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Purpose: To evaluate the performance of a disease activity (DA) model developed to detect DA in partici-
pants with neovascular age-related macular degeneration (nAMD).

Design: Post hoc analysis.
Participants: Patient dataset from the phase III HAWK and HARRIER (H&H) studies.
Methods: An artificial intelligence (AI)-based DA model was developed to generate a DA score based on

measurements of OCT images and other parameters collected from H&H study participants. Disease activity
assessments were classified into 3 categories based on the extent of agreement between the DA model’s scores
and the H&H investigators’ decisions: agreement (“easy”), disagreement (“noisy”), and close to the decision
boundary (“difficult”). Then, a panel of 10 international retina specialists (“panelists”) reviewed a sample of DA
assessments of these 3 categories that contributed to the training of the final DA model. A panelists’majority vote
on the reviewed cases was used to evaluate the accuracy, sensitivity, and specificity of the DA model.

Main Outcome Measures: The DA model’s performance in detecting DA compared with the DA assess-
ments made by the investigators and panelists’ majority vote.

Results: A total of 4472 OCT DA assessments were used to develop the model; of these, panelists reviewed
425, categorized as “easy” (17.2%), “noisy” (20.5%), and “difficult” (62.4%). False-positive and false negative
rates of the DA model’s assessments decreased after changing the assessment in some cases reviewed by the
panelists and retraining the DA model. Overall, the DA model achieved 80% accuracy. For “easy” cases, the DA
model reached 96% accuracy and performed as well as the investigators (96% accuracy) and panelists (90%
accuracy). For “noisy” cases, the DA model performed similarly to panelists and outperformed the investigators
(84%, 86%, and 16% accuracies, respectively). The DA model also outperformed the investigators for “difficult”
cases (74% and 53% accuracies, respectively) but underperformed the panelists (86% accuracy) owing to lower
specificity. Subretinal and intraretinal fluids were the main clinical parameters driving the DA assessments made
by the panelists.

Conclusions: These results demonstrate the potential of using an AI-based DA model to optimize treatment
decisions in the clinical setting and in detecting and monitoring DA in patients with nAMD.
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creativecommons.org/licenses/by-nc-nd/4.0/).
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Neovascular age-related macular degeneration (nAMD) is a
long-term condition and a common cause of severe and
irreversible blindness due to the growth of choroidal neo-
vascularization and associated exudation of blood and se-
rous fluid in the macula.1e3
ª 2024 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
VEGF is a potent angiogenic factor and a key driver of
nAMD.2,4 Treating nAMD with VEGF inhibitors can
substantially reduce the degree of vision loss compared with
the previous standard of care (e.g., laser photocoagulation
and photodynamic therapy).3,5 Still, anti-VEGF therapy is
1https://doi.org/10.1016/j.xops.2024.100565
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associated with a substantial treatment burden owing to
several factors, including frequent repeated intravitreal
injections and clinic monitoring visits.3,6 Numerous clinical
setting studies of anti-VEGF therapy in nAMD have
reported visual outcomes inferior to those reported in
randomized clinical trials.3,7e9 Treatment protocols that
provide treatment only when disease activity (DA) is present
(“pro re nata”) or whereby patients are treated and monitored
in extended intervals while observing absence of DA (“treat
and extend”) have been used to lessen the treatment burden
for patients and clinics.10,11

Fluid exudation in nAMD is a key target for anti-VEGF
therapy. OCT has become the recommended imaging
modality for initial assessment and monitoring of treatment
response to anti-VEGF agents in the qualitative assessment
of DA, based on the presence of markers of fluid exudation
such as subretinal fluid (SRF), intraretinal fluid (IRF)
(within cystoid spaces or diffuse retinal thickening),
increase in pigment epithelial detachments, and hemor-
rhage.2,12e14 Recent clinical trials have defined DA
assessment based on qualitative exudative OCT features,
such as central subfield thickness (CSFT), and best-
corrected visual acuity (BCVA) to plan retreatment or
extend the treatment interval.15e18

