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for the prediction of subclinical
cardiovascular disease risk

Adam S. Chan,1,2,3 Songhua Wu,4 Stephen T. Vernon,6 Owen Tang,2,6 Gemma A. Figtree,2,6 Tongliang Liu,3,4

Jean Y.H. Yang,1,2,3,7,* and Ellis Patrick1,3,5,7,8,*

SUMMARY

Cardiovascular disease remains a leading cause of mortality with an estimated
half a billion people affected in 2019. However, detecting signals between spe-
cific pathophysiology and coronary plaque phenotypes using complex multi-
omic discovery datasets remains challenging due to the diversity of individuals
and their risk factors. Given the complex cohort heterogeneity present in those
with coronary artery disease (CAD), we illustrate several different methods,
both knowledge-guided and data-driven approaches, for identifying subcohorts
of individuals with subclinical CAD and distinct metabolomic signatures. We
then demonstrate that utilizing these subcohorts can improve the prediction of
subclinical CAD and can facilitate the discovery of novel biomarkers of subclinical
disease. Analyses acknowledging cohort heterogeneity through identifying and
utilizing these subcohorts may be able to advance our understanding of CVD
and provide more effective preventative treatments to reduce the burden of
this disease in individuals and in society as a whole.

INTRODUCTION

Cardiovascular diseases (CVD) remain the leading cause of death globally, with an estimated 523 million

prevalent cases globally in 2019.1 While physicians and individuals have traditionally relied on quantifying

cardiovascular risk through identifying and targeting well-recognized standard modifiable cardiovascular

risk factors (SMuRFs: hypertension, diabetes mellitus, dyslipidemia, and smoking), there is still a substantial

unmet need to elucidate the biological mechanisms of individual susceptibility to these risk factors.

Recently, the BioHEART-CT study team has aimed to address the challenge of discovering standard

blood-based biomarkers that reflect an individual’s vascular response to risk factors or signals the early

development of atherosclerosis,2–4 through quantifying subclinical coronary artery disease (CAD) by CT

coronary angiography and pairing this with analysis of blood samples and outcome data.4 This is possible

with the development of high-throughput technologies that have facilitated the detailed characterization

of metabolite signatures and their associations with cardiovascular disease in large cohorts of

individuals.5,6

While we have begun to unravel metabolic mechanisms and detect associations with cardiovascular risk

using large cohort studies, the heterogeneity embedded in these cohorts makes detection of these rela-

tionships a challenging task. The effective analysis of such large heterogeneous cohorts necessitates the

consideration of distinctive subcohorts of individuals present within the larger cohort,7,8 resulting in

improved understanding of biological mechanisms and prediction of CVD. This approach is supported

by recent studies such as the detection of race-specific metabolite associations with incident coronary

heart disease9 and the improvement in therapies for heart failure through the detection of distinct pheno-

types differing significantly in outcomes.10 In addition, improved invasive and non-invasive imaging tech-

nologies have allowed increasing appreciation of the different subtypes of atherosclerotic plaque that

develop, each with likely distinct dysregulated signaling pathways, highlighting the importance of not

‘‘bucketing’’ CAD as a singular entity.

Recognition of cohort heterogeneity within study populations is already an existing idea, but only more

recently have investigators sought to define cohort heterogeneity11,12 and utilize it in their analyses. For
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instance, clustering analysis has been used to determine phenotypic heterogeneity in patients with unique

characteristics to better inform patient care for a broad range of diseases,13–15 and data mining techniques

were used to discover homogeneous subgroups within a disease population to make more precise predic-

tions.16–18 Given the complexity of CVD, including interactions with many comorbidities and predisposi-

tions, it is not surprising that the pool of individuals that develop CVD are diverse with differing risk factors

and characteristics. This diversity, which can be framed as cohort heterogeneity, is important to elucidate

as it has large implications on downstream metabolomic analyses.19

Several different approaches can be useful to help understand and unravel heterogeneity present in

complex datasets. We categorize these approaches as knowledge-guided or data-driven approaches.

Knowledge-guided approaches, having prior contextual understanding of heterogeneity, include defining

cohorts using clinical characteristics of individuals such as sex20–23 and age6,24; and stratification using

established or coexisting individual profiles such as diet profiles25 and omic profiles.26,27 Data-driven ap-

proaches for uncovering cohort heterogeneity can be divided into unsupervised techniques which ignore

the outcome being studied, and supervised techniques, which include information about the outcome.

Unsupervised techniques include clustering10,28,29 and latent class analysis30,31 of clinical phenotypes; su-

pervised techniques include mixture of experts (MoE)32–35 and subgroup discovery algorithms17,36 to sub-

divide large cohorts. Following stratification of individuals and identification of heterogeneity present,

techniques including hierarchical modeling of subcohorts and ensemble learning can then be employed

to improve the prediction of CAD in the whole cohort.

