mL tumor necrosis
factor-α (TNF-α, Peprotech) for 1 h and then used for the
following experiments at day 7. Cultured EPCs were iden-
tified by the flow cytometry analysis. Based on the isolation
and cultivation protocol, the adherent mononuclear cells
were identified as EPCs similar to the previous studies.

2.2. EPC Adhesion to Endothelial Cells In Vitro. 2×105 hu-
man umbilical vein endothelial cells (HUVECs) were seeded
in each well of a four-well plate 48 h before the assay to
prepare a monolayer of ECs. .en, 1× 105 EPCs labelled
with CM-DiI (CellTrackerTM CM-DiI, Invitrogen) were
added to each well and incubated for 3 h at 37°C. Nonat-
tached cells were gently washed and removed with PBS, and
adherent EPCs were fixed with 4% paraformaldehyde and
counted by independent investigators blinded to treatment
randomly.

2.3. EPC Migration In Vitro. A total of 2×104 EPCs were
harvested and resuspended in 250 μL EBM-2 after TNF-α
treatment and pipetted into the upper chamber of a modified
Boyden chamber (Costar Transwell assay, 8 μm pore size,
Corning, NY), which was placed in a 24-well culture plate
containing 500 μL EBM-2 medium supplemented with
100 ng/mL SDF-1. Transmigrated cells were counted after
24 h incubation at 37°C by independent investigators blin-
ded to the treatment randomly.

2.4. EPC Apoptosis Assay. EPCs were treated with 10 ng/mL
tumor necrosis factor-α (TNF-α, Peprotech) for 1 h, and cell
apoptosis was detected by AnnexinV-staining (Roche,
Penzberg, Germany). Briefly, EPCs were cultured with TNF-
α (10 ng/mL) for 1 h. .en, EPCs were collected and washed

for three times. Annexin V-FITC and propidium iodide (PI)
were added to the washed cells (1× 106 cells/mL in FACS
buffer) for 15min at room temperature in the dark. FACS
buffer was added, and cells were analyzed immediately by
flow cytometry analysis.

2.5. Quantitative Real-TimeReverse Transcription Polymerase
ChainReaction. miR-125b-5p were quantified using specific
Taqman assays for miR (Applied Biosystems, USA). Specific
primers for miR-125b-5p were obtained from Applied
Biosystems. miR-125b levels were normalized to the U6
small nucleolar RNA. Primer sequences for gene encoding
for TNF-α, IL-1β, IL-6, and β-actin were reported in Table 1.
.e results were normalized to the mRNA levels of β-actin.

2.6. Western Blotting. Proteins were extracted with cell lysis
buffer (Cell Signaling Technology) and analyzed with by
western blotting by using p-NFκB p65 antibody (Ser 276) (1 :
1000, Santa Cruz, sc-101749), NF-κB p65 (1 :1000, Cell
Signaling, 8242T) and rabbit anti-β-actin antibodies (1 :
3000; Cell Signaling Technology). .e intensities of protein
bands were quantified densitometrically by using the NIH
IMAGE J software.

2.7. Surgical Induction ofMyocardial Infarction (MI) andEPC
Transplantation. .e mice were anesthetized by 5.0% iso-
flurane, and anaesthesia was maintained by inhalation of
1.5% to 2% isoflurane driven by oxygen flow using a rodent
ventilator. .e hearts were exposed, and the left anterior
descending (LAD) coronary artery was ligated with an 8-0
silk ligature. 2×105 EPCs suspended in 20 μl PBS were
injected at 5 different sites at the infarct border zone using an
20 μl Hamilton syringe with a 30-gauge needle. 6–8 mice
were used for LAD ligation in each group. .e cardiac
function was evaluated by echocardiography. .e study
protocol was approved by the Ethics Committee of Sun Yat-
sen University.

2.8. Histological Assessments. Cardiac tissues were fixed in
4% paraformaldehyde for 4 hours and then snapfrozen.
Serial cryosectioning was performed starting at 1mm below
the LAD ligation moving toward the apex. To evaluate PC
endothelial differentiation and capillary density, immuno-
histochemical staining was performed using fluorescent
anti-CD31 (Santa Cruz) antibodies. All surgical procedures
and pathohistological analyses were performed by investi-
gators blinded to treatment assignments.

2.9. Statistical Analyses. All values are reported as mean-
± SEM. Two-tailed Student’s t test was used to compare 2
means. One-way or 2-way ANOVA with a Bonferroni
correction was used to compare multiple (>2) means with 1
or 2 independent variables, respectively. p< 0.05 was con-
sidered significant.
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Table 1: Primer sequences.