The evaluation of OCT images may depend on the
expertise/experience of the treating physician and, therefore,
could be subject to considerable interphysician variability in
OCT interpretation.19,20 This was observed in the
Comparison of Age-related Macular Degeneration
Treatments trial, where the grading of macular fluid by a
reading center was compared with an ophthalmologist’s
treatment decision based on OCT-guided macular fluid
identification.20 It was observed that the ophthalmologist’s
treatment decision and reading center fluid determination
from OCT images disagreed in 27.9% of patient visits on
presence or absence of macular fluid.20 These observations
highlight that failure to detect DA correctly may lead to
undertreatment with a subsequent decline in visual acuity.19

Artificial intelligence (AI) approaches based on deep
learning (DL) methods, with their capacity to detect and
quantify exudative fluid using OCT automatically, have
great potential as a diagnostic tool in the complex nAMD
treatment landscape.14,21 Several groups have begun to
develop algorithms for predicting treatment response and
optimizing treatment regimens in patients with
nAMD.22e24 However, validating and implementing AI in
clinical decision-making remains challenging.21

A tool designed to guide and support the clinician in
considering a particular dosing regimen could result in more
effective treatment and optimized visual outcomes. Here, we
have developed and evaluated the performance of an
AI-based DA model capable of assessing DA in nAMD at
each clinic visit to optimize treatment.
Methods

This is a post hoc analysis of the phase III HAWK and HAR-
RIER (H&H) double-masked clinical trials (ClinicalTrials.gov
identifiers: NCT02307682 and NCT02434328, respectively).
2

These 2 similarly designed studies were conducted to compare
the efficacy and safety of intravitreal brolucizumab, a single-
chain antibody fragment that inhibits VEGF-A, with
aflibercept in treatment-naive patients with nAMD.15,25

Figure S1 (available at www.ophthalmologyscience.org)
illustrates the study design of the H&H studies. In the
brolucizumab arms of the H&H studies, maintenance
treatment began with a 12-week treatment interval after 3
loading doses. The interval could be shortened to an 8-week
interval (every 8 weeks) based on DA assessments at
predefined visits. Eyes of patients treated with brolucizumab
demonstrated greater fluid resolution from week 48 to week 96
comparedwith aflibercept. TheH&Hstudieswere conducted in
accordance with principles of the Declaration of Helsinki,
International Conference on Harmonization E6 Good Clinical
Practice Consolidated Guideline, and other regulations as
applicable. Before starting the studies, an independent ethics
committee/institutional review board approved the study
protocols and written informed consent was obtained from all
participants.

This post hoc analysis aimed to (1) develop a model
capable of assessing DA in participants with nAMD
undergoing anti-VEGF therapy and (2) evaluate the model’s
performance against the DA assessments made by the H&H
investigators and an independent panel of retina specialists.

DA ModeldDevelopment

The DA model was developed using visual acuity data and
morphologic features extracted from OCT images (Figure S2;
available at www.ophthalmologyscience.org). A subset of
data from the DA assessments performed by the H&H
investigators were used for model training. The first DA
assessment in the H&H studies occurred at week 16,
followed by the assessments at predefined later visits. Once
switched to the every 8 weeks regimen, patients remained
on this treatment interval until the end of the study.
Therefore, this post hoc analysis only includes data from
DA assessments conducted before and at the point of
switch to an every 8 weeks regimen. Morphologic features,
such as fluid volumes, were extracted from spectral-domain
(SD)-OCT images acquired with Spectralis SD-OCT (Hei-
delberg Engineering) with volumes consisting of 49 high-
speed B-scans (512 A-scans per B-scan). This additional
restriction narrowed down the training data to only Spectralis
SD-OCT images, representing the majority (67%) of the
OCT images from the H&H studies.