In this paper, we: (1) demonstrate that modeling distinct subcohorts of individuals improves prediction of

CAD, (2) elucidate and discover several subcohorts existing in the data and compare the methods to derive

these using clinical variables, (3) and further suggest techniques which incorporate heterogeneity in

modeling of metabolomics and discuss how these can be utilized.

RESULTS

BioHEART study for identifying CAD risk using metabolomics

Complex heterogeneity in large patient cohorts can be uncovered through a range of approaches, gener-

ating subcohorts for subsequent modeling of subclinical CAD. The metabolomics profile of 837 individuals

from the BioHEART study was measured along with their clinical variables (including demographics, risk

factors, and medications) and CAD status (Figure 1A). We defined the CAD status of a patient using

coronary artery calcium scores (CACS), whether they had clinically actionable CACS (CA-CAC+) or not

(CA-CAC-). This is a biobanked cohort study designed for discovery of new omics signatures of subclinical

CAD, trained off CT coronary angiography images of plaque burden.4 Clinical variables were used to deter-

mine subcohorts of individuals in both knowledge-guided and data-driven approaches, with supervised

data-driven approaches also utilizing individual CAD status and metabolomics to subcohort individuals

(Figure 1B). We compared six different approaches for subcohort identification from the various knowl-

edge-guided and data-driven approaches outlined in Table S1. Distinct subcohorts found by these ap-

proaches can then be used to model CA-CAC+ using metabolites to increase overall performance

(Figure 1C).

We constructed models predicting CA-CAC using metabolomics data in a cohort of 837 individuals from

the BioHEART-CT study. To assess the performance of the machine learning models, the modeling was

performed in a discovery cohort (n = 512) and assessed in a validation cohort (n = 325). Individual demo-

graphics, risk factors, and regular medication use of these cohorts are presented in Table 1. Both cohorts

had similar proportions of: CA-CAC+ (32.8% in discovery vs. 36.6% in validation, p = 0.3), age (mean = 60,

sd = 12 vs. mean = 62, sd = 12, p = 0.11), and SMuRFs (p = 0.07). The discovery cohort had a higher pro-

portion of males (58.6% vs. 49.5%, p = 0.01) than the validation cohort. The discovery cohort also had lower

proportions of statin users (30.9% vs. 37.5%, p = 0.046), hypertension (35.7% vs. 43.1%, p = 0.034), and dia-

betes mellitus (7.2% vs. 11.4%, p = 0.039). Ideally, all models constructed should be robust to the similarities

and differences between the two cohorts.

In the overall cohort, multivariate models constructed using clinical and demographic features to predict

CA-CAC+ performed better than models constructed with metabolomics data only. When all clinical and

demographic features were modeled using a lasso logistic regression model in the discovery cohort

(without subgroups) to predict CA-CAC+, a cross-validated mean AUC of 0.74 was obtained in the
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discovery cohort and an AUC of 0.69 in the validation cohort (Figure S1A). The most predictive features

were age, number of SMuRFs, use of statin, and use of angiotensin-converting enzyme (ACE) inhibitors

or angiotensin receptor blockers (ARB) medications (Figure S1B). Alternatively, models constructed using

metabolite-to-metabolite ratios had a cross-validatedmean AUC of 0.58 in the discovery set and an AUC of

0.57 in the validation set (Figure S1A). While it is clear that models constructed with clinical and demo-

graphic features are more predictive of CA-CAC+, their primary features of age and sex are unmodifiable.

Models using metabolomics data accurately predict a different subset of individuals and classify different

patients as CA-CAC+ compared to the clinical model (Figure S1C), indicating they may be complementary.

This provided an appropriate context for interpreting more complex models built solely on metabolo-

mics data.

Case study: Modeling CAD by sex improves prediction using metabolomics

Building separate models using metabolomics data from distinct subcohorts can improve the overall clas-

sification of CA-CAC in individuals. To demonstrate the positive impact of modeling separate groups of

individuals, we stratified the cohort by sex, a well-known risk factor for CAD. Models trained on males

only (AUC = 0.75 in discovery and AUC = 0.63 validation) and females only (AUC = 0.72 in discovery and

AUC = 0.65 in validation) outperformed a model which ignored this heterogeneity (AUC = 0.64 in discovery

and AUC = 0.58 in validation; Figure 2A). Differences in model performance were explained by differences

in the underlying models, as the most predictive metabolite-to-metabolites ratios in males were distinct

from those in females (Figure 2B). Distinctions between the two models included serotonin present exclu-

sively in the model built on females, and ratios with cAMP and tryptophan were present in the male model

only. Ratios with choline were common across models in both sexes and the whole cohort. For example, the

coefficients can be interpreted as a decrease in the ratio of histamine/serotonin corresponded to an in-

crease in risk of CA-CAC+ in females and an increase in the ratio of 3HK/tryptophan corresponded to

A B

C

Figure 1. Schematic of approaches for unraveling cohort heterogeneity and subsequent heterogeneity-aware

prediction

(A) Data variables measured for analyzed individuals.

