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In the last few years lncRNAs have gained increasing attention among the scientific
community, thanks to the discovery of their implication in many physio-pathological
processes. In particular, their contribution to tumor initiation, progression, and response to
treatment has attracted the interest of experts in the oncologic field for their potential
clinical application. Testicular cancer is one of the tumors in which lncRNAs role is
emerging. Said malignancies already have very effective treatments, which although lead
to the development of quite serious treatment-related conditions, such as secondary
tumors, infertility, and cardiovascular diseases. It is therefore important to study the
impact of lncRNAs in the tumorigenesis of testicular cancer in order to learn how to exploit
them in a clinical setting and to substitute more toxic treatments. Eventually, the use of
lncRNAs as biomarkers, drug targets, or therapeutics for testicular cancer may represent
a valid alternative to that of conventional tools, leading to a better management of this
malignancy and its related conditions, and possibly even to the treatment of poor
prognosis cases.
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INTRODUCTION TO LONG NON-CODING RNAs

Toward lncRNAs Definition
Long non-coding RNAs (lncRNAs) is a relatively recent definition for a class of transcripts that has
been studied for decades. Members of this class have been known since the early 1990s, when the
lncRNA XIST was found to be covering the inactive X chromosome in both human and mice (1, 2),
and the lncRNA H19 was described as being implicated in the parental imprinting of the
homonymous gene in mice (3).

However, a systematic classification of non-coding RNAs (ncRNAs) was not deemed necessary
until the advent of large-scale analysis of transcriptomes, when the real relevance of this class of
transcripts became apparent. Thanks to genomic projects such as FANTOM and ENCODE, we now
know that 80% of the human genome is indeed transcribed, but only 2% of it is restricted to protein
coding (4, 5).

The classification of ncRNAs was initially based on transcripts length: a cut-off value of 200
nucleotides (nts) was arbitrarily chosen, more on the basis of RNA binding to silica columns during
purification rather than its functional meaning (6). Therefore, the term long non-coding RNAs was
coined to identify RNA molecules longer that 200nt, in contrast to short non-coding RNAs
(sncRNAs) (Figure 1).
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SncRNAs have been fascinating the scientific community for
the last couple of decades. In particular miRNAs, a class of 22 nts
long ncRNAs involved in the process of RNA interference
(RNAi), are now recognized as powerful and ubiquitarians
regulators of gene expression at transcriptional and post-
transcriptional level. These small regulatory RNAs pair with a
target mRNA, causing its endonucleolytic cleavage or inhibiting
its translation, ultimately leading to a reduction of its protein
product (7).

Other members of the class of sncRNAs are small nuclear
RNAs (snRNAs), which are part of the spliceosome complex,
small nucleolar RNAs (snoRNAs), involved in RNA processing,
and piwi-interacting RNAs (piRNAs), which as miRNAs are also
able to trigger the process of RNAi to regulate gene
expression (8).

On the other hand, lncRNAs class is gaining more and more
interest among the scientific community, as new lncRNAs genes
are discovered and characterized every day. In fact, the number
of annotated lncRNA is quickly approaching that of protein-
coding transcripts, as the current GENCODE Release (version
34) reports 17,960 and 19,959 genes respectively.

Characteristics: Structure,
Conservation, Expression
LncRNAs are relevant not only for their numerosity, but also for
their multiple biological functions. They have been associated
with a number of cellular and biological events, including gene
regulation at transcriptional and post-transcriptional level,
transcripts maturation and stability, organization of nuclear
architecture, and regulation of interacting proteins and RNAs
(9–11). Then, it is not surprising that the number of
physiological and pathological processes in which lncRNAs are
involved is increasing every day.

This wide range of functionalities can be partly explained by
lncRNAs structural heterogeneity. Most of them possess features
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reminiscent of protein-coding genes, such as a 5’ cap, alternative
splicing and the presence of a polyA tail. Some lncRNAs can even
contain ORFs and have both protein-coding and coding-
independent functions (12). However, many others lack such
features, and are nevertheless active as primary transcripts
(10, 13).

However, there are some structural characteristics that seem
to be common to all lncRNAs, one of which is their enrichment
in transposable elements (TEs). In fact, it has been estimated that
41% of lncRNA nucleotides derive from TEs and 83% of
lncRNAs contain at least part of a TE (14).

Even though TEs have long been regarded as purely parasitic
elements, evidence suggest their peculiar role in lncRNAs
evolution and functionality. Specific TEs are strongly and non-
randomly enriched or depleted from lncRNAs sequences,
indicating that their presence there is under selective pressure
(15). Moreover, different studies proved how TEs constitute
lncRNA functional domains, with roles ranging from the
regulation of target mRNA transcription, stability and
translation, to the regulation of entire gene networks (16–19).

LncRNAs are relatively young genes, and their rapid
evolution is reflected by their poor sequence conservation
among tetrapods and thus their general lack of identifiable
orthologs (20, 21). This can be partly explained by their
enrichment in TEs, since the insertion loci or even the
presence of some classes of TEs, like Alus, are restricted to
higher organisms, usually primates.