Firstly, a DL algorithm was applied to raw OCT images
to measure anatomic features such as IRF, SRF, and
pigment epithelial detachment volumes, thickness of retinal
layers, and central subfield thickness.26,27 These data were
combined with the corresponding nonimaging data, such
as BCVA, time since the last injection, and patient
characteristics and medical history. A tree-based machine
learning algorithm was applied to the combined data from
visits before and at DA assessment to build a classification
model of DA. The model used the gradient-boosted decision
trees approach implemented by the XGBoost package
version 1.4 that generates a prediction model from an
ensemble of weakly predictive decision trees. The model

http://ClinicalTrials.gov
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was trained using cross-validation on the entire dataset of
DA assessments. The most parsimonious classification
model used 11 measurements of DA: IRF, SRF, and
pigment epithelial detachment volumes in the scanned 6 � 6
mm area, central subfield thickness, BCVA at the time of
DA assessment, changes of these features from the previous
visit when treatment was received, and the time since the
last injection. OCT images taken at DA assessment visits
and previous injection visit were used to predict DA. The
main output of the DA model was a continuous metric (DA
score), representing the probability of a retina specialist
deciding whether DA is present (see section titled DA
ModeldIndependent Case Review for Performance
Evaluation).

A sample of the DA assessments, which served as the
basis for training the models, underwent reevaluation by an
independent panel of retina specialists. This subset of
reevaluated DA assessments spanned different DA categories
defined by the level of agreement between the model pre-
dictions and the DA assessment conducted by the H&H in-
vestigators. This sampling of DA assessment cases aimed to
investigate interpanelist agreement across these DA cate-
gories, derive consensus-based DA assessments to correct
possible errors made by H&H investigators, and evaluate the
model’s performance within these categories. Following the
completion of the reevaluation process for selected DA cases,
the final DA model underwent retraining using updated DA
assessments in the training data, where corrections were
made to some of the assessments based on the majority vote
from the panel. Cases were categorized into 3 typesd“easy,”
“noisy,” and “difficult”dusing model-derived DA scores
and the extent of agreement with investigators’ decisions.

“Easy” cases were defined as cases where there was no
contradiction between the DA assessments made by the
investigators and those made by the model predictions:
cases where the model predicted a low DA score when in-
vestigators did not indicate DA, or a high DA score when
DA was indicated by investigators. For “easy” cases, an
agreement was expected between the investigators and the
majority-voted decision generated by the panelists. “Easy”
cases were not expected to influence the model performance
evaluation metrics as training labels would not be changed,
and consequently, only a small number were selected for
review by the panelists for confirmation purposes.

“Noisy” cases were defined as cases where there was
contradiction between the DA assessments made by the
investigators and those predicted by the model: cases where
the investigators indicated high DA and the model predicted
a low DA score and vice versa. “Noisy” cases could prevent
optimal model training and impact performance evaluation
(e.g., due to true positives being counted as false positives);
therefore, a majority of these cases were included in the
review process by panelists.

“Difficult” cases were defined as cases where the DA
scores predicted by the model varied most between cross-
validation runs on different subsets of selected data. As
DA score variability reflects heterogeneity between DA
assessments by the investigators, higher level of disagree-
ment between panelists was expected for “difficult” cases.
We defined the top quintile of cases with most variable DA
scores as “difficult.” “Difficult” cases were expected to be
the most informative from which to evaluate the variability
of DA assessments between panelists; thus, the majority of
cases selected for review were from this category.

DA ModeldIndependent Case Review for
Performance Evaluation

An independent panel of 10 international retina specialists (S.L.,
K.H., R.G.P., T.A., C.M.G.C., G.D.S., O.S., G.M.S., A.S.,
B.J.L.) (panelists) with special interest in retinal imaging
reviewed a subset of DA assessments from the H&H studies.
The panelists did not have access to the outcome of the DA
assessments determined by the investigators and reassessedDA
in a similar treatment-masked setting implemented in the H&H
studies. Panelists did have access to the participant information
available to the investigators: participant-level data (de-
mographics, medical history, concomitant medications, and
adverse events and serious adverse events); OCT scans of the
study eye (raw OCT images [standard density scans]; and other
ocular features [longitudinal BCVA, intraocular pressure,
presence/absence of retinal hemorrhage, and retinalfibrosis and
atrophy]). An interactive web application was used to provide
the panel with the data related to the cases (Shiny R package;
Rstudio).28 Access to the OCT images was given through the
image analysis platform RetinAI Discovery (RetinAI Medical
AG) (Figure S3, available at www.ophthalmologyscie
nce.org), a data management platform that enables storing,
viewing, and processing of patient images and data.29

Panelists did not have access to all features of RetinAI
Discovery.