(B) Methods for extracting subcohorts categorized by knowledge-guided and data-driven approaches.

(C) Workflow for heterogeneity-aware prediction of CA-CAC+ through modeling within subcohorts. Note: for Mixture of

experts, clinical variables (2) are additionally required for model training along with CA-CAC status (1) and metabolomics (3).
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an increase in risk of CA-CAC+ in males. The benefit of incorporating knowledge-guided subcohorts in

modeling was evident as the performance of both sex-specific models outperformed the model trained

on the whole cohort with improved interpretability of metabolite relationships with CA-CAC+.

Different approaches reveal distinct subcohorts and metabolomic signatures with CA-CAC+

Given the size and complexity of the BioHEART cohort, we compared a series of methods that are designed

to identify distinct subcohorts. We found that each approach identified different subcohorts with varying

clinical characteristics (Figure 3A). Under the knowledge-guided approaches, when we stratified by sex,

males and females had distinct proportions of suggestive symptoms for CAD (47.3% in males and 66.8%

in females), osteoarthritis (26.2% in males and 46.5% in females), and shortness of breath (18.7% in males

and 34% in females). Comparing between statin and non-statin users, we found differences in the number

of SMuRFs, aspirin, and anti-platelets. Using data-guided approaches, latent class analysis (LCA) identified

five unique subcohorts differing on most clinical variables, with the most discriminating variables being hy-

pertension, arthritis, aspirin, anti-platelets, and ACE inhibitor or ARB use. Unsupervised k-means clustering

on the clinical characteristics produced subcohorts distinguished by age, number of SMuRFs,

Table 1. Clinical characteristics of discovery and validation cohort of individuals

Cohort N

Overall,

N = 837a
Discovery,

N = 512a
Validation,

N = 325a
p

valueb

Age 837 61 (12) 60 (12) 62 (12) 0.11

Sex 837 0.010

Male 461.0 (55.1%) 300.0 (58.6%) 161.0 (49.5%)

Female 376.0 (44.9%) 212.0 (41.4%) 164.0 (50.5%)

SMuRFs 837 0.070

0 177.0 (21.1%) 121.0 (23.6%) 56.0 (17.2%)

1 360.0 (43.0%) 218.0 (42.6%) 142.0 (43.7%)

2 220.0 (26.3%) 133.0 (26.0%) 87.0 (26.8%)

3 68.0 (8.1%) 35.0 (6.8%) 33.0 (10.2%)

4 12.0 (1.4%) 5.0 (1.0%) 7.0 (2.2%)

CACS 837 216 (645) 213 (717) 220 (511) 0.3

FRS 837 0.08 (0.06) 0.08 (0.06) 0.09 (0.07) 0.025

BMI 834 26.9 (4.8) 26.8 (4.9) 27.1 (4.8) 0.4

Hypertension 837 323.0 (38.6%) 183.0 (35.7%) 140.0 (43.1%) 0.034

Diabetes 837 74.0 (8.8%) 37.0 (7.2%) 37.0 (11.4%) 0.039

Hypercholesterolemia 837 466.0 (55.7%) 269.0 (52.5%) 197.0 (60.6%) 0.022

Family history of ischemic heart disease 837 196.0 (23.4%) 143.0 (27.9%) 53.0 (16.3%) <0.001

Antiplatelet 837 143.0 (17.1%) 85.0 (16.6%) 58.0 (17.8%) 0.6

ACE-inhibitor/Angiotensin receptor blocker 837 263.0 (31.4%) 154.0 (30.1%) 109.0 (33.5%) 0.3

Beta-blocker 837 126.0 (15.1%) 81.0 (15.8%) 45.0 (13.8%) 0.4

Diuretic 837 69.0 (8.2%) 38.0 (7.4%) 31.0 (9.5%) 0.3

Statin 837 280.0 (33.5%) 158.0 (30.9%) 122.0 (37.5%) 0.046

Smoking status 837 0.3

Current smoker 55.0 (6.6%) 37.0 (7.2%) 18.0 (5.5%)

Never smoked 467.0 (55.8%) 291.0 (56.8%) 176.0 (54.2%)

Ex-smoker 315.0 (37.6%) 184.0 (35.9%) 131.0 (40.3%)

CA-CAC+ 837 287.0 (34.3%) 168.0 (32.8%) 119.0 (36.6%) 0.3

SMuRFless 837 177.0 (21.1%) 121.0 (23.6%) 56.0 (17.2%) 0.027

N represents the total number of individuals and n represents the number of individuals with the corresponding clinical char-

acteristic.
aMean (SD); n (%).
bWilcoxon rank-sum test; Pearson’s Chi-squared test; Fisher’s exact test.
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hypertension, osteoarthritis, CA-CAC, previous medical history of heart-related issues, and use of cardio-

vascular-related medications (Figure S2), using rMoE distinguished cohorts characterized by old/young,

SMuRFs, hypertension, and statin use. Evidently, many unique subcohorts exist, driven by different facets

of the data, and can be elaborated through use of different approaches.

