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Abstract: Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activi-
ties, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other antici-
pated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-
oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl
halides 3a–h, α-haloketones 5a–d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate
7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a–h, 3-phenyl-4-arylthiazoles 6a–d
and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthe-
sized products were confirmed by spectral data. All of the compounds also showed remarkable
anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepato-
cellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition.
1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both can-
cer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug
(IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the
above thiadiazole derivatives, molecular docking studies were performed that established a binding
site with EGFR TK.

Keywords: pyridines; 1,3,4-thiadiazoles; 1,3-thiazoles; hydrazonoyl halides; molecular docking;
anticancer activity

1. Introduction

Designing new, effective, selective, highly potent, although more tolerant, anticancer
drugs through the identification of novel structures remains a considerable challenge for the
researchers in the field of medicinal chemistry. Hybrid drug design has emerged during the
past few years as a leading technique for the creation of innovative anticancer medicines
that, in theory, can address many of the pharmacokinetic drawbacks of conventional
anticancer medications [1]. Medical researchers have focused on pyridines, 1,3,4-thiadiazole
and 1,3-thiazole systems that have led to somewhat more effective and promising results
in recent years. To name just a few, the following pyridine-based small compounds have
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received approval as anticancer medications: Vismodegib III, Crizotinib IV, Regorafenib II,
and Sorafenib I (Figure 1) [2–4]. Different pyridine derivatives were studied for a variety
of human cancer cell lines as a tool for novel anticancer drugs through the topoisomerase
inhibitory activity. These results show various reports regarding different derivatives, such
as bioisosteres of α-terthiophene as a potent for protein kinase C inhibitor [5], promising
topoisomerase I and/or II inhibitory activity, as well as cytotoxicity against a variety of
human cancer cell lines [6–10].

Among those, 1,3,4-thiadiazoles gained substantial interest due to their widespread
biological activity, including antimicrobial, anti-inflammatory, antithrombotic, antihy-
pertensive, antituberculosis, anesthetic, anticonvulsant and antiulcer activities [11–16].
Furthermore, different researchers also particularly report 1, 3, 4-thiadiazole derivatives for
their excellent anticancer activity, which are confirmed by desirable IG50 and IC50 values in
inhibitory effect, such as Filanesib and compounds I–III (Figure 1) [16–20].

1,3-Thiazoles, which derived from thiosemicarbazone derivatives, is also known
for its various pharmacological applications, as its scaffold is useful for several natural,
non-natural and semi-synthetic drugs, including anti-inflammatory, anti-parasitic and
antineoplastic properties [13,21–31]. Numerous studies suggested that medications such as
Tiazofurin, Dasatinib, and Dabrafenib that contain thiazoles may have anticancer properties
against different cancer types (Figure 1) [32–34].
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Figure 1. Examples of anticancer drugs bearing pyridine, thiazole, and thiadiazole moieties.

Under the influence of the findings mentioned above, continuous efforts were per-
formed to synthesize innovative anticancer compounds [13,35–46]. The present report aims
to elaborate on the new series of thiadiazole-pyridines as well as thiazole-pyridines that
might have cytotoxic effects via the inhibition of protein Epidermal Growth Factor Tyrosine
Kinase receptor (EGFR TK), which plays an essential mediating role in cell proliferation,
angiogenesis, apoptosis, and metastatic spread compared with reference drugs.

2. Results and Discussion

1-(3-Cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) [47] was syn-
thesized through the reaction of phenyl isothiocyanate with 1-amino-4,6-dimethyl-2-oxo-
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1,2-dihydropyridine-3-carbonitrile (1) under the influence of a catalytic amount of KOH in
absolute ethanol as a solvent, as shown in Scheme 1.

The conduct of compound 2 towards various hydrazonoyl chlorides was explored to
synthesize a novel series of 1,3,4-thiadiazole derivatives. Therefore, when compound 2 was
treated with hydrazonoyl chlorides 3a–h in ethanol as a solvent in the presence of a TEA as a
catalyst, it afforded a series of single product, recognized as 4,6-dimethyl-2-oxo-1-((3-aryl-5-
substituted-1,3,4-thiadiazol-2(3H)-ylidene)amino)-1,2-dihydropyridine-3-carbonitriles 4a–h
(Scheme 1). The 1,3,4-thiadiazole 4 was formed through the alkylation of the thiol group
present in thiosemicarbazone moiety, an intramolecluar cyclization and finally elimination
of aniline molecule.