Additionally, an assessment form was provided within the
interactive web application to capture panelists’ input. This
formwas carefully designed to adhere to thedecision-making in
the H&H studies (Figure S4, available at www.ophthalm
ologyscience.org). Disease activity was deemed “present” if
the panelist indicated that treatment was needed, and “absent”
if the panelist indicated no treatment was required. The
panelist was also asked to note their confidence level in the
treatment decision they had made (low, medium, or high), the
importance of features impacting the treatment decision (low,
medium, or high), and the feature characteristics, alongside
any other factors affecting the decisions.

Disease activity scores generated by the model were
calibrated to represent the probability of DA presence using
DA assessment data generated during the independent case
review. A logistic regression model was used to fit the
original model DA scores to the panelists’ DA assessments.
The resulting logistic transformation was applied to all DA
scores initially generated by the model, including cases that
were not reviewed. After this transformation, DA scores of
0.1, 0.5, and 0.9 represent 10%, 50%, and 90% probability
of having DA detected by a retina specialist, respectively.

The Krippendorff’s alpha reliability estimate was used to
determine the inter-rater agreement (agreement among the
panelists).30

DA ModeldPerformance Evaluation Metrics

The model’s performance was evaluated by comparing its
ability to determine the DA against the majority-voted
3
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Table 2. Distribution of DA Assessments Reviewed and Available
From the H&H Studies According to DA Category

DA Category

All DA
Assessments,

n (%)

Reviewed DA
Assessments,

n (%)

Percent of All
Assessments
Reviewed, %

Difficult 895 (20.0) 265 (62.4) 29.6
Easy 3434 (76.8) 73 (17.2) 2.1
Noisy 143 (3.2) 87 (20.5) 60.8
Total 4472 (100) 425 (100) 9.5

DA ¼ disease activity; H&H ¼ HAWK and HARRIER.
Percentages may not total 100% because of rounding.

Table 3. DA Model’s Performance (Contingency Table) Based on
All DA Assessments Used for DA Model Training (i.e., before and

at the Switch to the q8w Dosing Regimen)

Model
Physician
“Yes”

Physician
“No” Total

Prereview Yes, n (%) 1276 (90.4) 412 (13.5) 1688 (37.7)
No, n (%) 135 (9.6) 2649 (86.5) 2784 (62.3)
Total, n 1411 3061 4472

Postreview Yes, n (%) 1378 (94.1) 310 (10.3) 1688 (37.7)
No, n (%) 86 (5.9) 2698 (89.7) 2784 (62.3)
Total, n 1464 3008 4472

DA ¼ disease activity; q8w ¼ every 8 wks.
Physician ¼ HAWK and HARRIER investigators (nonreviewed cases) or
the majority vote of panelists (reviewed cases).
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decisions of reviewed cases. The main metrics of perfor-
mance evaluation were cross-validated accuracy, sensitivity,
and specificity. A majority vote was used to summarize the
panelists’ DA assessments for each case, and ties were
resolved using the investigators’ assessments.

Results

Dataset

A total of 4472 OCT DA assessment image scans acquired
longitudinally from patients across all treatment arms of the
H&H studies were used to develop and train the DA model
(Figure S2, available at www.ophthalmologyscience.org).
Baseline characteristics of the H&H patients included in
the DA model (n ¼ 389 [HARRIER], n ¼ 594 [HAWK])
are detailed in Table S1 (available at www.ophthalm
ologyscience.org). As noted in the Methods, only
SD-OCT image scans acquired on a Spectralis SD-OCT
device were used. These DA assessments were classified
as “difficult” (20.0%), “easy” (76.8%), or “noisy” (3.2%)
(Table 2). Of these, 425 DA assessments were selected for
independent review by the panelists by random sampling
within each category. The DA assessments selected for
review purposely represented a small percentage of all
"easy" cases (2.1%) and a high percentage of all "noisy"
cases (60.8%). “Difficult” cases accounted for less than
one-third of all “difficult" cases but represented the major-
ity of cases reviewed (62.4%).

Model Performance

The cross-validated contingency table evaluating the DA
model’s performance (based on the 4472 DA assessments)
showed a decrease in false-positive and false negative rates,
respectively, from 13.5% and 9.6% before review to 10.3%
and 5.9% after review (Table 3). The area under the curve
was 0.958 before review and 0.981 after review.