However, their poor sequence conservation does not
necessarily imply that lncRNAs function cannot be conserved
in different species. In fact, many lncRNAs are part of syntenic
loci, which suggests a functional relatedness in spite of a lack of
sequence homology (21). Moreover, there are different examples
of poorly conserved lncRNAs among different species exhibiting
a conserved function, such as megamind/TUNA, which
contributes to brain development in zebrafish, mouse, and
FIGURE 1 | Schematic representation of non-coding RNAs (ncRNAs) of different lengths. Short non-coding RNAs (sncRNAs) are shorter than 200 nucleotides (nts).
Among them one can find miRNAs (22 nts), piRNAs (26–31 nts), snoRNAs (60–140 nts), and snRNAs (~150 nts). On the other hand, long non-coding RNAs
(lncRNAs) are longer than 200 nts, reaching up to thousands of nts of length.
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human (22, 23). Therefore, it is possible that RNA molecules
need less sequence conservation to maintain their function
compared to proteins.

Opposed to what happens for lncRNA gene bodies, lncRNA
promoters show a higher sequence conservation than protein-
coding gene promoters (24). This fact not only supports
lncRNAs recent emergence (promoters had a limited time
frame to diverge), but also that the control of their expression,
low but finely regulated, is particularly important (6, 25, 26).
Furthermore, their expression is markedly tissue or lineage-
specific, much more so than that of protein-coding genes
(26, 27).

Possibly compensating for their low expression level,
lncRNAs stability appears to be comparatively high, with a
study showing that up to 70% of analyzed lncRNAs have half-
lives longer than 2 h, and even longer than 12 h for 3% of
analyzed lncRNAs (28).

Classification and Functions
LncRNAs complexity in terms of structure and biological role
poses a major challenge to their classification. Therefore,
lncRNAs can be classified following different criteria, starting
from their genomic localization to end with their mode of action
or function.

Regarding lncRNAs genomic localization it is important to
consider that their position is always defined with regard to
protein-coding genes present in the same genomic region (29):
Frontiers in Oncology | www.frontiersin.org 3
• Intronic lncRNAs originate from the introns of protein-
coding genes

• Enhancer lncRNAs originate from enhancer regions of
protein-coding genes

• Intergenic lncRNAs originate from the region between two
protein-coding genes

LncRNAs that overlap broad portions of a protein-coding
gene have also been described and, in this case, they are
distinguished based on their orientation (30):

• Sense-overlapping lncRNAs originate from the same sense
DNA strand

• Natural antisense transcripts (NATs) from the opposite sense
DNA strand

Finally, there are bidirectional/divergent lncRNAs, whose
transcription starts from the promoter of a protein-coding
gene, but in the opposite direction. Given that transcriptional
regulatory elements can initiate transcription bi-directionally
(30–32), these lncRNAs were initially considered as by-
products of a leaky transcriptional activity. However, some
bidirectional lncRNAs have been found to have a function,
indicating that the biological relevance of this class of
transcripts deserves more attention (33).

As previously mentioned, lncRNAs can also be classified on
the basis of their mode of action (Figure 2). In general, lncRNAs
functionality resides in their capacity to bind and regulate a
FIGURE 2 | Schematic representation of long non-coding RNAs (lncRNAs) different molecular mechanisms. (A) Decoy lncRNAs titrate away proteins or miRNAs
from their molecular partners, inhibiting their function. (B) Guide lncRNAs bind protein partners and direct them toward a specific cellular compartment or genomic
target. (C) Allosteric lncRNAs interact with transcription factors or enzymes causing structural modifications that modify their activity. (D) Scaffold lncRNAs bind
different molecular partners (proteins or RNAs) allowing them to interact or assemble into a complex. (E) Signaling lncRNAs are transcribed following a stimulus for
which they act as signal molecules. They can be packed in exosomes and transmitted to other cells. (F) Precursor lncRNAs are processed into miRNAs or translated
into functional micropeptides.
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molecular partner (protein, RNA or genomic DNA). This
interaction is possible either via base-pair interactions or
through their secondary structure, which is complex enough to
mediate the interaction with proteins. Once they have bound
their partners, lncRNAs can regulate them in different ways,
acting as decoys, guides, scaffolds for the assembly of riboproteic
complexes or allosteric modulators.

Decoy lncRNAs acts as “molecular sinks” for different target
molecules, binding, and titrating them away to inhibit their
function (34). Such target molecules can be chromatin
modifiers or other nuclear factors, thereby their titration alters
DNA transcription (34), but also cytoplasmatic proteins or other
ribonucleic molecules. Among this class of lncRNAs, the so-
called miRNA sponges have recently gained great interest among
the scientific community, with dozens of new examples that
appeared in the last couple of years. These lncRNAs are able to
sequester miRNA through base-pairing interactions, preventing
them from binding their usual target mRNAs and therefore
upregulating the corresponding proteins (35).

One of the best characterized miRNA sponge is metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1). In the
last few years, MALAT1 function has been linked to its capacity
to sponge dozens of miRNAs in various conditions, including
miR-133 in ischemia-reperfusion injuries (36), miR-150-5p in
osteoarthritis (37) and several miRNas in different cancers
(38, 39).

Guide lncRNAs are able to bind a protein partner and then
direct its localization to a specific cellular compartment. This can
mean both relocating a protein from the cytoplasm to the
nucleus or guiding nuclear factors toward specific genomic
regions. Modifying transcription factors location, lncRNAs can
determine changes in gene expression recruiting chromatin
modifiers or transcription factors in cis (on neighboring genes)
or in trans (on distantly located genes), causing either an
upregulation or gene silencing (6). For example, LincRNA-p21
acts as a guide in trans regulating the localization of
heterogeneous nuclear ribonucleoprotein K (hnRNP-K), which
is involved in mRNA processing and transport (40).