All the structures of products 4a–h were confirmed by elemental analyses followed
by spectral data. In general, the 1H-NMR spectra of 4a (see Supplementary Materials),
taken as an example, showed a singlet (1H) at δ 6.39 ppm corresponding to the pyridine
proton, three singlets at δ 2.01, 2.33 and 2.46 ppm corresponding to the three CH3 groups
and a multiplet δ 7.09–7.46 ppm corresponding to the five aromatic protons. The 13C-NMR
spectrum of 4a revealed two signals at δ = 25.6, 194.7 ppm, which is characteristic for the
acetyl group (CH3C=O). The disappearance of the two NH absorption bands was also
observed in the IR spectra because of the elimination of amine groups from the starting
material 2. Moreover, the mass spectrum of the products 4a–h revealed a molecular ion
peaks at the expected m/z values.
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Scheme 1. Synthesis of thiadiazoles 4a–h.

In addition to this, the chemical reactivity of compound 2 with several of α-haloketones
was also investigated to synthesize a series of novel thiazole derivatives. Accordingly,
compound 2 reacted with α-haloketones 5a–d in the presence of TEA as a catalyst under
refluxing condition using EtOH as a solvent that resulted a corresponding thiazoles 6a–d
series, as shown in Scheme 2 (see Experimental).

All the structures of the series of products 6a–e were also confirmed through the
analytical followed by spectral data analysis (see Experimental). Compound 6c showed
a typical singlet signal that appeared at δ 3.82, 6.55, and 6.80 ppm due to the OCH3
group, pyridine-H5, and thiazole-H5, respectively, in the 1H-NMR spectra. In addition to
this, a multiplet is observed in the region: 7.01–7.47 ppm assignable to the nine aromatic
hydrogens. On the other hand, the 13C-NMR spectrum of 6c showed four signals at
δ = 17.8, 21.2, 56.7 and 162.4 ppm characteristic for 2 Ar-CH3, Ar-OCH3 and C=O groups,
respectively, in addition to sixteen aromatic carbon signals in the range of 107.3–149.4 ppm.
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Finally, compound 2 reacted with α-chloro compounds 7a,b under refluxing condition
in the presence of EtOH as a solvent and TEA as a catalyst that resulted a single prod-
uct, identified as 4,6-dimethyl-1-((4-methyl-3-phenyl-5-substitutedthiazol-2(3H)-ylidene)
amino)4yridine-2(1H)-ones 8a,b, as outlined in Scheme 2.

The structure of the isolated product 8 was inferred from its IR and 1H-NMR spectral
data and elemental analysis (see Experimental).

2.1. Anti-Cancer Activity

The series of prepared compounds 4a–h and 6a–d were investigated against human
colon carcinoma (HCT-116) followed by the hepatocellular carcinoma (HepG2) cell lines to
obtain pharmacological activities using Harmine as a reference drug through colorimetric
MTT assay under in vitro conditions. The survival curve was obtained by plotting the
relation between the concentrations of the drugs against the surviving cells, resulting in the
50% inhibitory concentration (IC50). The anti-proliferative activity is also achieved through
the expression of the mean IC50 by three independent experiments (µM) ± standard
deviation calculated from three replicates.

Table 1 and Figure 2 summarize the structure- and concentration-dependent anticancer
activities of the series of compounds against HTC-116 cell lines. An in vitro inhibition
activity shows a positive trend along with all tested compounds. Compounds such as
4c, 4d, 4f and 4g show comparable activity to that of Harmine (IC50 = 2.40 ± 0.12 µM)
as a reference, whereas compound 4h demonstrates even better results compared with
the same reference. A similar trend of results was also observed for the hepatocellular
carcinoma (HepG2) cell line assay, where 4c, 4d, 4f, 4g and 4h show either comparable or
improved inhibitory activity, with 6h (IC50 = 2.17 ± 0.83 µM) showing the maximum effect
in comparison with the reference Harmine (IC50 = 2.54 ± 0.82 µM).
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Figure 2. The anticancer activity of series of compounds 4a–h against HCT-116 and HepG2 cell lines.

Table 1. The anticancer activity of the series of compounds 4a–h, and 6a–d towards human colon
carcinoma (HCT-116) and hepatocellular carcinoma (HepG2) cell lines expressed as IC50 values (µM)
± standard deviation from three replicates.
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Tested
Compounds R X (or Y)

IC50 (µM)