Gene Forward primer Reverse primer
TNF-alpha AGGGATGAGAAGTTCCCAAATG AGGGATGAGAAGTTCCCAAATG
IL-1β GCAACTGTTCCTGAACTCAACT ATCTTTTGGGGTCCGTCAACT
IL-6 TCGGAGGCTTAATTACACATGTTC TGCCATTGCACAACTCTTTTCT
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Figure 1: miR-125b overexpression in EPCs preserved its migration and adhesion function after TNF-α treatment. EPCs were transfected
with miR-125b mimic and negative control mimic for 24 h. (a) .e level of miR125b measured by qRT-PCR (b). EPC migration and
adhesion measured after transfection. Representative (c) and quantification (d) of the migratory activity of EPCs. Representative (e) and
quantification (f) of DiI-labeled EPC adhesion to HUVECs with TNF-α activation (scale bar� 100 μm, ∗p< 0.05 vs. NC mimic with TNF-α
treatment, n� 5).
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3. Results

3.1.OverexpressionofmiRNA-125b inEPCsAmelioratesTNF-
α Induced Functional Defects in EPCs. .e level of miR-125b
in the EPC transfected with miR125b mimic is about 21-
folds increase compared with the negative control (NC)
group (Figures 1(a) and 1(b)). Transfected EPCs were treated
with or without 10 ng/mL TNF-α for 1 h and then tested for

cell migration and adhesion in vitro. .e NC group showed
significant reduced cell migration (Figures 1(c) and 1(d))
and adhesion (Figures 1(e) and 1(f )) capacity after TNF-α
treatment compared with the one without TNF-α treatment,
while TNF-α treatment slightly reduced the cell migration
and adhesion function in the miR-125b-overexpressed
group in comparison with cells without TNF-α treatment.
After TNF-α treatment, miR-125b-overexpressed EPCs
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Figure 2: Upregulation of miR-125b in EPCs attenuated the expression of proinflammatory factors and ameliorated the TNF-α-induced cell
apoptosis. EPCs were treated with TNF-α (10 ng/mL) for 1 h after transfection..emRNA levels of proinflammatory factors (TNF-α, IL-1β,
and IL-6) were measured by qRT-PCR (a). Cell apoptosis was determined by flow cytometry using annexin V staining (b). .e activation of
caspase3 was analyzed by western blotting. Representative (c) and quantification (d) of caspase3 level (normalized to β-actin)..e activation
of NF-κB was determined by the level of p-p65 in EPCs using western blotting. Representative (e) and quantification (f) of p-p65 level
(normalized to p65) (∗p< 0.05 vs. NC mimic with TNF-α treatment, n� 5).
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showed significantly better preserved migration and adhe-
sion function than those of the NC group.

3.2. Overexpression of miRNA-125b in EPCs Attenuates TNF-
α Induced Expression of Proinflammatory Factors and Cell
Apoptosis. .e mRNA level of the proinflammatory cyto-
kines (TNF-α, IL-1β, and IL-6) in EPCs was measured by
qRT-PCR after 1 h TNF-α treatment. We found that miR-
125b-overexpressed EPCs showed significantly lower TNF-
α, IL-1β, and IL-6 mRNA expression levels than those of the
NC group (Figure 2(a)). Moreover, the percentage of apo-
ptotic cells (Annexin V positive cells) is significantly lower in
the miR-125b-overexpressed group compared with that of
the NC group after TNF-α treatment (Figure 2(b)). In
parallel with these flow cytometry results, our western
blotting results showed markedly lower cleaved caspase 3
level in the overexpression group than in the NC group after
TNF-α treatment (Figures 2(c) and 2(d)) which indicated
reduced cell apoptosis.

3.3. Effects of miRNA-125b on EPC-Mediated Neo-
vascularization in the Ischemic Hearts. To investigate the
effect of miR-125b on the regulation of TNF-α induced NF-
κB pathway activation, western blotting was performed to
analyze the level of p65 phosphorylation (p–p65). As shown
in Figures 2(e) and 2(f), the level of p–p65 in miR-125b-
overexpressed EPCs was markedly lower than of the NC
group after TNF-α treatment. To further investigate the role

of miRNA-125b in EPC-mediated neovascularization, miR-
125b-overexpressed and NC control EPCs were transplanted
by intramyocardial injections into the mice immediately
after surgical-induction of MI, the cardiac function was
evaluated by echocardiography, and the capillary density in
the infarct border zone was assessed by immunohistology
staining of CD31. .e cardiac function of the mice trans-
planted with miR-125b-overexpressed EPCs was improved
compared with that of the ones transplanted with NC
control EPCs 28 days after MI (Figures 3(a) and 2(b)). .e
capillary density in the infarct border zone of the mice
transplanted with miR-125b-overexpressed EPCs was about
2-folds higher than the ones transplanted with NC control
EPCs (Figures 3(c) and 2(d)). .ese data suggest miR-125b
overexpression in EPC-enhanced EPC-mediated neo-
vascularization and cardiac function recovery in the is-
chemic hearts.

