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ABSTRACT: The internal molecular structure of lipid-based
formulations (LBFs) is poorly understood. In this work we aimed
at establishing coarse-grained molecular dynamics simulations as a
tool for rapid screening and investigation of the internal
environment of these formulations. In order to study complex
LBFs composed of different kinds of lipids we simulated a number
of systems containing either medium-chain or long-chain lipids
with varying proportions of tri-, di-, and monoglycerides. Structural
and dynamic measurements and analyses identified that the
internal environment in a mixture of lipids was locally ordered
even in the absence of water, which might explain some of the previously reported effects on drug solubility in these systems.
Further, phase changes occurring upon water dispersion are well captured with coarse-grained simulations. Based on these
simulations we conclude that the coarse-grained methodology is a promising in silico approach for rapid screening of structures
formed in complex formulations. More importantly it facilitates molecular understanding of interactions between excipients and
water at a feasible time scale and, hence, opens up for future virtual drug formulation studies.
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■ INTRODUCTION

Oral administration of drugs requires the active pharmaceutical
ingredient (API) to be sufficiently soluble in gastric or intestinal
fluid to allow complete absorption. For many compounds
formulation strategies are required to increase the intestinal
concentration and enable absorption. One such strategy is the
use of lipid-based formulations (LBFs), which contain lipids,
surfactants, and/or cosolvents. The solubility of the drug in the
formulation is affected by each of the components. In 2006,
Pouton established the lipid formulation classification system
(LFCS) in which LBFs are classified according to their lipid
content and performance upon dispersion and digestion.1,2

This system has since been used to improve understanding of
the behavior of formulated drugs. In particular, the system has
been used to study LBF performance in intestinal fluids, in
response to enzymatic digestion of, for example, LBF di- and
triglycerides.
LBF design and performance has typically been assessed

experimentally; however, the increased use of computational
tools could improve our understanding of, e.g., drug loading of
the formulation and performance after oral administration at a
molecular level. One such tool involves molecular dynamics
(MD) simulations. One benefit with MD simulations is that
they can be performed to study LBFs before they are dispersed
in water. It is difficult to characterize the internal structure of
the dry LBF (i.e., all the formulation components prior to
dispersion in water) using traditional experimental techniques.3

Most classical scattering methods are not sensitive enough,
although more sophisticated methods such as small-angle X-ray
or neutron scattering could be useful.4,5 MD simulation offers
an alternative to these approaches and allows for a detailed
understanding of many phenomena that are difficult or even
impossible to probe experimentally. Specifically, for lipid−water
interactions, a few examples include H-bond network forming
at the membrane interface6 and the influence of lipid bilayers
on dynamics of water at the lipid bilayer surface.7 To date, MD
simulations have also been used to study phase behavior and to
follow the fate of various drugs during dispersion of the LBF in
water,8 or digestion.9,10 However, the latter studies are
relatively few, mainly because MD simulations performed
with a classical all-atom (AA) force field are computationally
costly. As an alternative to AA simulations, it is possible to
coarse-grain a molecular system on a number of levels.11 The
popular Martini force field,12,13 for example, uses a mapping
strategy involving the grouping of about four atoms into a
single bead. This serves two primary purposes: it drastically
reduces the number of particles in a particular system (for
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example, one Martini water bead corresponds to four individual
water molecules), and it also speeds up the overall dynamics in
the system, leading to faster transitions between substates in a
simulation ensemble. It is possible to change the resolution
scales, e.g., from the coarse-grained (CG) scale to the atomistic
level, allowing the study of particularly interesting aspects at an
atomic level. The Martini model has been used successfully in
the past to study a number of lipid phase phenomena, such as
formation of gel phases14,15 and inverted hexagonal16 and cubic
phases.17 While all CG methods to some extent suffer from
reduced spatial and chemical resolution, many examples such as
the ones discussed here show the general applicability of the
Martini force field. For a more in-depth discussion of the
strengths and weaknesses of the Martini model, we refer the
reader to the comprehensive review by Marrink and Tiele-
man.18