To investigate whether metabolite signatures differ between subcohorts, we assessed the association be-

tween each metabolite-to-metabolite ratio and CA-CAC+. Associations of each metabolite-to-metabolite ra-

tio with CA-CAC+ were obtained for each subgroup and across the whole cohort using t-tests. There were

distinct differences in the metabolite ratios associated with CA-CAC+ in each subcohort (Figure 3B). For

example, from the knowledge-based approaches, citrulline/histidine was highly associated in non-statin users

(p = 3:073 10�7, FDR = 7:833 10�4) yet not associated in statin users (p = 0:443, FDR = 0:76). Under the data-

driven approaches, choline/histamine associated with CA-CAC+ in k-means cluster 1 (p = 5:323 10�7, FDR =

1:363 10�3) and was not associated in k-means cluster 2 (p = 0:63, FDR = 0:91); histamine/tryptophan was

positively associated with CA-CAC+ in k-means cluster 2 (p = 0:018, FDR = 0:24) and negatively associated

in k-means cluster 1 (p = 2:343 10�4, FDR = 0:026); and 1-methylhistamine/choline was negatively associated

with CA-CAC+ in classifiability group 2 (p = 7:673 10�7, FDR = 1:963 10�3) and in the whole cohort (p =

5:823 10�5, FDR = 9:633 10�3), but had no association in classifiability group 1 (p = 0:11, FDR = 0:47).

This implies that between subcohorts there can be different risk factors and varying metabolite signatures

associated with CAD, and so accounting for these may improve overall classification.

Subcohort-specific modeling improves overall prediction

To investigate whether incorporating subcohorts in modeling can improve classification of the overall

cohort, we compared the performance of the model built on the whole cohort to combining models built

within each subcohort. Within each approach, predictions from subcohort models were combined to

A

B

Figure 2. Modeling of CAD by sex gives rise to distinct models and improves performance

(A) Performance of models trained on both sexes, males only and females only. Lasso logistic regression models were

trained within the three groups in the discovery cohort, and then ROC curves were generated for the predictions on the

discovery cohort (left panel) and the validation cohort (right panel).

(B) Coefficients in each lasso regression model trained on both sexes, males only and females only.
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calculate overall balanced accuracies for the whole validation cohort (Figure 4A). The data-driven ap-

proaches rMoE, k-means, LCA, and classifiability had overall balanced accuracies of 0.63, 0.61, 0.6, and

0.59, respectively (Figure 4B). This was 0.01–0.05 higher than the whole cohort balanced accuracy of

0.58. Stratification by gender had the highest overall balanced accuracy of 0.63 of the knowledge-guided

approaches. The lowest overall balanced accuracy of 0.57 was from splitting the cohort by FRS category,

which was similar to the whole cohort model. The benefit of incorporating cohort heterogeneity in predict-

ing CA-CAC+ with metabolomics was clear as the majority of approaches had resulted in similar or greater

performance than the whole cohort model which did not consider heterogeneity.

Finally, we investigated whether each subcohort was more effective in predicting CA-CAC+, or only

whether one subcohort improved the classification. Each approach in Table S1 was able to identify a sub-

cohort of individuals where metabolomics predicted CA-CAC+ more accurately than the whole cohort

model (Figure 4B), though there were situations where all subcohorts improved or only some improved

prediction. In the latter case, classifiability modeling had one subcohort that improved prediction (bal.

A

B

Figure 3. Various approaches for uncovering cohort heterogeneity produce subcohorts with distinct clinical

characteristics and associations with CAD

(A) Plot of the mean values of each clinical variable across both discovery and validation cohorts within each subcohort,

where numerical variables are scaled between 0 and 1 and categorical variables are binarized to 0 or 1. Plot is faceted by

the approach used for deriving the subcohorts. The average value of each variable across the whole cohort is plotted in

each facet as a white dot with black outline, and gray bars are plotted between the highest and lowest value in each facet.