HCT-116 HepG2

4a COCH3 H 13.39 ± 1.04 16.44 ± 1.06

4b COCH3 CH3 32.57 ± 2.37 37.56 ± 1.24

4c COCH3 Cl 7.91 ± 0.83 9.18 ± 0.91

4d COCH3 2,4-diCl 5.04 ± 0.59 7.32 ± 0.75

4e COOEt CH3 16.25 ± 1.05 19.35 ± 1.30

4f COOEt Cl 4.37 ± 0.28 6.94 ± 0.69

4g COOEt NO2 3.35 ± 0.46 3.94 ± 0.80

4h CONHPh H 2.03 ± 0.72 2.17 ± 0.83

6a – H 15.57 ± 1.30 19.12 ± 1.36

6b – CH3 36.29 ± 1.32 25.90 ± 0.70

6c – OCH3 21.00 ± 1.28 19.37 ± 1.29

6d – Cl 9.61 ± 0.88 7.36 ± 0.85

Harmine – – 2.40 ± 0.12 2.54 ± 0.82

For thiadiazoles 4a–h: 4h (amidophenyl, has a phenyl ring along with electron with-
drawing amido group resulting strongest activity) > 4g (strong electron withdrawing nitro
group, increases activity) > 4f (with ester group along with one electron withdrawing Cl
atom) > 4d (acetyl group with electron withdrawing 2 Cl atom) > 4c (acetyl group with mild
electron withdrawing one Cl atom) > 4a (with acetyl group with un-substituted phenyl
group) > 4e (ester with methyl group) > 4b (acetyl group with methyl group, electron



Molecules 2022, 27, 6368 6 of 20

donating group decreases activity). Overall, electron releasing groups decrease the activity,
whereas strong electron withdrawing groups increase the activity. A selective high activity
is observed, particularly with 4h, possibly due to the fact that 4h possess one extra phenyl
ring connected with the pyridine group in the amido side, which significantly enhances its
aromatic π-π interaction with the Phe, Tyr and Trp residues. This is in coherence with the
harmine where one phenyl and one pyridine is fused with an indole group, resulting in
the same kind of interaction with amino acid residues containing an aromatic group. In
addition to this, a noteworthy mention would be, in 4h, the nitrogen in the amido group is
engaged in a tautomeric structure, thereby restricting the electron releasing power of nitro-
gen in the phenyl ring. Such interactions are absent for the rest of thiadiazole derivatives
4a–g, where only electron withdrawing group is present in the lone available phenyl ring.

This is in analogous with the thiazoles derivatives 6a–d, where only electron releasing
groups are present with the single phenyl group available, resulting in less activity com-
pared to thiadiazoles 4a–h with the only exception of 6d (an electron withdrawing Cl atom
is present), where moderate anticancer activity is detected (Figure 3).
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Figure 3. The anticancer activity of series of compounds 6a–d against HCT-116 and HepG2 cell lines.

2.2. Docking Study for Cytotoxicity

The protein Epidermal Growth Factor Receptor Tyrosine Kinase Domain (EGFR TK)
was selected for this study, where the ability to inhibit this receptor ultimately leads to
the blockade of the growth pathway, giving a promising anti-cancer agent [48]. The lower
binding energy resulting from the association of the compound with the targeted protein
is an indication of a higher binding efficiency. The results of the docking protocol were
validated by the re-docking of the co-crystallized ligand (W19) inside the active site of
EGFR TK (Figures 4 and 5). Harmine was used in this study as an EGFR TK inhibitor. By
comparing the binding affinity of different screened synthesized compounds with Harmine
(∆G of –7.1), it was found that compound 4h showed the best binding affinity with ∆G of
−10.8, and 4b, 4c, 4d, 4e, 4f, 6a, 6b, and 6c showed binding activity ∆G −8.1 to −9.2. The
screened compounds showed a possible interaction with EGFR TK active sites as depicted
in Table 2 and Figures 6–13.
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Table 2. The binding scores and interactions of the examined compounds and the Harmine inhibitor
inside the binding pocket of receptor of (3W33) for EGFR TK.

Compounds Binding Scores
(kcal/mol)

Hydrogen Bond
Interactions Distance (Å)

Hydrophobic
Interactions Distance (Å)

4a −8.5 MET769 2.08

LEU694
VAL702
LYS721
LEU820
THR830

3.78
3.75

3.46, 3.93
3.24, 3.90

3.77

4b −9.2 MET769 1.96

LEU694
VAL702
ALA719
LYS721
LEU764
LEU820

3.74
3.69
3.89

3.48, 3.71
3.77
3.39

4c −8.9 MET769 2.07

LEU694
VAL702
ALA719
LYS721
LEU820
THR830

3.78
3.69
3.87
3.47

3.21, 3.94
3.75

4d −9.2

GLU738
THR830
ASP831
PHE832

2.71
2.64
2.20
3.17

LEU694
PHE699
VAL702
ALA719
LYS721
LEU764
THR766
LEU820

3.55
3.66
3.04
3.56
3.95
3.59
3.50
3.58

4e −8.7

GLU738
THR830
ASP831
PHE832

2.71
2.64
2.20
3.17

LEU694
PHE699
VAL702
ALA719
LYS721
LEU764
THR766
LEU820

3.55
3.66
3.04
3.56
3.95
3.59
3.50
3.58

4f −8.8 MET769 2.10

LEU694
VAL702
ALA719
LYS721
LEU820
THR830

3.88
3.58
3.87
3.42

3.33, 3.86
3.92

4g −9.1 MET769 2.56

LEU694
VAL702
ALA719
LYS721
LEU820

3.74
3.38
3.68
3.59

3.31, 3.81

4h −10.8

ARG841
ASN842
LYS745
THR854

2.08
2.27
3.48
3.45

LEU718
VAL726
ALA743
LYS745
LEU788
THR790

3.74, 3.50
3.61, 3.30

3.67
3.36, 3.89

3.66
3.80
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Table 2. Cont.