A long-term goal for us is to better understand solubilization
of drugs formulated as LBFs. We therefore decided to explore
whether CG-based MD simulations could help us with this
matter. For instance, it has been shown that the solubility of a
drug in an LBF can be approximated by combining the
solubility values of the drug in the individual constituents of the
formulation, weighted by the mass ratio of each compound in
the formulation.2,19−21 To date, the molecular reasoning behind
this has been unclear, but we are speculating that it is a result of
nanostructuring of the dry LBF. If the excipients exist as “local
clusters” in these nanostructures, each of the nanostructures
would perform as the single excipient (with the drug solubilized
either completely within these structures or at the interface with
the surrounding environment), and, hence, the solubility of the
drug in that local environment would be the same as in the
excipient alone. Thus, in this paper, we focused on establishing
CG MD simulations using the Martini force field as a tool for
rapid screening of local nanostructuring of LFCS class 1 model
LBFs consisting of different kinds of glycerides; we examined
the dry form of the LBFs prior to dispersion in water to mimic
the formulation in a capsule as well as LBFs dispersed in water
to mimic the structures likely to form after intake of a lipid-
filled capsule with a glass of water.

■ METHODS

System Preparation and Setup. We used the Martini CG
force field to study LBFs with different compositions of
medium- and long-chain tri-, di-, and monoglycerides. The CG
molecular structures are shown in Figure S1, where the
differences between the AA and CG representations are
clarified. As with earlier work with AA-based formulations,8

we performed a series of simulations at different water/lipid
ratios from 0% (w/w), representing the dry formulation in the
capsule, to 5, 10, 20, 50, and 75% water, representing the
dispersed sample. Further, we mimic digestion by varying the
lipid composition from only triglycerides over systems of
mono-, di-, and triglycerides to systems only including
monoglycerides. Table 1 contains an overview of all the
explored systems.
The initial parameters used for the different lipids were taken

from those published earlier by Vuorela et al.22 and adapted to
reflect different lengths of carbon chain and numbers of lipid
tails. This model uses one C1 bead together with three Na
beads for the glycerol headgroup, and C1 beads for the alkyl
chains. All initial systems and topologies are available as
Supporting Information.

The simulation systems were built using Packmol23 and were
then run using GROMACS v5.24,25 The simulation trajectories
were visualized using VMD.26 All simulations used the
Martini12,27 force field v2.2, with polarizable water,13 using a
time step of 20 fs. The energy was first minimized in all systems
using steepest descents for 1000 steps followed by an initial
equilibration in two stages, first using a 10 fs time step for
300000 steps, and then using a 20 fs time step. Production runs
were then carried out for 2 μs for each system separately, again
using a 20 fs time step. Pressure and temperature were
controlled with the Parinello−Rahman (isotropic) barostat28

and the velocity rescale thermostat,29 respectively, and were
maintained at 1 bar and 310 K. The relative electrostatic
screening was set to 2.5 in accordance with recommendations
for polarizable Martini water, with the polarizable water
providing explicit screening. Calculations of electrostatics
used the reaction-field model, with a cutoff of 1.1 nm, and
van der Waals interactions were treated with a plain 1.1 nm
cutoff (combined with the potential-shift-Verlet modifier in
Gromacs 5).

Data Analysis. The self-mean-square diffusion was
calculated using standard Gromacs tools (gmx msd), with the
overall center of mass motion removed, and diffusion constants
were calculated from the fit to the linear region of these curves.
The cosine similarity is a measure of similarity between two

vectors, ranging from −1 to 1. Two vectors with the same
orientation have a cosine similarity of 1, two vectors at 90 deg
have a similarity of 0, and two opposite vectors have a similarity
of −1. We employed this method for the vectors that resulted
from monitoring the movement of the head-groups of
individual lipids over a period of time (taking vectors from
the initial lipid position to the final position). We then
calculated the cosine similarity between a central lipid (i.e., the
green colored vector in Figure 3) and its immediate neighbors
(all black vectors, one-by-one, in Figure 3).
The excess number of “like neighbors” was calculated for a

particular lipid as the ratio of the actual number of the same
lipid type (tri-, di-, or monoglyceride in this case) within a
certain distance and the expected number of lipids of the same
type around the central lipid. This latter number was obtained
by counting all the lipids in the region and then multiplying by
the mole fraction for each lipid type.30 An excess number larger
than 1 indicates that a lipid is more likely to have a like
neighbor than an unlike neighbor, suggesting that there is an