The performances (accuracy, sensitivity, and specificity
based on the 425 reviewed DA assessments) of the DAmodel,
investigators, and each panelist were compared against the
panelists’majority vote for “easy,” “noisy,” and “difficult”DA
categories (Fig 5).Overall, theDAmodel achieved an accuracy
of 80%, a sensitivity of 83%, and a specificity of 76%. For
“easy” cases, the model performed as well as the
investigators and individual panelists (accuracy of 96%,
96%, and 90%, respectively). The model outperformed the
investigators for both “noisy” (accuracy of 84% and 16%,
respectively) and “difficult” cases (accuracy of 74% and
53%, respectively). The model performed similarly to
panelists for “noisy” cases (accuracy of 84% and mean
accuracy of 86%, respectively) but underperformed the
panelists for “difficult” cases (accuracy of 74% and mean
accuracy of 86%, respectively) due to lower specificity (44%).

Analysis of the DA Model Scores

The distribution of the DA model scores was plotted against
the investigators’ assessment decisions and the majority
vote of the panelists (Fig 6). For “easy” cases, the scores
assigned by the DA model were in close agreement with
4

the investigators’ decisions and the majority vote of the
panelists; the DA model clearly distinguished between the
cases where the presence or absence of DA was assigned
by investigators or the majority vote of panelists. For
“difficult” cases, the distribution of DA model scores was
broader than for “easy” cases and did not distinguish
between the assessments made by the investigators. In
contrast, the DA model was better aligned with the
assessments made by the majority vote of panelists. For
“noisy” cases, the investigators and the majority vote of
panelists largely disagreed in their DA assessments; for
these cases, the DA model largely agreed with the
majority vote of panelists.
Interpanelist Variability of Reviewed Cases

Investigators’ and panelists’ majority vote agreed with regard
to theirDAassessments formost “easy” cases (96%) (Table 4).
Conversely, the proportion of DA assessments for which the
panelists reversed the investigators’ decisions was about half
for “difficult” cases (47%) and even higher for “noisy” cases
(84%). In 67% of cases, panelists agreed unanimously in
their assessments. The highest agreement was for “noisy”
and “easy” cases (71% in both categories) followed by
“difficult” (64%) (Table 5). Ties between panelists only
occurred in 19 reviewed cases (4.5%) (data not shown).

https://www.ophthalmologyscience.org
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Figure 5. Accuracy, sensitivity, and specificity achieved by the H&H investigators, DA model, and individual panelists from the panel against the majority
vote of panelists. A total of 425 DA assessments were evaluated. The boxes show interquartile ranges. The horizontal line across each box denotes the
median, and vertical lines extending above and below each box indicate the minimum and maximum values. DA ¼ disease activity; H&H ¼ HAWK and
HARRIER.
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Clinical Parameters Driving the Panelists’ DA
Assessments

Analysis of the distribution of the responses provided by the
panelists on the DA assessment review forms found that IRF
and SRF were the main clinical parameters leading to pos-
itive DA assessments. SRF and IRF would be highly
important in 86% and 78% of DA assessments, respectively
(Table 6).

In addition, analysis of the distribution of the panelists’
responses on the dynamics or persistence of the factors
leading to positive DA assessments found that new or
increased retinal fluid had a greater impact on determining
positive DA assessments than static retinal fluid. For
example, considering the status of IRF, in 91% of cases, the
increase of IRF would be regarded as a driving factor for
positive DA assessment (Table 7).
Figure 6. Disease activity score distributions according to the DA assessments f
specialists (a total of 425 DA assessments were evaluated). Disease activity score
off point. The boxes show interquartile ranges. The horizontal line across each b
box indicate the minimum and maximum values. Dots above and below the bo
Discussion