Scaffold lncRNAs serve as central platforms upon which
different molecular components are assembled. Through this
mechanism, lncRNAs can promote the interaction of an enzyme
and its substrate, the assembly of (ribo)proteic complexes, and
even the formation of bigger structures, such as nuclear bodies
(14). For example, the lncRNA NEAT1 is necessary for the
formation and maintenance of paraspeckles, a nuclear
compartment devoted to RNA transcription and processing,
since it binds and direct the localization of many proteins that
compose these structures (41–43).

LncRNAs can also act as allosteric modulators of enzymes or
transcription factors. Binding their protein partner, such
lncRNAs can cause conformational alterations that increase the
enzyme catalytic activity, or the transcription factor ability to
bind its genomic target. The main difference between this class of
transcripts and guide/scaffold RNAs is that they only bind their
protein partner, without interacting with the substrate of the
enzyme or the genomic target of the transcription factor. One
Frontiers in Oncology | www.frontiersin.org 4
example is the lncRNA ACOD1, which binding to the enzyme
glutamic-oxaloacetic transaminase (GOT2) near its substrate
niche was found to increase its catalytic activity (44).

However, lncRNAs function can also be independent from
that of interacting partners. In fact, lncRNAs can act as signal
molecules for intercellular communication since they are often
released in extracellular fluids, especially packed in exosomes
(45). These vesicles provide a platform for cell-to-cell
communication, allowing the exchange of different kinds of
signal molecules between a donor and a recipient cell. In
particular, exosome-derived lncRNAs have been described to
favor tumorigenesis inducing a malignant phenotype in the
recipient cell or the plastic modification of cells in the tumoral
microenvironment (46).

The idea that lncRNAs can act as signal molecules makes
sense from a biological perspective, since the expression of single
lncRNAs occurs at very specific moments and locations to
integrate developmental cues, interpret cellular context or react
to a variety of stimuli. Moreover, the fact that lncRNAs are rarely
transcribed provides a quick response, making them a kinetically
sensible signal molecule.

Lastly, lncRNAs functionality can also reside in their ability to
serve as a precursor for the synthesis of other molecules, which in
turn determine a cellular event. As previously mentioned,
lncRNA can code for micropeptides, which can play roles in
physiological (47–52) and pathological settings (53, 54). The
coding potential of lncRNAs is relatively little studied, but it is
particularly interesting because it opens the possibility of the
existence of protein-coding transcripts bearing also non-coding
functions. On the other hand, lncRNA can also be processed into
miRNA, constituting a substrate for their biosynthesis. Different
lncRNAs have been described as miRNA reservoirs, but the most
famous is H19, which is a precursor of the well-known miR-
675 (55).
LONG NON-CODING RNAs BIOLOGICAL
ROLES

Physiological Role and
Pathogenic Potential
As illustrated above, lncRNAs are involved in a vast number of
molecular events, regulating almost every aspect of gene
expression, but also the function and localization of a number
of proteins. It is not surprising, then, that lncRNAs have been
associated with several physiological processes such as cellular
differentiation, cell lineage choice, organogenesis, and tissue
homeostasis (56). As a consequence, lncRNAs mutations or
unregulated expression lead to the deregulation of said
processes, and therefore to a number of pathologies.

For example, lncRNAs are implicated in cardiac development,
but they are also recognized as key regulators of cardiovascular
diseases. In fact, there are many lncRNAs implicated in cardiac
functionality whose deregulation can promote cardiac
hypertrophy and, in the long term, heart failure (57).
Furthermore, many lncRNAs have been linked to angiogenesis
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bresesti et al. LncRNAs: Role in Testicular Cancers
and therefore to the pathogenesis of vascular disorders, that are
in turn implicated in numerous pathologies (atherosclerosis,
CAD, hypertension, vascular retinopathies, tumorigenesis) (58).

In the same way, lncRNAs can also be implicated in central
nervous system (CNS) development or pathologies. While some,
such as Evf-2, are involved in neuron differentiation and synaptic
plasticity, many others were associated to the pathogenesis of
famous neurodegenerative disorders (59). For example, the
lncRNA BACE1-AS promotes Alzheimer is disease progression
increasing the production of pro-amyloidogenic peptide Ab42,
of which brain senile plaques are composed. BACE1-AS is a
natural antisense transcript of BACE1, which encodes the
enzyme responsible for the production of Ab42. It forms
duplexes with BACE1 mRNA, leading to its stabilization and
increasing the production of both the enzyme and its
product (59).

Cardiovascular and neurodegenerative diseases are only some
of the conditions whose pathogenesis is associated or even
induced by lncRNAs. Actually, we now know that lncRNAs are
related to virtually all kinds of human pathologies, from
infections (60) to preeclampsia (61), confirming their central
role in human physiopathology.

Long Non-Coding RNAs Role in Cancer
Cancer is included among the pathologies that are correlated to
lncRNAs function and dysfunction. This is not surprising given
the regulatory role that lncRNAs play in many processes that
drive tumor progression. For example, lncRNAs are known to be
involved in stemness, cell proliferation and angiogenesis (40, 58,
62), all of which can lead to the acquisition of malignant features,
if deregulated. Furthermore, lncRNAs are fundamental
epigenetic regulators directing the deposition of active or
repressive marks on chromatin (6), and epigenetic alterations
are universally acknowledged as determining factors in
malignant transformation (63).