Table 1. Summary of the Simulations Performed To
Investigate the Structure of LBFsa

system no. of triglycerides no. of diglycerides no. of monoglycerides

A 1200
B 600 600 60
C 400 400 400
D 600 600
E 1200
F 1200
G 600 600
H 400 400 400
I 600 600
J 1200

aSystems A−E are representative of medium-chain lipid-based
formulations containing lipids with about 12 carbon atoms (three
coarse-grained C1 beads in each tail), and systems F−J represent long-
chain formulations (16−18 carbons; four C1 beads for each tail).
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effective “attraction” between lipids of the same kind or,
equivalently, a “repulsion” between lipids of different species.
The second rank order parameter (P2) was calculated from

θ= × −P2 0.5 (3 cos 1)2

where θ is the angle between a bond and some normal
direction, typically taken to be the bilayer normal (parallel to
the z-axis) for bilayer systems, with the angle bracket indicating
an ensemble average. P2 = 1 means perfect alignment with the
normal, P2 = −0.5 means antialignment, and P2 = 0 means
random orientation. Lamellar structures are not always formed
with the normal along the z-axis, and, hence, calculations of the
P2 order parameter were performed using different normal
directions for each case. For simulations with 75% (w/w)
water, this direction was identified on a case-by-case basis from
the alignments of the lamellar phases in Figure 2, and the same
direction was then chosen as the direction for the dry systems
as well. The reorientational autocorrelation function C(t) of the
P2 order parameter was calculated to further characterize the
fluidity of the system in terms of the local dynamic properties.
The plateau of C(t) after an extended period corresponds to a
residual value and reflects the long-term order of the system.

■ RESULTS
Phase Behavior. All of the simulated systems sponta-

neously assembled into different phases, changing with the
number of water beads in the system; inverted micellar
structures were formed at low water concentrations, and phase-
separated, lamellar systems were formed at higher water
concentrations, as has previously been observed with AA MD
simulations.8−11 Figures 1 and 2 show the final snapshots (after
2 μs) of all the systems, at 0% and 75% water concentration.
For the studied LBFs, phase separation into water- and lipid-

rich phases occurred in simulations with water concentrations
of 20% to 50%. The analyses we have performed below, as well
as visual inspection of the trajectories, do not point to any
significant difference between the short (A−E) or long (F−J)
lipid chain LBFs with respect to the formation of phases. This is
not completely unexpected, and could potentially change with a
greater difference in chain length (the lipids simulated herein
differed by only one C1 bead in chain length).

Diffusion. As the water content in all the systems was
increased from no water to a few, relatively constrained water
beads, to almost 45000 Martini water beads (corresponding to
180000 AA water molecules), the self-diffusion of water
increased 4-fold, from around 0.5 × 10−5 cm2/s to
approximately 2.0 × 10−5 cm2/s (Figure S2). This value, for
systems with most of the water molecules in the bulk phase, is
consistent with both the experimentally reported values for self-
diffusion of water (2.3 × 10−5 cm2/s12,13,31) and the polarized
Martini water model (2.18 × 10−5 cm2/s13). As previously
reported for AA simulations,8 the situation was markedly
different for the lipids. The self-diffusion of the lipids was
reduced when the amount of water was increased. Again, this is
representative of a phase change; for water concentrations
greater than 20%, the lipids form more lamellar phases and
therefore are more constrained with regard to motion, and the
diffusion coefficient is therefore decreased.
To illustrate in more detail, we monitored the motion of

randomly selected lipids and their closest lipid neighbors
(within a cutoff distance of 1.0 nm) over a specific time interval.
Figure 3 depicts this motion for 0% and 75% water in system A
(only medium-chain triglycerides). At the low water concen-
tration (Figure 3a), there are three lipids that are moving in the
same direction as the central (green vector) lipid, and five
others that move either orthogonally or in the opposite