In this study, we developed and evaluated the performance of a
classification model based on features extracted from OCTs
using DL methods in detecting DA in participants with nAMD
treated with anti-VEGF therapies. To achieve diverse sampling
in the cases reviewed by the panelists, the cases selected were
within 3 categories: “easy,” “noisy,” and “difficult.” Sampling
of “easy” cases was needed to demonstrate full or close
agreement between panelists. Only a limited number of “easy”
cases were reviewed. “Noisy” cases could have contaminated
the model evaluation results by giving false positives or false
negatives; amajority of these caseswere reviewed. Sampling of
“difficult” cases, which were close to the DA model’s decision
boundary, allowed to relate the variability in DA assessments
between panelists to that between investigators.
rom the H&H investigators or the majority vote of the panel of the retina
of 0.50 corresponds to the model’s positive and negative DA assessment cut-
ox denotes the median, and vertical lines extending above and below each
xes are outliers. DA ¼ disease activity; H&H ¼ HAWK and HARRIER.
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Table 4. Investigators’ DA Assessments versus DA Assessments by the Panelists (Majority Vote) According to DA Category

DA Category “No” to “Yes,” n (%) Unchanged, n (%) “Yes” to “No,” n (%)

Difficult 103 (38.9) 140 (52.8) 22 (8.3)
Easy 2 (2.7) 70 (95.9) 1 (1.4)
Noisy 22 (25.3) 14 (16.1) 51 (58.6)
All 127 (29.9) 224 (52.7) 74 (17.1)

DA ¼ disease activity.
“No” and “Yes” refer to the absence and presence of DA, respectively, i.e., “No” to “Yes” refers to cases where the investigators assigned absence of DA but
changed to presence of DA by panelists, and “Yes” to “No” refers to cases where the investigators assigned presence of DA but changed to absence of DA by
panelists.

Table 6. Distribution of the Panelists’ Responses on the Impor-
tance of Clinical Parameters Driving Positive DA Assessments

Importance

None Low Medium High N

Ophthalmology Science Volume 4, Number 6, December 2024
Overall, the false-positive and false negative rates (based
on the 4472 DA assessments and after incorporating the
review by the panelists) were low: 10.3% and 5.9%,
respectively. Based on the reviewed cases, when comparing
against the majority vote of panelists, the model
outperformed the investigators in correctly assessing DA in
“noisy” and “difficult” cases, while the DA model closely
agreed with the investigators’ DA assessments and the
panelists’ majority vote for “easy” cases. For “noisy” cases,
the DA model largely agreed with the majority panelist vote
but disagreed with the investigators, indicating that these
were indeed “noisy” cases for which the investigators may
have incorrectly assessed DA.

The performance of the DA model noticeably improved
after updating the DA assessments following the review by
the panelists, even though only a small fraction of DA
assessments from the H&H studies were reviewed. The
decrease in false-positive and false-negative rates following
review was driven by the panelists’ majority vote, which
resolved a large fraction of disagreements between the DA
model and investigators that took place before the review.

The study relied on the assumption that the panelists
assessed DA in a way that was consistent with DA assess-
ments made by the investigators. To minimize the risk of
systematic differences in DA assessments between the
panelists and investigators, the panelists were trained on key
aspects of the H&H studies and were presented with data
closely matching the data available to the investigators.
Additionally, the assessment form was carefully designed to
reflect the decision-making in the H&H studies.

The extent of agreement among panelists for the “diffi-
cult” cases was markedly lower than for “easy” and “noisy”
Table 5. Agreement between Panelists by DA Categories Pre-
sented as Percent of Unanimous DA Assessments and as Krip-

pendorff’s Alpha

DA Category n/N (%) Alpha (95% CI)

Difficult 170/265 (64.2) 0.43 (0.35e0.49)
Easy 52/73 (71.2) 0.53 (0.36e0.70)
Noisy 62/87 (71.3) 0.55 (0.41e0.66)
Total 284/425 (66.8) 0.54 (0.49e0.59)

CI ¼ confidence interval; DA ¼ disease activity; n ¼ number of unani-
mously assessed cases; N ¼ number of cases.
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cases. The “difficult” cases were classified as such owing to
variability of DA score during cross-validation caused by
variability in DA assessment of similar cases by
investigators. This disparity between the investigators in DA
assessments for “difficult” cases, and the evidence of some
disagreement among the panelists themselves, illustrate the
subjective nature of DA assessment and that it may be
dependent on the physician’s experience and expertise.31,32

Clinical setting OCT case studies have also shown that OCT
findings may be misinterpreted.33 This subjectivity of the
human grader reinforces the utility of an objective,
consistent, human-independent DA model trained on data
from expert retina specialists.