(B) Heatmap of test statistics from individual t-tests testing between CA-CAC+/CA-CAC- and each metabolite-to-

metabolite ratio within the respective subcohorts. Red values indicate positively associated and blue values indicate

negatively associated metabolite ratios with CA-CAC+.
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accuracy = 0.63, AUC = 0.6) and one that did poorly (bal. accuracy = 0.56, AUC = 0.54). This suggests that

while we still perform better overall, we need to further understand whether the sub-optimal subcohort may

need more data (see discussion). The subcohorts where metabolite ratios were most predictive were

derived from LCA (bal. accuracy = 0.68, AUC = 0.65), stratification by males (bal. accuracy = 0.64, AUC =

0.62), and rMoE (bal. accuracy = 0.64, AUC = 0.63). Respective AUCs and corresponding ROC curves are

shown in Figure 4C. Thus, by modeling distinct subcohorts, it is possible to identify groups of individuals

for whom metabolomics signatures are most strongly predictive of CA-CAC+.

DISCUSSION

In this study, we investigated a large patient cohort where the cohort heterogeneity and its effect on the

CVD risk were unknown. We compared several approaches for uncovering cohort heterogeneity present

using clinical variables which allowed for amore effective analysis of CVD risk usingmetabolomics. We illus-

trated that both knowledge-guided and data-driven approaches reduced cohort heterogeneity present

through identifying distinct subcohorts of individuals, and that predicting CA-CAC+ risk using metabolo-

mics within these subcohorts produced different models with distinct performance. Overall, we highlighted

several advantages of heterogeneity-aware modeling over modeling without consideration for cohort het-

erogeneity, including the improvement of overall accuracy and identification of subcohorts where we can

be confident in predicting using metabolomics data.

The identification and acknowledgment of subcohorts in modeling enables more accurate and personal-

ized predictions, an essential component in precision medicine for cardiovascular risk detection. By

dividing the cohort into five latent classes using LCA, we observed subcohorts where the performance

A

B C

Figure 4. Acknowledging subcohorts in modeling of CAD improves prediction of the overall cohort

(A) Workflow of validation of subcohort models and calculated metrics.

(B) Dot plot of balanced accuracies in the validation cohort for each subcohort and approach. Approaches are ordered

from highest to lowest overall balanced accuracy (left to right). Crosses indicate the overall balanced accuracies which

combine the balanced accuracies across each subcohort, and dashed line indicates balanced accuracy from the model

trained on the whole cohort.

(C) ROC curves of models from selected subcohorts from each category of approach, trained on the discovery cohort and

tested on the validation cohort.
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of models was either much better or much worse than the whole cohort model. While the overall balanced

accuracy of modeling the LCA subcohorts separately was similar to the whole cohort balanced accuracy, we

were able to more insightfully detect the types of individuals where using metabolomics was either helpful

or unhelpful in risk prediction. The next step of these findings would be to identify biomarkers through

other data media (e.g. proteomics, lipidomics, or single-cell -omics) in the individuals where

metabolomics failed to predict well, and incorporate these to further improve overall accuracy. Although

metabolomics data were not able to outperform CA-CAC prediction through clinical variables, we believe

that investigating more subcohorts and data media can begin to bridge this gap and allow for the identi-

fication of new biomarkers. These potential biomarkers across multiple platforms would improve the num-

ber of measurable, targetable, and modifiable risk factors of cardiovascular disease. When applied to the

appropriate subcohort of individuals in clinical decisionmodels, they can provide increasingly personalized

prevention measures for harmful cardiovascular events.

In our analysis, we identified different subcohorts that had distinct signatures with CAD.Models that were built

in some of these subcohorts — LCA - Latent Class 1, and Classifiability - Group 2 (Figure S2) — outperformed

the model built on the whole cohort. The subcohort LCA - Latent Class 1 was mostly characterized by individ-

uals with hypertension and use of ACE inhibitor or ARB; and Classifiability - Group 2 was relatively healthier

individuals not using proton pump inhibitors, ACE inhibitors, anti-coagulants, or diuretics and had one or

more SMuRFs. The top predictive features of CA-CAC+ in both of these models included ratios with

choline.37,38 In addition, the LCA - Latent Class 1model had a higher ratio of cysteine/spermine and lower ratio

of 3-deaazadenosine/cysteine correlating to increased risk of CA-CAC+, and the Classifiability - Group 2

model had a higher ratio of choline/a-keto-b-methylvaleric acid and a lower ratio of betaine/choline corre-

lating to increased risk of CA-CAC+. These metabolites have been studied previously to determine associa-

tions with cardiovascular disease.37–43 Since these ratios were employed to reduce the batch variation and

additionally used in multivariate predictive models, the underlying biological mechanisms of each metabolite

cannot be directly ascertained from these results. However, they do suggest that cohort heterogeneity plays a

role in cardiovascular disease risk, providing insight into the categories of individuals whomay be more at risk

of CAD based on the aforementioned metabolites. Thus, cohort heterogeneity should be considered in the

investigation and discovery of biomarkers of CAD.