Figure 1. Snapshots of the A−J system configurations with 0% water, after 2 μs. System A is in the top left corner, and system J is in the lower right.
Lipid tails are colored cyan, triglyceride head-groups red, diglyceride head-groups orange, and monoglyceride head-groups yellow. For convenience, a
scale bar representing 1 nm has been inserted into each snapshot. In these systems, the glycerol head-groups interact with each other, giving rise to
nanostructuring resembling inverse micelles. In addition, the head-groups also seem to form long, narrow, worm-like regions.
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direction. As the amount of water was increased, however, the
movement patterns of the central lipid became increasingly
correlated with those of its neighbors (Figure 3b). We used the
cosine similarity to quantify this effect further (Figure 4). For
systems with 0% water (and up to 20% water, data not shown),
using the cosine similarity, there were no specific correlations
between the movements of neighboring lipids. Again, the
situation changed when the systems underwent a phase change
into a lamellar phase. Figure 4 shows that the frequency of

correlated diffusion at 75% water was higher, with more cosine
similarities closer to 1, as a consequence of the formation of a
lamellar phase, which restricted the movement of individual
lipids.

Lipid Packing. Figure 5 shows the radial distribution
functions for the lipids in systems C and H (i.e., tri-, di-, and
monoglycerides, of medium and long chain lengths, respec-
tively) at 0% and 75% water content. For both systems, at 0%
water, there was a sharp peak at about 0.5 nm, followed by a

Figure 2. Snapshots of the A−-J system configurations with 75% w/w water concentration, after 2 μs. The color scheme is as in Figure 2, with lipid
tails in cyan, triglyceride head-groups in red, diglyceride headgroups in orange, and monoglyceride headgroups in yellow. For convenience, a scale
bar representing 1 nm has been inserted into each snapshot. Water particles have been rendered as a transparent surface. Several lamellar phases were
formed, and the lipids were partitioned according to kind, with triglycerides (red) moving farthest away from the water, followed by diglycerides, and
finally monoglycerides, which were the most common lipids present at the water−lipid boundary.

Figure 3. Diffusion of a central lipid (red), and that of its immediate neighbors (blue, within 1 nm cutoff). The plots show (left; no water) a situation
where the motion of nearby lipids does not show any particular overall direction, and (right; 75% water) a situation where the orientation of each
diffusion vector, on average, is correlated.
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second peak which was most pronounced for the mono-
glycerides at 0.7−0.8 nm. There are, however, small, subtle
differences between these plots, with the monoglycerides in the
long-chain lipid mixtures in particular appearing to associate
slightly more closely than either the di- or triglycerides. This
may be a result of the ability of the monoglycerides, which have
only one lipid tail, to pack more closely together. As the
amount of water was increased, these patterns shifted, however,
and the relative peak heights of the different lipid types
changed. The triglycerides packed most closely in this scenario,

presumably as an effect of hydrophobicity, and the energetically
more favored system configurations were therefore those that
reduced exposure to water. This was also evident from the
phases shown in Figure 1 and Figure 2). Interestingly, for both
the medium- and long-chain systems (C and H, respectively) at
75% water, the diglyceride peaks were lowest.
Analysis of the distances between the water beads and the

lipid head-groups (GLY bead, Figure S3) also provides
information on the packing behavior, and the changes that
occurred as the amount of water was increased. It was evident

Figure 4. Binned cosine similarities for three systems (systems A, B, and C, see Table 1) at 0% and 75% water concentrations, calculated for the
central lipid and its neighbors and averaged over the final 10 frames in each case. Red bars correspond to 0% water, with no overall preference for
lipids to move in a correlated fashion, and yellow overlaid bars correspond to the same analysis but for 75% water. There was a clear trend at 75%
water for more values closer to 1, which indicates diffusion vectors with the same direction. In particular here, for system B, there was also a decrease
in negative values, which further supports the coordinated movement of lipids in systems containing 75% water.