Furthermore, lncRNAs relevance in cancer is testified by the
fact that they can regulate or be regulated by oncogenes and
oncosuppressors. Therefore, it makes sense that lncRNAs could
be part of perturbed pathways leading to tumorigenesis, tumor
progression, and metastasis. The well-known oncogene P53
regulates the expression of a number of lncRNAs, that in some
cases mutually counter-regulate it. For example, P53 represses
H19 expression, while the H19-derived miR-675 inhibits P53
mRNA (64). There are also other oncogenes regulating lncRNAs,
for example a well described pathway includingMYC triggers the
expression of several lncRNAs (65).

As a matter of fact, more and more lncRNAs are found
deregulated in cancer, and in particular upregulated, suggesting a
pro-tumorigenic role. In this respect, one of the best-known
examples, HOTAIR is overexpressed in breast, hepatocellular,
colorectal, pancreatic, lung and ovarian cancer, in which
its upregulation correlates with tumor invasiveness and
metastasis (66).

On the other hand, examples of lncRNAs downregulation
associated with tumorigenesis are increasing every day, and high
levels of expression of some lncRNAs are associated with a good
prognosis, pointing toward their potential tumor-suppressor
Frontiers in Oncology | www.frontiersin.org 5
role. This is the case of LincRNA-P21, whose high levels
correlate with progression-free and overall survival in diffuse
large B cell lymphoma (67) and with enhanced sensitivity to
radiation in colorectal cancer (68).

Another notable example of lncRNAs deregulated in cancer
are those transcribed from ultraconserved regions (T-UCRs). T-
UCRs expression pattern is remarkably different in healthy
tissues and cancer, following an aberrant epigenetic regulation
either through miRNAs, DNA methylation, or histone
modifications (69). In some cases, their deregulation was also
mechanistically linked to pro-tumoral events; for example,
uc.338 promotes the cell cycle progression from phase G1 to S,
boosting cell proliferation (70).

Interestingly, many cancer-associated SNPs that occur in
non-coding regions are located in lncRNA genes, suggesting
that not only the deregulation of their expression, but also their
mutation could act in a pro-tumorigenic direction. For example,
several risk-related SNPs lie within the lncRNA HULC, which is
overexpressed in a number of cancers (71, 72), but also in the
lncRNA ANRIL (73); while some polymorphisms of lncRNA
H19 are correlated to bladder cancer (74).

Beyond these suggestive observations, the contribution of
many lncRNAs to cancer development, evolution or metastasis
is well established and even mechanistically explained. There are
now multiple examples showing how the perturbation of the
expression level or the structure of a lncRNA, due to copy
number alteration, point mutation or other phenomena,
impacts cellular processes and leads to tumoral phenotypes.

In the next chapter we will provide a few examples of the
mechanisms through which lncRNAs can promote
tumorigenesis in a case of interest: testicular cancer.
LONG NON-CODING RNAs ROLE IN
TESTICULAR CANCER

Testicular tumors are the most common solid malignancy
among young men aged 15–40 years, and although having a
low incidence in the general population, their frequency is
slowly, but steadily rising (75, 76). Their classification is based
on their cellular origin: testicular germ-cell tumors (TGCTs)
account for 95% of testicular cancers and can be divided into
seminomas and non-seminomas (77). As the name suggest,
TGCTs arise from the cancerogenic transformation of
gonocytes whose differentiation into spermatocytes can be
blocked at different stages: earlier for seminomas, later for
non-seminomas, which can be further divided following their
degree of differentiation (78).

Independently from its origin, testicular cancer is generally
considered a tumor with a favorable prognosis. Thanks to a high
responsiveness to cisplatin-based treatments even at metastatic
stage, the 5 year-survival rate of testicular tumors approaches
95% (79, 80). Nevertheless, there are differences in the survival
outcome of patients depending on the tumor type and the extent
of disease, and in worst-case scenarios the 5 years progression
free survival can drop to 41% (81).
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As previously mentioned, testicular tumors are generally highly
responsive to the standard treatment of combined orchiectomy and
cisplatin-based chemotherapy. However, the current therapy
presents some considerable problems. Cisplatin resistance develops
in approximately 10–15% of cases, leading to tumor relapse after
initial treatment or to refractory disease (82). Moreover, it is well-
known how treatment-related complications, such as second
malignant neoplasms, cardiovascular diseases, hypogonadism,
infertility, and chronic cancer-related fatigue, represent major
issues for young survivors (83).

Developing alternative therapeutics and granting an early
detection of the tumor is crucial in order to limit the
administration of cisplatin-based treatments and therefore
improve the expectancy and the quality of life of the survivors,
avoiding prolonged convalescence, rehabilitations, or oncologic
sequelae. This can be mainly achieved through the discovering of
new drug targets and biomarkers, which could be exploited in the
therapeutic or diagnostic processes.

In this respect, lncRNAs are an emerging class ofmolecules that is
gainingmore andmore interest for their potential clinical application
in oncology. As we already illustrated, lncRNAs can participate in
both tumorigenic or tumor-suppressing events and interact with
known oncogenes and oncosuppressor in order to regulate cancer
development, progression and even therapy resistance.