A limitation of dividing a cohort into subcohorts is that for smaller groups of individuals there may be insuf-

ficient data to reliably assess associations with CA-CAC+. Given that distinct individual subcohorts may

have unique drivers for disease risk, analyzing subcohorts with lower numbers of individuals may lead to

lower statistical power and inaccurate representations of risk factors for these groups. In our case, sepa-

rating individuals by FRS risk category meant that a small number of high-FRS risk individuals were sepa-

rated for analysis. This subcohort on average had lower classification performance by AUC with much

higher variability, possibly due to the lack of data points. Determining if the data population contains un-

der-represented groups helps to decide whether a subcohort should be recognized as its own cohort for

analysis or combined with others. This may be best determined from the contextual understanding of the

clinical and biological experts; however, data-driven techniques, particularly methods for addressing fair-

ness in machine learning,44–46 can be adapted for the identification of cohort heterogeneity and the

determination of under-represented subcohorts (or representation bias)47 in the data. It is important to

determine the characteristics of heterogeneity in datasets to begin to understand whether the trends

found in them represent the broader public in general.

The data-driven approach of rMoE, in theory, is a modeling framework aligned to our aim of utilizing cohort

heterogeneity for the improved prediction of CA-CAC+. rMoE achieves this by jointly optimizing a gating

network using clinical variables and an experts network using metabolomics to predict CA-CAC+. While

this method performed quite well (Figure 4B), a deeper investigation discovered that, in order to maximize

the AUC, the clinical variables had a large impact on the rMoE predictions. This was evident as the algo-

rithm used clinical variables to decide for each individual the probability of belonging to each latent class,

where one of the latent classes were all classified as one outcome. This was contrary to our motivation to

understand CA-CAC+ risk via metabolomics and it was clear that the clinical variables contained much

more signal for predictive models. Although this approach optimizes the overall AUC with the data pro-

vided, further optimization within each latent class could be implemented to avoid having one latent class

be predicted solely as one outcome, so that we may find distinct metabolomic signatures with CA-CAC+

for different subcohorts of individuals.
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Previous analyses5 of this metabolomic data have attempted to measure the average effect of each metab-

olite on the whole cohort with and without adjustment for age, sex, hypertension, hypercholesterolemia,

diabetes, and significant smoking. In this analysis, we have been able to uncover subcohort-specific asso-

ciations, as well as detect subcohorts using known and unrecognized contributors to heterogeneity. The

case study for modeling for CA-CAC+ risk split by sex is not a groundbreaking finding, but demonstrates

the benefits for subcohort modeling. While this may suggest that analysts should not analyze cohorts

together to begin with, the heterogeneity existing in datasets may not be necessarily known before anal-

ysis, thus providing the need for methods to identify subcohorts. In addition, the subcohorts could have

been modeled as interaction terms in models. We instead modeled the subcohorts separately to improve

interpretability of the results, avoid the ‘‘curse of dimensionality’’,48 and to allow the use of more complex

models49–51 which do not let the user define interaction terms such as in logistic regression.

In summary, we demonstrate the importance for incorporating cohort heterogeneity in predicting cardio-

vascular risk and review several different approaches that can be employed for untangling cohort hetero-

geneity present. This is particularly relevant when aiming to discover novel biological relationships with

disease risk in complex datasets where the heterogeneity is unknown. Precision medicine remains a field

with potential for substantial individual, public health, and economic impacts, through the discovery of

more personalized prevention pathways for harmful cardiovascular events. As the diversity of individual

characteristics and size of our datasets become available with the advent of newer technologies, we

believe that addressing complex cohort heterogeneity will play a key role in the advancement of preci-

sion health and will lead to avenues for reducing the overall burden of cardiovascular disease in our

comminutes.

Limitations of the study

A limitation of this study was that the individuals recruited into BioHEART were referred to for CT coronary

angiography due to suspected CAD, thus the results presented in this paper may not be representative of

the general population.

Throughout most of themodels, we usedmetabolite-to-metabolite ratios as features to identify more com-

plex relationships with disease and reduce some of the batch variation present in the data. Although the

use of ratios decreased the interpretability of the relationships between metabolites and CA-CAC+, our

primary aim was to improve prediction performance as opposed to maintaining high interpretability.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d The version of source code used for the preparation of the manuscript and the data generated in this

study is available on Zenodo: https://doi.org/10.5281/zenodo.7707308.52

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Clinical samples

The samples used were from the BioHEART-CT Study.44 The study was approved by the Northern Sydney

Local Health District Human Research Ethics Committee (HREC/17/HAWKE/343) and all participants pro-

vided informed written consent. Briefly, individuals undergoing clinically indicated CT coronary angiogram

(CTCA) for suspected coronary artery disease were recruited frommultiple sites in Sydney, Australia. Blood

samples were taken at the time of recruitment, and after appropriate processing, plasma samples including

replicates were aliquoted and stored at -80�C until analysis. Individuals were advised to fast for R2 hours

prior to their CTCA as per standard clinical practice.