Figure 5. Lipid−lipid radial distribution functions for two systems (system C, panels A and C; and system H, panels B and D) containing all three
types of lipids (tri-, di-, and monoglycerides) at 0% (panels A and B) and 75% (panels C and D) water. Distance in nm on x-axis, rdf values on y-axis.
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that, although the amount of water at low concentrations was
not enough to cause complete phase separation, at water
concentrations as low as 5% there was a change in how the
lipids interacted with water, shown as a distinct peak appearing
at approximately 0.5 nm (same as the first maximum in the rdf
figures).
Neighboring Like/Unlike Atoms. In a mixture of different

kinds of lipids, if the mixture is random, there should be no
preference or relative increase in any particular lipid type over
any other lipid type. When comparing the two systems that
contained tri-, di-, and monoglycerides (systems C and H, with
medium- and long-chain lipids, respectively), the monoglycer-

ides were enriched near other monoglycerides (an excess
number of 1.04 and 1.07 for C and H), and the triglycerides
were similarly depleted near each other (0.95 and 0.93). At
longer distances (beyond roughly 3 nm), the dry systems
behaved like random mixtures with respect to the different
kinds of lipids, whereas formation of lamellar phases meant that
the entire box length had to be taken into account before the
ratio of like/unlike atoms returns to 1 (Figure 6).

Order Parameters and Reorientational Dynamics. For
the majority of the systems, even though the resulting phase
with 75% water was not always perfectly lamellar (see, for
example, Figure 1, system J), a higher water content induced

Figure 6. Ratio of the actual number of like neighbors to the expected number of like neighbors for systems C (medium-chain tri-, di-, and
monoglycerides) and H (long-chain tri-, di-, and monoglycerides), at 0% (left) and 75% (right) water content. In the dry long-chain system (left
panel), there is a relatively higher abundance of monoglycerides near other monoglycerides (1.04 for system C and 1.07 for system H), and there is
also a corresponding decrease in the excess number of triglycerides (0.93 and 0.95). The long-term order induced by formation of a lamellar phase at
higher water content (right) is also evident.

Figure 7. Second rank (P2) order parameters (x-axis) shown as histograms (y-axis) for all systems A−J (each system in the corresponding figure
panel) at 0% (red) and 75% (yellow) water concentration.
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more ordered lipid tails (Figure 7). For some systems (e.g., E)
this change was quite significant, and a phase that was almost a
double bilayer was formed. General lamellar structures with
sometimes very pronounced curvatures were formed for other
systems (e.g., systems B and J).
Calculation of the autocorrelation times (C(t)) for the P2

order parameter and, in particular, the plateau of C(t) provided
information about the long-term, residual order of the systems.
Figures S4 and S5 show two major features: (i) the
reorientational dynamics of the lipid tails were very rapid in
all systems with less than 50% water concentration (only at the
higher water concentrations was there any significant long-term
order), and (ii) there was no discernible difference in the
dynamics between the medium- and long-chain lipid
formulations.

■ DISCUSSION
Lipid molecules are able to self-assemble into a variety of
phases with different structures and geometries. The (multi-
faceted) behavior of lipids in ordered or disordered, crystalline,
gel, or liquid-crystalline phases has been studied extensively
previously.32−36 We have focused on the phases formed in
various mixtures of tri-, di-, and monoglycerides typically
employed in LBFs for poorly soluble drugs, as specified in
Table 1, and the dependence of these phases on chain length.
We wanted to investigate the degree to which CG MD
simulations can be used to study these phenomena. Atomistic
systems can be coarse grained on a number of levels, with
different consequences. For example, the lack of entropy arising
from removing the atomic degrees of freedom (especially from
the solvent) can be compensated for with an effective enthalpic
term. Temperature-dependent properties should therefore be
interpreted with care. CG simulations require much less
computational resources than AA simulations and provide
faster time-to-solution (the time that is required before
converged ensemble properties can be extracted from the
simulations). Therefore, if a CG simulation can produce the
same phase behavior and partitioning of lipids and water beads
as seen with an AA simulation, it will be a very useful
computational screening tool for understanding the internal
milieu of an LBF, and any subsequent changes to the LBF will
obviously affect drug loading and the performance of the LBF
in turn.
The phase behavior we have modeled here is consistent with

results that have been reported earlier in the literature for AA
systems. For example, oleic acid has formed both micellar and
lamellar phases at high water concentrations, and oleic acid
monoglycerides were locally enriched in a cubic phase when
hydrated with 50 to 80% water.37 Other combinations of lipids
and lipid mixtures have also been studied, both experimentally
and with computational tools.38−40 Consistent with the results
here, monoolein experimentally forms a lamellar phase at less
than 10% water, followed by a cubic phase up to 40% water,40