Therefore, lncRNAs represent a novel drug target whose
expression could be modulated in tumoral cells through the
use of targeted molecules: siRNAs and shRNAs to induce RNA
interference, antisense oligonucleotides (ASOs) to trigger RNase-
H-mediated degradation, or even small molecules which could
specifically bind the lncRNA secondary structure. All of these
strategies have either been proven effective in vitro, or have been
experimented clinically on other ribonucleic molecules, such as
miRNAs or mRNAs, so they could represent a concrete
therapeutic option in the close future (84, 85). For example,
the use of locked nucleic acid (LNA) gapmeR ASOs to induce the
degradation of tumour-promoting lncRNA MALAT1 was tested
as a possible treatment for multiple myeloma (MM) with good
results (86).

Furthermore, lncRNAs possess some features that would
make them ideal biomarkers. As previously mentioned, they
show a very tissue/cell-specific expression pattern, a high stability
and they can be secreted in extracellular fluids, characteristics
Frontiers in Oncology | www.frontiersin.org 6
which would facilitate their detection in plasma or urine,
eliminating the necessity of invasive procedures. The possibility
of using lncRNAs as oncological biomarkers has not only been
tested, but also turned into a reality with the FDA-approved test
PROGENSA® PCA3 assay by Gen-Probe Inc. for prostate cancer
diagnosis, which is entirely based on the detection of lncRNA
PCA3 in patient urine (87–89).

Even though lncRNAs represent a very feasible alternative to
traditional diagnostic and therapeutics tools for cancer
management, their clinical application for testicular tumors
pathogenesis is still largely mysterious. The relationship
between some of these transcripts and testis neoplasia has been
known literally for decades (90), however much remains to be
discovered. In the following chapters we will provide an
exhaustive description of all the lncRNA that have been
associated to testicular cancer to our knowledge (Table 1,
Figure 3).

X-Inactive Specific Transcript
In 1997 Looijenga and colleagues demonstrated how XIST
expression is reactivated in testicular germ cell tumors (TGCT)
following the acquisition of supernumerical X chromosomes.
However, subsequent studies showed how the methylation
pattern and the expression of X-linked genes in these cells
were not consistent with a full inactivation of the
supernumerical X, suggesting that XIST in TGCTs does not
display its classical function of epigenetic silencer (91). An excess
of X dosage in these tumors is justified by the presence of
different X-linked oncogenes (91), however the biological
meaning of XIST re-activation and its defective action in spite
of its upregulation remains at this time unexplained.

Nevertheless, the presence of XIST expression, as well as
epigenetic signatures typical of the inactive X chromosome, were
proposed as biomarkers for testicular cancers. Typically, active X
chromosomes present 5’ end methylation of XIST gene, while the
allele on the inactive X is unmethylated. Thus male cells, which
do not normally have an inactive X chromosome, are not
expected to present an unmethylated XIST 5’ end. As just
mentioned, the presence of supernumerary X chromosomes in
TGCTs determine the presence of a partially inactivated X
chromosome in which XIST is not transcribed, and whose 5’ is
thus found unmethylated.
TABLE 1 | Overview of relevant long non-coding RNAs (lncRNAs) in testicular tumors pathogenesis.

Name Alteration Mechanism of action Effect on tumorigenesis Clinical
studies

References

XIST Expression in
supernumerary X

Unknown Unknown Yes, as
biomarker

(90–94)

H19 Loss of imprinting Sponges miRNA‐106b‐5p causing TDRG1
upregulation

Pro-tumorigenic: promotes cisplatin resistance No (95–99)

SPRY4-IT Overexpression Unknown, possibly involving Akt pathway
activation

Pro-tumorigenic: promotes cell growth,
migration, and invasion

No (100)

NLC1-C Downregulation Blocks miR-320a and miR-383 transcription
through its binding to Nucleolin

Anti-tumorigenic: regulates cancer cell
proliferation and triggers apoptosis

No (101)

HOTTIP Overexpression Sponges miR‐128‐3p Pro-tumorigenic: increases cancer cell
proliferative rate

No (102)
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Different studies demonstrated not only that is possible to
detect unmethylated XIST fragments in the plasma of some
TGCT patients (92), but also that the overall XIST methylation
levels are distinctly lower in TGCT patients that in healthy males
(93). Recently, this epigenetic signature was also considered as a
potential biomarker for testicular cancer detection and
differential diagnosis, since XIST 5’ demethylation levels are
significantly higher in seminomas than in non-seminomas or
normal testis (94). Even though this study was performed in a
large cohort of patients, and replicated in a second independent
cohort, the analysis of unmethylated XIST fragments was only
performed on testis biopsies and retrospectively.

It is apparent, then, that diagnostic tests based on XIST
methylation status detection are still far from being a reality.
Independent and prospective validation is required in order to
consider XIST demethylation as a reliable biomarker for TGCT
detections, and such tests should possibly be improved in order
to allow a detection in plasma/urine, thus sparing the patients
from invasive procedures.

Testis Developmental-Related Gene 1
and H19
Testis developmental related gene 1 (TDRG1) is a lncRNA that
promotes the tumorigenesis and progression of a number of
Frontiers in Oncology | www.frontiersin.org 7
tumors, among which epithelial ovarian cancer, uterine cancers,
gastric carcinoma, NSCLC, and osteosarcoma (103–111).
Interestingly, TDRG1 was first described as a protein-coding
gene encoding for a 11kDa product expressed in mature testis
(112). Such peptide is upregulated is seminoma, in which it is
demonstrated to promote tumor growth, progression, and
chemoresistance to cisplatin, a major challenge in seminoma
treatment (113–116).