Compounds Binding Scores
(kcal/mol)

Hydrogen Bond
Interactions Distance (Å)

Hydrophobic
Interactions Distance (Å)

6a −8.8

LEU694
VAL702
ALA719
LYS721
LEU820

3.69
3.13, 3.91

3.61
3.73, 3.87
3.41, 3.64

6b −8.9 CYS797 2.29

LEU718
VAL726
ASP855
LEU777
LEU788
THR790
LEU844
PHE997

3.90, 3.39, 3.47
3.64
3.67
3.08
3.48
3.48
3.53
3.29

6c −7.9 THR766 2.38

LEU694
VAL702
LYS721
LEU820

3.39
3.32, 3.51
3.69, 3.73

3.39

6d −8.8 THR766 2.58

PHE699
VAL702
ALA719
MET769
ARG817
LEU820

3.57
3.95
3.50
3.93
3.78

3.91, 3.48

Harmine −7.1

LEU718
VAL726
LYS745
THR790
LEU792

3.61
3.58, 3.64

3.76
3.63
3.72

W19 −10.8 LYS745 2.36

LEU718
VAL726
LYS745
LEU777
LEU788
THR790
THR845

3.67
3.65, 3.94

3.85
3.79
3.97
3.73
3.79

3. Experimental

Elementar vario LIII CHNS analyzer (Elementar Analysensysteme GmbH, Langensel-
bold, Germany) is used to measure all elemental analysis. Electrothermal IA 9000 series Dig-
ital Melting Point Apparatus (Shanghai Jiahang Instruments Co., Jiading District, Shanghai,
China) was used to obtain melting points data. Shimadzu FTIR 8101 PC infrared spec-
trophotometers (Shimadzu Co., Kyoto, Japan) were used to record IR spectra data in KBr
discs on Pye Unicam SP 3300. Varian Mercury VX-300 NMR spectrometer (Bruker Biospin,
Karlsruhe, Germany) was used with the operating frequency of 300 MHz (1H-NMR) in
deuterated dimethylsulfoxide (DMSO-d6) solvent to record NMR spectra, where chemical
shifts were related to the solvent used. Shimadzu GCeMS-QP1000 EX mass spectrometer
(Shimadzu Co., Kyoto, Japan) was used to record mass spectra at 70 eV. The cytotoxicity
of the prepared compounds was measured by the Regional Center for Mycology and
Biotechnology in Al-Azhar University, Cairo, Egypt.
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Synthesis of 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2)

A mixture of 1-amino-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1) (1.63 g,
10 mmol), KOH (0.56 g, 10 mmol) in DMF (30 mL), was stirred for 10 min. Then, PhNCS
(1.35 g, 10 mmol) is added under stirring condition and continued for the next 6 h. After-
wards, the solution was diluted with 30 mL of distilled water, followed by neutralization
by adding aqueous AcOH dropwise, resulting in a solid recrystallized from dioxin to
obtain yellowish brown crystals (71%) as a pure product of compound 2; mp = 209–211 ◦C
(Lit mp = 205–207 ◦C [47]); 1H-NMR (DMSO-d6): δ 2.22 (s, 3H, CH3), 2.30 (s, 3H, CH3),
6.34 (s, 1H, Pyridine-H5), 7.32–7.69 (m, 5H, Ar-H), 8.55 (s, br, 1H, NH), 8.95 (s, br, 1H, NH)
ppm; IR (KBr): v 3372, 3241 (2NH), 3033, 2951 (CH), 2218 (CN), 1675 (C=O), 1599 (C=N),
1335 (C=S) cm−1; MS m/z (%): 298 (M+, 85). Anal Calcd for C15H14N4OS (298.36): C, 60.38;
H, 4.73; N, 18.78. Found: C, 60.24; H, 4.59; N, 18.58%.

Synthesis of 4,6-dimethyl-2-oxo-1-((3-aryl-5-substituted-1,3,4-thiadiazol-2(3H)-ylidene)
amino)-1,2-dihydropyridine-3-carbonitriles (4a–h).

A mixture of compound 2 (0.298 g, 1 mmol) and appropriate hydrazonoyl halides
3a–h (1 mmol) in DMF (20 mL) containing Et3N (0.1 g, 1 mmol) was heated under reflux
for 3–6 h. The resultant solid product was recrystallized by appropriate solvent to give
thiadiazoles 4a–h. Below is a list of the spectrum information and physical characteristics
of the products 4a–h.