and our observation that monoglycerides are enriched in
certain phases was also observed previously for oleic acid
mixtures.37 It should be noted in this context that formation of
any type of structure in simulations such as these is to some
extent dependent on the combination of the size of the box and
the number of lipids in the box. The simulation box might be
too small for the space required for formation of certain lipid−
water phases. Nevertheless, we believe that the simulations
represent local environments accurately, i.e., a lipid-rich
lamellar phase and bulk water. For example, the presence of

high-curvature regions, particularly in the water-rich systems, is
in agreement with either of the Pn3m or Ia3d cubic phases, and
these lipid phases will obviously affect drug solubility and
partitioning. The small-scale effects can to some extent be
alleviated with a much larger simulation box, and, for example,
the recently developed implicit solvent version of the Martini
force field41 (dry Martini) would be interesting to try in this
context. As many as six different self-assembled structures of
hexagonal, lamellar, and cubic types in the transition from the
water-in-oil (w/o) reversed micellar or microemulsion system
to an oil-in-water (o/w) micellar or microemulsion system have
been reported.42 Even though the CG mono- and diglycerides
used here probably are less surface active than in nature, the
fact that we upon dilution see aggregates with triglycerides at
the core and mono- and (to a lesser extent) diglycerides
forming the surface layer is reassuring, as this has also been
observed experimentally.43

Diffusion. One of the key characteristics of a system that
undergoes a phase change is the change in the self-diffusion of
the molecular species that constitute the system. Our results for
self-diffusion of water and lipids are in qualitative agreement
with those reported earlier.8 The CG representation introduced
by the Martini force field often leads to faster dynamics and a
smoother conformational energy landscape,12 which increases
the rate of many processes such as diffusion. While it is difficult
to exactly quantify this increase in rate,12,27 it could explain in
part some of the differences in lipid self-diffusion values
between our results and those reported earlier. For example,
our average diffusion rate for the long-chain systems (F−J) was
0.12 × 10−5 cm2/s at low water concentrations, reduced to 0.05
× 10−5 cm2/s at a water concentration of 75%. In comparison,
previous values reported from experiments for a monooleate
system are 0.018 × 10−5 cm2/s (approximately 20% water),
0.024 × 10−5 cm2/s (40% water),12,44 and 0.02 × 10−5 cm2/s
(81% water).45

The longevity of any nanoaggregates formed could also affect
drug behavior. Therefore, looking at diffusion as a collective
property for a set of neighboring lipids is illuminating. Drugs
exhibit very different solubility and partitioning profiles when
the local environment around them changes. To this end, we
have tried to quantify the degree to which aggregates move in
concert, similarly to what has been done for all-atom
simulations before,30,46 that is, whether lipids that are near to
each other stay with the same surrounding lipids over time.
This was done as a means of exploring the stability of the
various kinds of aggregates that are formed in lipid mixtures, in
order to provide insight into any rearrangements that might be
occurring, particularly in the dry systems. We found evidence
for diffusion behavior changing as the amount of water in the
system changes. For a completely dry system, over the time
scales we analyzed (200 ns), any local microstructure existed
only transiently, as judged by calculating the distribution of
cosine similarities, whereas higher water concentrations led to
formation of local environments that did not change as much
(Figures 3 and 4).

Neighboring Like/Unlike Atoms. Experimental determi-
nation of the local distribution of lipids is challenging, even for
better-defined systems such as bilayers. In a random mixture,
the mean composition of all neighboring lipids in a sufficiently
large circle drawn around a lipid of either type will be the same
and will reflect the bulk composition. It should be noted that
this may not be true at short distances, because molecular sizes
or shapes may lead to different distributions of neighbor
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distances for different types of neighbors, even if the overall
distribution is random. We noted subtle differences between
medium- and long-chain lipid systems (Figure 6). In the dry
systems, the monoglycerides had a positive excess of like
neighbors (up to 1.07 for the monoglycerides in system H and
1.04 for system C when measured as described elsewhere),
whereas the triglycerides had negative excess at short distances
(0.93 and 0.95, up to a distance of 3 nm). This correlated
quantitatively with the radial distribution functions for systems
C and H (Figure 5, A and B) without water, where the
monoglycerides appeared to form a well-defined second
solvation shell out to a distance of about 1.5 nm. Although
the long distance analysis of these systems points at a random
mixture of excipients, the short distance (few nanometers)
points at local small clusters of the components that are not
mixed to any larger extent with the other excipients. This may
explain, at least in part, the additive solubility effect of the
excipients included in an LBF that has been observed
experimentally.20 The simulations indicate that each of the
included excipients forms local nanostructures in the dry LBF
and that the interaction between the excipients is minimal.
Hence, based on the results from the simulations, we speculate
that, when drug molecules dissolve in the LBF, they simply
saturate each of the included components. The total loading
capacity of the formulation therefore equals the sum of the
concentrations possible to dissolve in each excipient volume
fraction.
Orientational Dynamics. By calculating the second rank