TDRG1 peptide action in seminoma mainly relies on the
activation of PI3K/Akt/mTOR oncogenic signaling pathway,
since it is able to positively regulate the expression levels of p-
PI3K, p-Akt, and p-mTOR, as well as to affect the translocation
of nuclear p-Akt (113). Remarkably, lncRNA TDRG1 was
described to activate the same pathway in endometrial
carcinoma and osteosarcoma (107, 111), thereby one could
argue that PI3K/Akt/mTOR pathway activation in seminoma
is also ascribable to this lncRNA.

Being only 100 nucleotides long, TDRG1 proteic product is
short enough to be considered a micropeptide, and thus it could
simply be a product of a leaky translation of lncRNA TDRG1,
and not that of an independent mRNA. In this scenario, the
increase in the levels of TDRG1 peptide would be reflective of
that of the corresponding lncRNA and would not have a
biological relevance.
FIGURE 3 | Role of different lncRNA in testicular cancer pathogenesis. Testicular cancer cells proliferation is promoted by lncRNA HOTTIP and SPRY4-IT1, while it
is inhibited by NCL1-C, which also drives testicular cancer cells apoptosis. Cisplatin-based treatments resistance can be promoted by the H19/TDRG1 pathway,
since H19 is able to upregulate TDRG1, which in turn triggers therapy resistance. Finally, testicular tumor invasiveness is promoted by SPRY4-IT1, which not only
increases the cell proliferative rate, but also their motility and invasiveness.
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However, these are only speculations, since the structure of
TDRG1 genomic locus has not been investigated enough to verify
the presence of different transcriptional units. Moreover, the fact
that TDRG1 peptide could be translated from the lncRNA would
not necessarily imply its lack of functionality. In fact, TDRG1
peptide was also described to promote seminoma cisplatin
chemoresistance inhibiting mitochondria-mediated apoptosis
and promoting autophagy, mechanisms which have not been
described for TDRG1 lncRNA and which could support a
functional relevance of the peptide (116, 117).

Independently of the nature of the molecule triggering
cisplatin resistance in seminoma, TDRG1 expression in this
cancer is linked with that of a well-known lncRNA: H19. This
lncRNA has long been known to be upregulated in testicular
cancer, since its loss of imprinting is quite a common feature of
TGCTs (95–97, 118).

In somatic cells, H19 is paternally imprinted and maternally
expressed, meaning that only the maternal allele of this gene is
expressed, while the paternal allele is hypermethylated, and thus
silenced. Biallelic expression of H19 is physiologically found at
early stages of embryogenesis, during which the parental
imprinting signatures are transiently erased thanks to an
epigenetic reprogramming. Therefore, H19 loss of imprinting
was initially thought to reflect the embryonal origin of TGCTs
(98, 99).

However, in 2018 Wei and colleagues showed how H19
upregulation could in fact directly promote testicular cancer
pathogenesis. They found that the levels of H19 and miRNA‐
106b‐5p were inversely correlated, and that low levels of miRNA‐
106b‐5p were associated with a higher TDRG1 expression (117).
Following bioinformatic considerations, and after an in-vitro
validation of the model, the team proved that H19 acts as a
miRNA sponge for miRNA‐106b‐5p, thereby impairing the
miRNA activity on its target gene, TDRG1 (117). In this way,
H19 would directly lead to TDRG1 upregulation, leading to
seminoma cisplatin resistance.

SPRY4 Intronic Transcript 1
SPRY4 intronic transcript 1 (SPRY4-IT1) is a lncRNA derived by
the second intron of SPRY4, a protein-coding gene encoding for
a regulator of receptor tyrosine kinases (RTKs) (119).
Unsurprisingly, alterations in SPRY4 expression levels have
been associated to a number of cancers, given that it is able to
modulate both MAPK/ERK and PI3K/Akt pro-tumorigenic
signaling pathways (120).

SPRY4-IT1 was first detected in 2011 in melanoma (119), and
since then an increasingly expanding literature has developed
regarding its role in oncogenesis. In general, SPRY4-IT seems to
act in a pro-tumorigenic sense, being associated to the
development and progression of several tumors, among which
breast cancer (121, 122), osteosarcoma (123, 124), and colorectal
cancer (125, 126). However, there are some cases in which
SPRY4-IT4 has been reported to act as a tumor suppressor, in
particular in non-small cell lung cancer (127, 128).

Das and colleagues reported that both SPRY4 and SPRY4-IT1
are upregulated in TGCT, and that they may act as oncogenes
promoting the activation of the PI3K/Akt signaling pathway (100).
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In fact, SPRY4 and SPRY4-IT1 knockdown in vitro resulted in
decreased tumor growth, migration, and invasion, also leading to a
significant reduction in Akt phosphorylation (100).

While SPRY4 action on PI3K/Akt pathway was not
surprising, SPRY4-IT1 role in this context was unexpected and
its mechanism of action is still unknown. Different studies
reported a transcriptional and functional independence
between SPRY4 and SPRY4-IT1 (120, 129), so the function of
the latter should not be sought in their interaction. Nevertheless,
there is another cancer that could give insights on SPRY4-IT1
action in the regulation of RTK-mediated signaling pathways.