METHOD DETAILS

CT coronary imaging acquisition

CTCA images were acquired on a 256-slice scanner using standard clinical protocols, overseen and dual-

reported by accredited cardiologists and radiologists. Heart rate was optimised using oral metoprolol or

REAGENT or RESOURCE SOURCE IDENTIFIER
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Adult patients undergoing clinically indicated CTCA BioHEART-CT Study4 https://www.australianclinicaltrials.gov.au/

anzctr/trial/ACTRN12618001322224

Deposited data

Metabolomics and Clinical Data This paper https://zenodo.org/badge/latestdoi/542345826

Original Code This paper https://zenodo.org/badge/latestdoi/542345826

Software and algorithms

R version 4.2.1 R foundation https://www.R-project.org/

glmnet Friedman et al.60 https://cran.r-project.org/web/packages/glmnet/index.html

NEMoE Xu et al.33 https://github.com/SydneyBioX/NEMoE

poLCA Linzer et al.63 https://cran.r-project.org/web/packages/poLCA/index.html

rsubgroup Atzmueller et al.67 https://cran.r-project.org/web/packages/

rsubgroup/index.html

hRUV Kim et al.58 https://github.com/SydneyBioX/hRUV

ggplot2 N/A https://cran.r-project.org/web/packages/ggplot2/
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ivabradine based on body weight, as clinically appropriate. Prospective studies were preferentially per-

formed unless heart rate control was suboptimal, in which case retrospective acquisition was utilised. Vaso-

dilation was achieved using sublingual nitroglycerine (600-800 micrograms) given immediately prior to

intravenous contrast delivery. Radiation doses were minimised as per guidelines53 and reconstructions

were performed using vendor-specific software. CTCAs were analysed using the validated 17-segment

Gensini score to identify those with and without CAD.54 Coronary artery calcium scores (CACS) were as-

sessed using vendor-specific software utilising the Agatston method55 as a measure of CAD burden. In

brief, hyperattunated areas of at least 1 mm2 or R 3 adjacent pixels with >130 Hounsfield units (HU)

were incorporated into the CACS using the well described and validated Agatston method.

Study cohort and design

This study included 837 from the initial 1000 individuals of the BioHEART-CT study. The discovery set con-

sists of batches 3-10 and the validation set consists of batches 11-15. There were 512 individuals in the dis-

covery set and 325 individuals in the validation set. Calcium scores are calculated as an absolute numerical

value using the well-validated standardised tool (Agatson score) and also expressed as a percentile based

on sex, age and ethnicity based on large well-characterised datasets (Multi-Ethnic Study of Atheroscle-

rosis). Individuals with a raw CACS greater than 100 Agatston units or calcium score age/sex percentile

in the top quartile (> 75%) are considered to have clinically actionable CACS (CA-CAC+) and all others

are considered as being free of clinically actionable CACS (CA-CAC-).

Metabolomics data acquisition and processing

Targeted metabolomics based on scheduled multiple reaction monitoring optimised to the metabolite of

interest using authentic standards was applied in this study5 10 ml plasma was mixed with 90ml HILIC sample

buffer, an acetonitrile: methanol: formic acid mix (75:25:0.2, v:v:v). The resulting mixture was vortexed and

spun at 14,000 rpm for 20 minutes to remove plasma protein. The metabolite containing supernatant was

then transferred to a glass HPLC sample vial and resolved on an Agilent 1260 Infinity HPLC System, andm/z

was determined by Qtrap5500 (Sciex).56,57 Each sample was eluted over a 25-minute period, and each

batch of samples took 40 hours to complete. A total of 14 batches were completed over 44 days. Metabolite

elution characteristics were pre-determined using pure standards. Metabolite abundance peaks were

integrated using the area under the curve for calibrated peaks from MultiQuant (SCIEX), with manual

adjustments to the curves as appropriate. This ensures the consistency of all the peaks integrated. The me-

tabolites that were not present in at least 30% of the samples were filtered out. Missing values were then

imputed using the minimum value of each metabolite. This resulted in a total of 71 metabolites (see

Table S3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data normalisation

For the metabolites analysed, the hRUV58 was then performed on the log2 transformed processed metab-

olomics data. For intra batch normalisation, loess smoothing on samples and RUV-III using short replicates

with parameter k set to 15 was performed. For inter batch normalisation, a concatenating hierarchical struc-

ture using batch replicate samples was used, with the RUV-III parameter k was set to 3. Following hRUV nor-

malisation, the mean within each batch was subtracted from the normalised value to remove any remaining

batch variation as shown in Figure S6.