1-((5-Acetyl-3-phenyl-1,3,4-thiadiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (4a).

Yellow solid (79%); m.p. 233–235 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.01 (s, 3H, CH3),
2.33 (s, 3H, CH3), 2.46 (s, 3H, CH3), 6.39 (s, 1H, Pyridine-H5), 7.09–7.46 (m, 5H, Ar-H) ppm;
13C-NMR (DMSO-d6): δ 19.6, 21.2, 25.6 (3CH3), 107.8, 115.9, 116.4, 118.6, 122.7, 123.1, 124.0,
125.8, 138.1, 142.3, 152.3 (Ar-C and C=N), 163.2, 194.7 (2 C=O) ppm; IR (KBr): v 3047,
2933 (CH), 2220 (CN),1704, 1651 (C=O), 1599 (C=N) cm−1; MS m/z (%): 365 (M+, 49). Anal.
Calcd. for C18H15N5O2S (365.41): C, 59.17; H, 4.14; N, 19.17. Found C, 59.30; H, 4.04;
N, 19.11%.

1-((5-Acetyl-3-(p-tolyl)-1,3,4-thiadiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (4b).

Yellow solid (80%); m.p. 243–245 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.01 (s, 3H,
CH3), 2.32 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.45 (s, 3H, CH3), 6.39 (s, 1H, Pyridine-H5),
7.02–7.80 (m, 4H, Ar-H) ppm; 13C-NMR (DMSO-d6): δ 19.1, 20.7, 21.2, 25.4 (4CH3), 107.3, 116.5,
122.9, 127.5, 130.1, 130.6, 133.8, 138.2, 145.2, 154.2 (Ar-C and C=N), 162.1, 194.2 (2 C=O) ppm;
IR (KBr): v 3028, 2940 (CH), 2217 (CN),1703, 1667 (C=O), 1597 (C=N) cm−1; MS m/z (%): 379
(M+, 38). Anal. Calcd. for C19H17N5O2S (379.44): C, 60.14; H, 4.52; N, 18.46. Found C, 60.05;
H, 4.42; N, 18.29%.

1-((5-Acetyl-3-(4-chlorophenyl)-1,3,4-thiadiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-
oxo-1,2-dihydropyridine-3-carbonitrile (4c).

Yellow solid (78%); m.p. 228–230 ◦C (dioxane); 1H-NMR (DMSO-d6): δ 2.03 (s, 3H,
CH3), 2.25 (s, 3H, CH3), 2.41 (s, 3H, CH3), 6.39 (s, 1H, Pyridine-H5), 7.11–7.85 (m, 4H, Ar-H)
ppm; IR (KBr): v 3052, 2944 (CH), 2218 (CN), 1709, 1663 (C=O), 1598 (C=N) cm−1; MS m/z
(%): 401 (M+

+ 2, 31), 399 (M+, 100). Anal. Calcd. for C18H14ClN5O2S (399.85): C, 54.07; H,
3.53; N, 17.52. Found C, 54.01; H, 3.36; N, 17.48%.

1-((5-Acetyl-3-(2,4-dichlorophenyl)-1,3,4-thiadiazol-2(3H)-ylidene)amino)-4,6-dimethyl-
2-oxo-1,2-dihydropyridine-3-carbonitrile (4d).

Brown solid (79%); m.p. 262–264 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.04 (s, 3H, CH3),
2.31 (s, 3H, CH3), 2.43 (s, 3H, CH3), 6.39 (s, 1H, Pyridine-H5), 7.26–7.86 (m, 3H, Ar-H) ppm;
IR (KBr): v 3047, 2937 (CH), 2222 (CN), 1711, 1672 (C=O), 1601 (C=N) cm−1; MS m/z (%):
434 (M+, 81). Anal. Calcd. for C18H13Cl2N5O2S (434.30): C, 49.78; H, 3.02; N, 16.13. Found
C, 49.83; H, 3.00; N, 16.04%.
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Ethyl 5-((3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)imino)-4-(p-tolyl)-4,5-dihydro-
1,3,4-thiadiazole-2-carboxylate (4e).