order parameter along the entire lipid tail (as opposed to
calculating for each bond separately), we have shown that all
systems underwent a change from a state in which the lipid tails
had no preferred direction (order parameters around 0, Figure
7) to a relatively more ordered configuration (histogram peaks
moving toward positive P2 values) when the water content was
increased. The lack of overall order in the dry systems does not
mean that there was no local structuring, which, as stated above,
indeed does exist. We emphasize here that calculations of order
parameters have typically been carried out for (preformed) lipid
bilayers, where their interpretation is more straightforward.
Here, matters were more complicated, since not all systems
form bilayered phases with a well-defined normal direction.
Also the presence of high-curvature regions (for example,
system J) means that the use of a fixed director axis for the
order parameter calculation likely “hides” some of the ordering
that is observed visually.
Calculations of P2 autocorrelations (Figures S4 and S5)

showed that the lipids are able to maintain their relative
orientation with respect to some director only at high water
concentrations, which is consistent with the correlated diffusion
behavior found for nearby lipids in water concentrations above
50%. This further supports our observation that the local
nanostructuring that does occur in dry systems is of a transient
nature.

■ CONCLUSIONS
Coarse grained molecular dynamics simulation is a step toward
virtual screening of nanostructures and phase transition of lipid-
based drug delivery systems. For the systems studied herein we
observed nanostructures of lipids, that are dynamic in
composition and over time, in the dry formulation. These
structures provide an explanation to previous experimental data
on drug loading capacity of LBFs. As the amount of water is
increased, the simulation systems undergo a phase transition

into separate lipid and water phases. At a water content
mimicking a dispersed lipid-filled capsule after intake with a
glass of water, these lipid phases are ordered on several levels.
In contrast to AA simulations, coarse-graining has the
advantage that it drastically reduces computation times and
enables studies of drug disposition, partitioning, and solubility
at relevant physiological conditions since larger box sizes can be
explored. Hence, we view CG molecular dynamics as a way
forward to computationally screen molecular interactions
between water, drug molecules, and components of complex
formulations such as LBFs.
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(7) Roǵ, T.; Murzyn, K.; Pasenkiewicz-Gierula, M. Chem. Phys. Lett.
2002, 352, 323.
(8) Warren, D. B.; King, D.; Benameur, H.; Pouton, C. W.; Chalmers,
D. K. Pharm. Res. 2013, 30 (12), 3238.
(9) Birru, W. A.; Warren, D. B.; Headey, S. J.; Benameur, H.; Porter,
C. J. H.; Pouton, C. W.; Chalmers, D. K. Mol. Pharmaceutics 2017, 14
(3), 566.

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.7b00397
Mol. Pharmaceutics 2017, 14, 4145−4153

4152

http://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.7b00397/suppl_file/mp7b00397_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.7b00397
http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.7b00397
http://pubs.acs.org/doi/suppl/10.1021/acs.molpharmaceut.7b00397/suppl_file/mp7b00397_si_001.pdf
mailto:larsson.r.per@gmail.com
http://orcid.org/0000-0002-8418-4956
http://www.imi.europa.eu
http://dx.doi.org/10.1021/acs.molpharmaceut.7b00397


(10) Birru, W. A.; Warren, D. B.; Han, S.; Benameur, H.; Porter, C. J.
H.; Pouton, C. W.; Chalmers, D. K. Mol. Pharmaceutics 2017, 14 (3),
580.
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