Melanoma is not only the first tumor in which SPRY4-IT1
was detected, but also one of the few cancers expressing both
SPRY4 and SPRY4-IT1 at high levels (120). Similarly to what
happens in TGCTs, these genes are upregulated in melanoma in
regards to normal melanocytes, and they act as oncogenes in
different fashion (120). In particular, SPRY4-IT1 was reported to
act as a miRNA sponge to regulate the phosphorylation of
various members of the MAPK oncogenic signaling pathway,
thus increasing cancer cell proliferation and motility (129).

This same mechanism could be shared by SPRY4-IT1 in
TGCTs, which could be able to control Akt phosphorylation
levels sequestering a miRNA through base-pairing interaction.
SPRY4-IT1 has been seen to sponge at least three different
miRNAs in several types of cancers (122–124, 130–134), so it
is possible that emerging interactions with other miRNAs could
mechanistically explain SPRY4-IT1 role in TGCTs. It is also
important to notice, though, that SPRY4-IT1 is predicted to
contain several long hairpins in its secondary structure (120),
which could serve as a platform for its interaction with proteins.
Therefore a direct interaction with Akt or one of its regulators is
not to be dismissed.

Narcolepsy Candidate-Region 1 C
Narcolepsy candidate-region 1 C (NLC1-C) is a lncRNA first
identified as a potential candidate gene for narcolepsy resistance
(135). It is highly expressed in human sperm and brain,
particularly in the white matter of the frontal lobe (135, 136).

NLC1-C express ion in spermatogonia and ear ly
spermatocytes is reflective of its role in the early stages of
spermatogenesis (101). The formation of mature sperms is a
complicated and highly coordinated process which requires not
only an initial proliferation of spermatogonia, but also a loss of
germ cells during spermatocytes meiosis and spermatids
differentiation (137). Under this perspective, NLC1-C role is
that of controlling the proliferation of germ cells to ensure a
successful spermatogenesis, thus preserving male fertility (101).

From the molecular point of view, NLC1-C action is based on
its interaction with nucleolin, a nucleolar protein involved in
several RNA regulatory mechanisms, including transcription,
ribosome assembly, mRNA stability and translation, and miRNA
processing (138, 139). Together, NLC1-C and nucleolin bind the
promoters of miR-320a and miR-383, hampering their
transcription and regulating the proliferative activity of germ
cells (101). In return, miR-320a and miR-383 regulate NLC1-C
cytoplasmic levels though RNA-interference, creating a well-
balanced network (101).
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NLC1-Cwas found downregulated both in the cells of patients
affected by uniform testicular maturation arrest (MA), a clinical
characteristic associated with male infertility, and in testicular
embryonal carcinoma cells (135). Interestingly, NLC1-C
downregulation was associated with an altered intracellular
localization, with an overexpression of the lncRNA in the
nucleus compared to the cytoplasm (101). This alteration
determines an increased binding of NLC1-C to nucleolin and
therefore a hyperactive proliferation of germ cells via the
downregulation of miR-320a and miR-383, ultimately leading
to MA (101).

The same process is responsible for NLC1-C pro-tumorigenic
role in testicular cancer. NLC1-C expression levels influence the
survival of testicular embryonal carcinoma cells: while its
downregulation promotes their proliferation, NLC1-C
upregulation not only ends up in a reduction of the
proliferative rate, but in an increase of apoptosis (101). This
phenomenon is again mediated by NLC1-C/nucleolin regulation
of miR-320a and miR-383, which can influence the levels of
several molecules involved in the cell cycle progression and
apoptosis (p21, activated caspase 3,8,9 and PARP) (101).

The fact that NLC1-C is downregulated in both MA and
testicular embryonal carcinoma is consistent with the
observation that infertile men have a higher risk to develop
testicular cancer (140–142), and it is particularly interesting since
it offers a molecular link between the two pathologies.
Furthermore, this study underlines a new pathway that could
be used as possible drug target in testicular cancer treatment, or
for its prevention in susceptible individuals (as infertile males).

It is interesting to notice that miR-320a and miR-383 onco-
suppressive role have already been described in a number a
tumor, and in some contexts has also been mechanistically
characterized. Therefore, other oncological settings could
provide more information regarding miR-320a and miR-383
targets and function in testicular cancers.

For instance, miR-320a downregulation has been linked to
chemoresistance in a number of cancers, including gastric
cancer, in which its interaction with metallopeptidase
ADAM10 seem to promote cisplatin sensitivity (143). If such a
function was confirmed in testicular cancer, it could be of great
interest for a potential use in cisplatin resistant tumors, which as
we said represent particularly challenging cases.

On the other hand, miR-383 is not only correlated with cell
cycle progression and apoptosis, but it was also described to
regulate cancer progression, migration and invasion in different
tumors, such as gastric cancer, cholangiocarcinoma and
hepatocellular cancer (144–146). Under this perspective miR-
383 downregulation could be useful not only as a predictive
biomarker, but also to determine the prognosis of
cancer patients.

HOXA Distal Transcript Antisense RNA
HOTTIP is a lncRNA encoded by a genomic region in the 5′ tip
of the HOXA locus. Initially its function was only linked to the
transcriptional regulation of this locus during embryogenesis,
since this lncRNA can recruit WDR5/MILL complex thus
leading to the expression of the HOXA genes (147). However,
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in the past few years HOTTIP was discovered to be have a pivotal
role in human tumorigenesis, being expressed in nearly all kinds
of human cancers (148).