Yellow solid (77%); m.p. 189–191 ◦C (EtOH\DMF); 1H-NMR (DMSO-d6): δ 1.17–1.21
(t, 3H, CH3), 2.01 (s, 3H, CH3), 2.32 (s, 3H, CH3), 2.42 (s, 3H, CH3), 4.13–4.17 (q, 2H, CH2),
6.45 (s, 1H, Pyridine-H5), 7.12–7.59 (m, 4H, Ar-H) ppm; 13C-NMR (DMSO-d6): δ 12.9, 17.5,
21.1, 21.7 (4CH3), 117.3, 119.0, 121.2, 121.7, 122.4, 124.1, 125.0, 130.1, 139.4, 142.5, 151.2
(Ar-C and C=N), 161.2, 163.5 (2 C=O) ppm; IR (KBr): v 3049, 2930 (CH), 2219 (CN), 1723,
1669 (C=O), 1600 (C=N) cm−1; MS m/z (%): 409 (M+, 14). Anal. Calcd. for C20H19N5O3S
(409.46): C, 58.67; H, 4.68; N, 17.10. Found C, 58.52; H, 4.55; N, 17.02%.

Ethyl 4-(4-chlorophenyl)-5-((3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)imino)-4,5-
dihydro-1,3,4-thiadiazole-2-carboxylate (4f).

Yellow solid (77%); m.p. 185–187 ◦C (EtOH); 1H-NMR (DMSO-d6): δ 1.20–1.27 (t, 3H,
CH3), 2.03 (s, 3H, CH3), 2.38 (s, 3H, CH3), 4.11–4.17 (q, 2H, CH2), 6.46 (s, 1H, Pyridine-
H5), 7.23–7.60 (m, 4H, Ar-H) ppm; IR (KBr): v 3046, 2937 (CH), 2217 (CN),1722, 1660
(C=O), 1601 (C=N) cm−1; MS m/z (%): 431 (M+

+ 2, 20), 429 (M+, 63). Anal. Calcd. for
C19H16ClN5O3S (429.88): C, 53.09; H, 3.75; N, 16.29. Found C, 53.18; H, 3.58; N, 16.14%.

Ethyl 5-((3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)imino)-4-(4-nitrophenyl)-4,5-
dihydro-1,3,4-thiadiazole-2-carboxylate (4g).

Yellow solid (73%); mp = 217–219 ◦C (EtOH\DMF); 1H-NMR (DMSO-d6): δ 1.20–1.27
(t, 3H, CH3), 2.29 (s, 3H, CH3), 2.42 (s, 3H, CH3), 4.18–4.26 (q, 2H, CH2), 6.84 (s, 1H,
Pyridine-H5), 7.27–8.34 (m, 4H, Ar-H) ppm; IR (KBr): v 3039, 2943 (CH), 2218 (CN),1719,
1665 (C=O), 1600 (C=N) cm−1; MS m/z (%): 440 (M+, 70). Anal. Calcd. for C19H16N6O5S
(440.43): C, 51.81; H, 3.66; N, 19.08. Found C, 51.66; H, 3.50; N, 19.03%.

5-((3-Cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)imino)-N,4-diphenyl-4,5-dihydro-1,3,4-
thiadiazole-2-carboxamide (4h).

Yellow solid (86%); mp = 277–279 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.16 (s, 3H, CH3),
2.38 (s, 3H, CH3), 6.42 (s, 1H, Pyridine-H5), 7.03–7.79 (m, 10H, Ar-H), 10.21 (s, 1H, NH) ppm;
13C-NMR (DMSO-d6): δ 17.9, 21.4 (2CH3), 112.4, 115.9, 119.3, 120.5, 121.5, 122.1, 124.3, 124.7,
125.2, 128.6, 132.4, 134.6, 139.4, 141.5, 152.4 (Ar-C and C=N), 161.2, 162.7 (2 C=O) ppm; IR
(KBr): v 3278 (NH), 3061, 2947 (CH), 2219 (CN), 1678, 1663 (C=O), 1597 (C=N) cm−1; MS
m/z (%): 442 (M+, 18). Anal. Calcd. for C23H18N6O2S (442.50): C, 62.43; H, 4.10; N, 18.99.
Found C, 62.52; H, 4.04; N, 18.75%.

Synthesis of thiazoles 6a–d or 8a,b.

A mixture of 2 (0.298 g, 1 mmol) and α-haloketones 5a–d or 3-chloropentane-2,4-dione
(7a) or ethyl 2-chloro-3-oxobutanoate (7b) (1 mmol) in DMF (15 mL) was refluxed for
4–6 h and was continuously monitored in TLC. The separation of the product was clearly
observed during the course of the reaction. The resultant solid product was then filtered,
washed several times with water, dried and recrystallized in the proper solvent to give the
corresponding thiazoles 6a–d or 8a,b, respectively.

1-((3,4-Diphenylthiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-
3-carbonitrile (6a).

Yellow solid (74%); mp = 230–232 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.23 (s, 3H, CH3),
2.34 (s, 3H, CH3), 6.37 (s, 1H, Pyridine-H5), 6.67 (s, 1H, Thiazole-H5), 7.19–8.05 (m, 10H,
Ar-H) ppm; IR (KBr): v 3047, 2934 (CH), 2217 (CN), 1667 (C=O), 1599 (C=N) cm−1; MS m/z
(%): 398 (M+, 37). Anal. Calcd. for C23H18N4OS (398.48): C, 69.33; H, 4.55; N, 14.06. Found
C, 69.17; H, 4.42; N, 14.04%.