Marker ratio calculation

Metabolites analysed in this paper were calculated as metabolite-to-metabolite ratios for each metabolite

in the dataset. This was done following the transferability concept proposed in59 and self-normalising

aspect of calculating ratios to reduce variation between batches (Figure S6). The raw imputed metabolite

data was first log transformed and then ratios between each metabolite were taken. The mean within each

batch was subtracted from the normalised value to remove any remaining batch variation. This resulted in

2485 metabolite ratios considered in analysis.

Multivariate modeling and validation in whole cohort

A lasso logistic regression model was used to predict CA-CAC+ through the glmnet package60 on the

whole cohort using clinical and demographic variables(including age, sex, and number of SMuRFs). The

top 15 features by absolute difference in AUC from 0.5 as independent variables in the model, and the
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tuning parameter lambda was selected by the cv.glmnet function from the glmnet package.60 A naive

bayes model, as implemented by the e1701 R package,61 was built on all metabolite-to-metabolite ratios.

Ratios with variance greater than 0.1 were filtered and then the top 15 by absolute difference in AUC from

0.5 were used as independent variables in the model. Both models were validated in the discovery cohort

using repeated 3-fold cross validation (CV) with 5 repeats, and validated through the validation cohort.

Identification of subcohorts

Several approaches were employed to uncover subgroups in the data. Each of these approaches used

different criterion to select the number of subgroups and resulted in varying numbers of subgroups. The

results generated in this study are summarised in Table S2.

Framingham Risk Score (FRS) risk category

FRS scores were calculated using the formula described in.62 Individuals scoring a CVD risk score of 0.15 or

greater were categorised as high risk, below 0.15 and 0.1 or greater were categorised as intermediate risk

and below 0.1 were categorised as low risk.

Latent class analysis (LCA)

LCAwas performed using the poLCA package63 using the clinical variables as input. The number of classes,

5, was chosen using the Bayesian information criterion.

k-means Clustering

The kmeans function from the R stats64 package was used to perform k-means clustering using the clinical

variables as input. The average silhouette of observations was computed for different values of k, with the

optimal number of clusters, 2, chosen by the maximum average silhouette.65

Regularised mixture of experts (rMoE)

rMoE was performed using the implementation from the NEMoE package.33 rMoE comprises a mixture of

experts model66 with added elastic-net penalties to both the gating and experts networks. Clinical vari-

ables were used in the gating network and the metabolite ratios were used in the experts network with

the penalty regulariser values of 0.08 and 0.012 respectively. The number of latent classes was chosen to

be 2 and the initialisation method was k-means clustering. Latent classes determined by rMoE were deter-

mined by rounding the gating probability, and predictions used the overall probability calculated by the

dot product of the gating probabilities and expert probabilities.

Classifiability

Repeated 5-fold CV with 5 repeats was performed in the discovery cohort using metabolite ratios as fea-

tures to predict CA-CAC with naive bayes models. Individual classifiability scores36 were then obtained

by calculating the proportion of correct classifications for each individual. The subgroup discovery algo-

rithm, SD-Map,67 was then used with the clinical variables as input and CA-CAC as the target to determine

a subcohort defined by clinical variables to have higher classifiability scores. The group with higher classi-

fiability determined by SD-Map were called group 1 and the rest called group 2.

Univariate associations

P-values in Table 1 were calculated using Wilcoxon rank-sum test for numerical variables; Pearson’s Chi-

squared test for categorical variables; and Fisher’s exact test for binary variables. Test statistics between

metabolite ratios and CA-CAC in Figure 3 were calculated using two sample Welch t-tests.

Multivariate modelling and validation within subcohorts

Lasso logistic regression models were used in Figure 2 sex-sepecific models. Feature selection used |AUC-

0.5| to select the top 15 features, and the tuning parameter lambda was selected by the cv.glmnet function

from the glmnet package.60

Subcohort models were constructed using naive bayes models on metabolite ratios following feature se-

lection. A variance cutoff of 0.1 and then the top 15 features by absolute difference in AUC from 0.5 were
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used as criteria for feature selection. All subcohort models were validated within the individuals in the

respective subcohort in both.

Adversarial Domain Generalization (ADG) approaches employ a domain discriminator combined with a

feature extractor to adversarially learn domain-invariant features, which are representative while their

domain cannot be recognized by the domain discriminator.68 In this work, different batches are treated

as different domains and we use ADG to learn the batch-invariant features for downstreaming analysis. Per-

formance of using metabolite-to-metabolite ratios was compared with ADG to validate the idea of trans-

ferrable markers.

Calculation of balanced accuracies

In order to calculate balanced accuracy, a cutoff had to be chosen to classify CA-CAC+/CA-CAC- from

model predictions. For each model, we computed ROC curves, and determined the optimal cutoff as

the one that produced the smallest distance to the point (0,1) on ROC space.

All data was analysed in R version 4.2.1 64 and visualised using ggplot2.69

ADDITIONAL RESOURCES

The Trial Registration Number for the BioHEART-CT Study: ACTRN12618001322224.
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