4. Discussion

In this study, we have identified a novel role of miR-125b in
the regulation of EPC functions. Upregulation of miR-125b
in EPCs ameliorates the inflammatory and apoptotic re-
sponses of EPCs in the ischemic heart by inhibiting the
activation of the TNF-α/NF-κB pathway. Using the myo-
cardial infarction model, we demonstrated that miR-125b
overexpression enhanced the EPC-mediated neo-
vascularization and cardiac function recovery in the is-
chemic hearts. To the best of our knowledge, this is the first
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Figure 3: miR-125b overexpression enhanced the EPC-mediated neovascularization and cardiac function recovery in the ischemic hearts.
.e cardiac function was assessed by echocardiography at baseline and after MI (28 days). Representative (a) and quantification (b) of
echocardiography analyses. EPC-mediated neovascularization in the ischemic hearts analyzed by CD31 staining (GFP) (c) and capillary
density quantified (d) (scale bar� 100 μm, ∗p< 0.05 vs. NC mimic, n� 5).
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study to address the role of miR-125b in modulating EPC-
mediated neovascularization in the ischemic hearts.

Although EPC-related cell therapy has been studied
extensively, the majority of the cell-therapy trials achieve
only modest efficacy [14–16]. .e low survival rate of the
transplanted EPCs in the ischemic hearts is one of the major
obstacles to the success of this therapy [17, 18]. After the
myocardial infarction, a large number of inflammatory cells
are recruited to the ischemic heart where a hostile, pro-
inflammatory environment is created. Compelling evidence
showed that the EPC level can be significantly affected by
systemic inflammation [19]. It has been reported that li-
popolysaccharide-induced systemic inflammatory reaction
led to a decrease in the number of circulating EPCs [20]. Of
note, patients with long-term inflammatory disease, like
active ulcerative colitis, had significantly lower levels of
circulating EPCs [21]. In this study, our data indicate that
TNF-α treatment in EPCs markedly impaired its migration
and adhesion function. More importantly, EPCs treated with
TNF-α showed increased cell apoptosis, which might partly
explain the low survival rate of transplanted EPCs in the
ischemic hearts. Collectively, others and our study suggest
that enhancing the survival of EPCs in the proinflammatory
environment in the ischemic hearts is crucial for achieving
satisfactory outcome of cell therapy.

miR-125 family is well known as one of the major
regulators in the development of hematological malignan-
cies and autoimmune diseases [22–24]. Recently, accumu-
lating studies demonstrate that miR-125b negatively
regulates the activation of the NF-κB pathway by targeting
TRAF6 [25]. More important, evidence showed that miR-
125b-mediated repression of the NF-κB pathway exerts a
protective effect on ischemic hearts [13]. However, the role
of miR125b in the regulation of EPC function is still unclear.
Our study for the first time demonstrated that the over-
expression of miR-125b led to resistance to TNF-α-induced
functional defects and cell apoptosis in EPCs and conse-
quently enhanced the EPC-mediated neovascularization in
the ischemic hearts. It is well recognized that the TNF-α/NF-
κB pathway is central to most of the inflammatory processes
and exerts negative regulatory effect on vascular repair [26].
In consistency with the reports from other cell types [27],
our data showed that the overexpression of miR-125b
blunted the TNF-α induced proinflammatory responses in
EPCs and restored the functions of EPCs and, more im-
portantly, protected against TNF-α induced apoptosis.
Furthermore, mice transplanted with miR-125b-overex-
pressed EPCs showed enhanced neovascularization com-
pared with that of the one with NC control EPCs. Taking
together, our study for the first time unveils the protective
effect of miR-125b on EPCs.

Although our data have demonstrated that upregulation
of miR-125b blunted the TNF-α-induced NF-κB pathway
activation in EPCs, the detailed mechanisms underlying
miR-125b-mediated negative regulation of NF-κB pathway
in EPCs has not been revealed in this study. Reports from
others have characterized TRAF6 as the target of miR-125b
in the NF-κB pathway activation [13, 25, 27]. However,
whether miR-125b exerts its effect on TNF-α/NF-κB

pathway by targeting TRAF6 or other molecules in EPCs still
requires further investigations to confirm.

In conclusion, our study suggests that miR-125b-me-
diated inhibition of the TNF-α/NF-κB pathway is crucial for
the protection of EPCs in the inflammatory environment
and may be a novel therapeutic target for enhancing the
effectiveness of cell therapy for ischemic heart disease.
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