4,6-Dimethyl-2-oxo-1-((3-phenyl-4-(p-tolyl)thiazol-2(3H)-ylidene)amino)-1,2-
dihydropyridine-3-carbonitrile (6b).

Yellow solid (77%); mp = 213–215 ◦C (EtOH); 1H-NMR (DMSO-d6): δ 2.23 (s, 3H, CH3),
2.24 (s, 3H, CH3), 2.34 (s, 3H, CH3), 6.37 (s, 1H, Pyridine-H5), 7.07 (s, 1H, Thiazole-H5),
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7.33–7.44 (m, 9H, Ar-H) ppm; IR (KBr): v 3042, 2950 (CH), 2219 (CN), 1671 (C=O), 1602
(C=N) cm−1; MS m/z (%): 412 (M+, 18). Anal. Calcd. for C24H20N4OS (412.51): C, 69.88; H,
4.89; N, 13.58. Found C, 69.70; H, 4.83; N, 13.37%.

1-((4-(4-Methoxyphenyl)-3-phenylthiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (6c).

Yellow solid (80%); mp = 221–223 ◦C (EtOH\DMF); 1H-NMR (DMSO-d6): δ 2.23 (s,
3H, CH3), 2.32 (s, 3H, CH3), 3.82 (s, 3H, OCH3), 6.55 (s, 1H, Pyridine-H5), 6.80 (s, 1H,
Thiazole-H5), 7.01–7.47 (m, 9H, Ar-H) ppm; 13C-NMR (DMSO-d6): δ 17.8, 21.2 (2CH3),
56.7 (OCH3), 107.8, 113.9, 115.0, 118.3, 121.9, 122.5, 123.6, 130.0, 131.8, 135.6, 138.9, 140.8,
144.0, 152.0, 152.5, 154.3 (Ar-C and C=N), 162.4 (C=O) ppm; IR (KBr): v 3074, 2928 (CH),
2218 (CN), 1683 (C=O), 1603 (C=N) cm−1; MS m/z (%): 403 (M+, 23). Anal. Calcd. for
C24H20N4O2S (428.51): C, 67.27; H, 4.70; N, 13.08. Found C, 67.36; H, 4.61; N, 13.02%.

1-((4-(4-Chlorophenyl)-3-phenylthiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (6d).

Yellow solid (79%); mp = 217–219 ◦C (DMF); 1H-NMR (DMSO-d6): δ 2.23 (s, 3H, CH3),
2.34 (s, 3H, CH3), 6.76 (s, 1H, Pyridine-H5), 7.01 (s, 1H, Thiazole-H5), 7.12–7.77 (m, 9H,
Ar-H) ppm;IR (KBr): v 3048, 2927 (CH), 2218 (CN), 1669 (C=O), 1602 (C=N) cm−1; MS m/z
(%): 409 (M+

+ 2, 13), 407 (M+, 41). Anal. Calcd. for C23H17ClN4OS (432.93): C, 63.81; H,
3.96; N, 12.94. Found C, 63.62; H, 3.77; N, 12.73%.

1-((5-Acetyl-4-methyl-3-phenylthiazol-2(3H)-ylidene)amino)-4,6-dimethyl-2-oxo-1,2-
dihydropyridine-3-carbonitrile (8a).

Yellow solid (83%); mp = 195–197 ◦C (EtOH); 1H-NMR (DMSO-d6): δ 2.18 (s, 3H, CH3),
2.25 (s, 3H, CH3), 2.33 (s, 3H, CH3), 2.43 (s, 3H, CH3), 6.36 (s, 1H, Pyridine-H5), 7.55–7.66
(m, 5H, Ar-H) ppm; IR (KBr): v 3048, 2935 (CH), 2219 (CN),1709, 1671 (C=O), 1601 (C=N)
cm−1; MS m/z (%): 353 (M+, 35). Anal. Calcd. for C20H18N4O2S (378.45): C, 63.47; H, 4.79;
N, 14.80. Found C, 63.35; H, 4.62; N, 14.69%.

Ethyl 2-((3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)imino)-4-methyl-3-phenyl-2,3-
dihydrothiazole-5-carboxylate (8b).