In this study, a DL-based algorithm was used to quantify
retinal fluids in OCT images. Automated quantification of
fluids achieves high consistency with manual expert
assessments.34 However, prospective studies are needed to
evaluate DL algorithms and their role in guiding treatment
decisions in clinical settings.

Interestingly, the presence or absence of IRF only, SRF
only, or both was considered particularly important by the
panelists, with BCVA or subretinal pigment epithelium fluid
having minimal effects on their decisions (Table 6). These
findings, alongside the disparity in DA assessment
between the investigators and the panelists for “noisy”
Parameter

BCVA 77% 6% 12% 5% 1035
CSFT 40% 17% 23% 20% 1031
IRF 9% 1% 11% 78% 319
SRF 4% 1% 9% 86% 615
Sub-RPE fluid 73% 8% 10% 9% 278

BCVA ¼ best-corrected visual acuity; CSFT ¼ central subfield thickness;
DA¼ disease activity; H&H ¼HAWK and HARRIER; IRF ¼ intraretinal
fluid; N ¼ number of panelists; PED ¼ pigment epithelium detachment;
RPE ¼ retinal pigment epithelium; SRF ¼ subretinal fluid.
“High,” “Medium,” “Low,” and “None” indicate the importance of a
particular parameter in panelists’ decisions. Clinical data regarding CSFT
values and the presence/absence of IRF, SRF, and sub-RPE fluid were
assessed in the reading centers involved in the H&H studies. PED presence
was not assessed.



Table 7. Distribution of Panel Responses on Parameters Driving
Positive DA Assessments

Parameter Characteristic Percent

BCVA Decreased 99%
Low 1%

CSFT Increased 96%
High 4%

IRF New/increased 91%
Persistent 9%

PED New/increased 80%
Persistent 20%

SRF New/increased 87%
Persistent 13%

Sub-RPE fluid New/increased 84%
Persistent 16%

BCVA ¼ best-corrected visual acuity; CSFT ¼ central subfield thickness;
DA ¼ disease activity; IRF ¼ intraretinal fluid; PED ¼ pigment epithelium
detachment; RPE ¼ retinal pigment epithelium; SRF ¼ subretinal fluid.
Data show the characteristic (low, decreased, persistent, and new/
increased) given by panelist to the parameters in the case assessment form
(Fig S3).
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cases, highlight the need for a universally agreed definition
of DA and a consistent OCT interpretation on those studies
in which the investigators assess OCT of their participants.

Different studies have demonstrated the potential utility
of DL-based algorithms in diagnosing age-related macular
degeneration.26,35 To our knowledge, this is the only model
that, by generating a DA score, emulates the consensus on
whether to treat or not by experienced retina specialists.
While further refinements, improvements, and external
validation in a prospective setting would be needed, these
initial results highlight the potential of AI to support and
improve the quality of DA evaluations and treatment
decisions in patients with nAMD. Figure S7 (available at
www.ophthalmologyscience.org) shows a mock-up
example of the output provided by the DA model. Clini-
cians can use the DA score, the segmented OCT images, and
changes in fluid volumes to guide treatment decisions. Once
fully validated, such a DA model could also be used as a
clinical decision support tool in clinical trial settings to test
the efficacy of different therapies in nAMD. Such a model
could even be used as a teaching or training tool for future
specialists in nAMD, as well as a diagnostic tool to assess
treatment needs in treatment-naive patients.

In conclusion, the results presented here highlight the
potential of the DA model to assess DA in patients with
nAMD. The DA model could potentially reduce the time
and resources needed for monitoring patients with nAMD
and improve interpretation consistency, thus providing a
powerful tool to optimize treatment decisions at point of
care so that each patient is retreated to achieve and maintain
the best visual outcome with the lowest possible treatment
burden. Digital analysis tools, such as the one reported here,
are likely to become essential in the clinical management of
patients with nAMD and could be integrated into the
existing workflow of retina practices in the near future.
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