The oncogenic role of HOTTIP is not solely mediated by
WDR5 action, but also by the interaction with several different
chromatin regulators, oncogenic pathways, and miRNAs
depending on the cancerous setting in which is involved (102).
In testicular embryonal carcinoma, HOTTIP was described to
promote cell proliferation via the competitive binding to miR‐
128‐3p (102).

In fact, HOTTIP was found upregulated in testicular
embryonal carcinoma cells compared to the control, and its
knock-out in those cells resulted in a decrease of the proliferative
rate (102). Bioinformatic considerations based on HOTTIP
structure, later validated in vitro, proved that its effect on cell
proliferation was mediated by miR‐128‐3p, that is sponged by
HOTTIP (148). This miRNA has a well-established anti-
proliferative action (149–151), therefore its inhibition by
HOTTIP is consistent with the phenotype detected in testicular
embryonal carcinoma cells.

Furthermore, HOTTIP/miR‐128‐3p pathway was found to
positively regulate HOXA13 expression, which is quite a
canonical downstream effector of HOTTIP in cancerogenic
settings (102, 148). In fact, overexpression of HOXA13 in
response to HOTTIP oncogenic action was described in small cell
lung cancer, gastric cancer, pancreatic, hepatocellular and
esophageal squamous cell carcinoma, and in some of these setting
its expression alteration is triggered by the inhibition of a
miRNA (148).

If its correlation with testicular cancer were to be further
investigated, HOTTIP could represent an excellent biomarker. In
fact, HOTTIP not only has been tested as a potential biomarker
in several different tumors, and notably as a non-invasive
biomarker in colorectal cancer (152), but several of its SNPs
inside of it are associated to cancer susceptibility, prognosis, or
therapy response (148). The possibility of having such
biomarkers for testicular cancer would determine a better
allocation of therapeutic resources and would spare good-
prognosis patients from toxic treatments.
DISCUSSION AND CONCLUSIVE REMARKS

LncRNAs are now recognized as fundamental regulators of several
physiological and pathological processes. They take part in a
number of cellular events, regulating gene expression, nuclear
organization, as well as the activity of several signaling pathways.
In particular, their role in cancer development and progression is
gainingmore andmore attention as their involvement is discovered
in a number of tumor-promoting or suppressing events.

In fact, copy number alterations or point mutations affecting
lncRNAs, as well as their aberrant expression, can promote
tumorigenesis, leading to their identification as an emerging
class of oncogenes/oncosuppressors. Studying further their
mechanisms of action in cancerous settings will not only allow
us to better understand cancerogenic networks, but also to detect
or disrupt them by targeting/exploiting the action of lncRNAs.
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The use of lncRNAs for cancer detection and treatment is
particularly interesting for cancers in which conventional
therapeutics and biomarkers are scarcely effective or cause
major side effects. That is the case of metastatic testicular
cancer, in which lncRNAs could limit the administration of
highly toxic cisplatin-based chemotherapy, currently the main
therapeutic option to treat this malignancy.

The prospect of using lncRNAs as drug targets or therapeutics
is still under development, and even though very promising also
presents some difficulties. On one hand some of the approaches
that are being explored to target lncRNAs have already been
tested on other molecules and proven successful in treating
cancer. On the other hand, the poor conservation of lncRNAs
among different species could represent a challenge for the
development of therapeutic strategies in animal models, that
could lack the orthologue of the lncRNA of interest.

Nevertheless, lncRNAs have already been employed in cancer
diagnostics. Their tumor/tissue specificity, as well as the possibility
of dosing them in body fluids make them ideal biomarkers for
neoplastic pathologies. Moreover, since their aberrant expression
may either indicate the presence, the stage or the treatment-
resistance of the tumor, they can have a broad range of
applications at each step of the malignancy management.

In the case of testicular cancer, few lncRNAs have been linked
to its pathogenesis (153, 154), and even though no clinical studies
are available for many of them, these lncRNA may represent
promising drug targets or biomarkers.

Both SPRY4-IT1 and HOTTIP were shown to increase
testicular cancer proliferation (100, 102), so their inhibition or
downregulation could lead to a decrease of tumor aggressiveness
and size. This would make adjuvant chemotherapy dispensable
for localized masses, which could be more easily removed via
surgical excision.

Conversely, NLC1-C is downregulated in testicular cancer,
and its reactivation lead to a decrease in proliferation and an
increase in apoptosis of cancer cells (101). Therefore, forcing
NLC1-C re-expression in testicular tumors could prove to be a
feasible therapeutic alternative to cisplatin-based chemotherapy.
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Targeting other lncRNAs could be useful to revert resistance
against conventional therapeutics, and thus could be used in
association, instead of in substitution, with cisplatin-based
chemotherapy. That is the case of H19, which drives cisplatin
resistance in testicular tumors (117), and whose inhibition could
restore cancer cells sensitivity to these chemotherapeutics.

Finally, lncRNAs could be used as diagnostic, prognostic, or
predictive biomarkers for testicular cancer: the methylation
levels of 5’ XIST fragments could help detect testicular cancer,
the presence of peculiar polymorphism in HOTTIP could
determine its prognosis, the upregulation of SPRY4-IT1 its
metastatic potential, and the upregulation of H19 the
responsiveness to cisplatin-based treatments.

To conclude, lncRNAs surely deserve the attention of the
scientific community, especially when it comes to cancer
research, and hopefully studying them will give us a new
perspective on the mechanisms behind neoplastic pathologies
and allow us to develop new strategies for their detection
and treatment.
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