Yellow solid (85); mp = 190–192 ◦C (EtOH); 1H-NMR (DMSO-d6): δ 1.21–1.25 (t, 3H,
CH3), 2.19 (s, 3H, CH3), 2.22 (s, 3H, CH3), 2.38 (s, 3H, CH3), 4.21–4.25 (q, 2H, CH2), 6.39
(s, 1H, Pyridine-H5), 7.45–7.62 (m, 5H, Ar-H) ppm; 13C-NMR (DMSO-d6): δ 14.5, 17.1,
21.3 (3CH3), 62.5 (CH2), 106.4, 113.3, 115.3, 119.8, 123.7, 124.5, 127.6, 131.5, 133.0, 140.2,
144.1, 148.7 (Ar-C and C=N), 162.5, 164.1 (2 C=O) ppm; IR (KBr): v 3037, 2943 (CH), 2218
(CN), 1724, 1668 (C=O), 1600 (C=N) cm−1; MS m/z (%): 408 (M+, 74). Anal. Calcd. for
C21H20N4O3S (408.48): C, 61.75; H, 4.94; N, 13.72. Found C, 61.63; H, 4.81; N, 13.53%.

3.1. Cytotoxic Activity

The cytotoxicity of the newly synthesized series of compounds was studied against
HCT-116 and HepG2 cells using the MTT assay through an incubation period of 24 h [49,50].

Mammalian cell line: HCT-116 and HepG2 cells were collected from VACSERA Tissue
Culture Unit, Cairo, Egypt.

3.2. Docking Method

The MOE 2019.012 suite (Chemical Computing Group ULC, Montreal, Canada) [51]
was applied in order to carry all docking studies for the newly synthesized compounds
to suggest their plausible mechanism of action as the protein Epidermal Growth Factor
Receptor Tyrosine Kinase Domain (EGFR TK) inhibitors by evaluating their binding grooves
and modes to compare with Harmine as a reference standard.

The newly prepared derivatives were placed into the MOE window, where they
were treated to partial charge addition and energy minimization [52,53]. The produced
compounds also were placed into a single database with the Harmine and saved as an MDB
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file, which was then uploaded to the ligand icon during the docking process. The Protein
Data Bank was used to generate an X-ray of the targeted Epidermal Growth Factor Receptor
Tyrosine Kinase Domain (EGFR TK) 3W33. Available online: https://www.rcsb.org/
structure/3W33 (accessed on 17 July 2022). [48]. Furthermore, it was readied for the docking
process by following the previously detailed stages [54,55]. Additionally, the downloaded
protein was error-corrected, 3D hydrogen-loaded and energy-minimized [56,57].

In a general docking procedure, the newly prepared derivatives were substituted for
the ligand site. After modifying the default program requirements previously stated, the
co-crystallized ligand site was selected as the docking site, and the docking process was
started [58]. In a nutshell, the docking site was chosen using the dummy atoms method [59].
The placement and scoring procedures, respectively, Triangle matcher and London dG,
were chosen. The stiff receptor was used as the scoring method, and the GBVI/WSA dG
was used as the refining method, respectively, to select the top 10 poses out of a total of
100 poses for each docked molecule [60,61]. For further research, the optimal pose for each
ligand with the highest score, binding mode and RMSD value was chosen. It is important
to note that the applied MOE program underwent the first step of program verification by
docking Harmine to its ligand binding of the prepared Target [62,63]. By obtaining a low
RMSD value (1.43) between the newly created compounds with docked Harmine, a valid
performance was demonstrated.

4. Conclusions

In this paper, two new series of aryl substituted novel pyridine-1,3,4-thiadiazoles, and
pyridine-thiazoles were synthesized starting with 1-(3-cyano-4,6-dimethyl-2-oxopyridin-
1(2H)-yl)-3-phenylthiourea and several available reagents. All the structures were con-
firmed through elemental and spectral analysis, where the plausible mechanistic approach
for their formation was discussed. All the prepared derivatives showed effectiveness
towards the inhibition of human colon carcinoma (HCT-116) as well as hepatocellular
carcinoma (HepG2) cell lines through in vitro evaluation and an in silico docking study.
From the obtained results, compound 4h (amidophenyl has a phenyl ring along with the
electron withdrawing amido group resulting in the strongest activity) was found to be the
strongest and most effective with 2.03 ± 0.72 µM against HCT-116, contributing its activity
through a variety of interactions, such as hydrophobic interaction, hydrogen bonding in
addition to aromatic stacking interactions with selected target (EGFR TK) pockets, com-
pared with Harmine as a reference drug. A detailed analysis of all the series confirmed the
electron withdrawing group present in the aryl substitution, resulting in the enhancement
of anticancer activity, which could be promising for the future generation of new efficient
anticancer drugs based on 1,3,5-thiadiazole and 1,3-thiazole derivatives.
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new 3,3-diethylazetidine-2,4-dione based thiazoles as nanomolar human neutrophil elastase inhibitors with broad-spectrum
antiproliferative activity. Int. J. Mol. Sci. 2022, 23, 7566. [CrossRef]
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