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High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is

effective in suppressing the motor symptoms of Parkinson’s disease (PD). Current

clinically-deployed DBS technology operates in an open-loop fashion, i.e., fixed

parameter high-frequency stimulation is delivered continuously, invariant to the needs

or status of the patient. This poses two major challenges: (1) depletion of the

stimulator battery due to the energy demands of continuous high-frequency stimulation,

(2) high-frequency stimulation-induced side-effects. Closed-loop deep brain stimulation

(CL DBS) may be effective in suppressing parkinsonian symptoms with stimulation

parameters that require less energy and evoke fewer side effects than open loop

DBS. However, the design of CL DBS comes with several challenges including the

selection of an appropriate biomarker reflecting the symptoms of PD, setting a suitable

reference signal, and implementing a controller to adapt to dynamic changes in the

reference signal. Dynamic changes in beta oscillatory activity occur during the course

of voluntary movement, and thus there may be a performance advantage to tracking

such dynamic activity. We addressed these challenges by studying the performance

of a closed-loop controller using a biophysically-based network model of the basal

ganglia. The model-based evaluation consisted of two parts: (1) we implemented a

Proportional-Integral (PI) controller to compute optimal DBS frequencies based on

the magnitude of a dynamic reference signal, the oscillatory power in the beta band

(13–35Hz) recorded from model globus pallidus internus (GPi) neurons. (2) We coupled

a linear auto-regressive model based mapping function with the Routh-Hurwitz stability

analysis method to compute the parameters of the PI controller to track dynamic

changes in the reference signal. The simulation results demonstrated successful tracking

of both constant and dynamic beta oscillatory activity by the PI controller, and the PI

controller followed dynamic changes in the reference signal, something that cannot be

accomplished by constant open-loop DBS.

Keywords: closed-loop deep brain stimulation, Parkinson’s disease, beta band activity, proportional-integral

controller, Routh-Hurwitz stability analysis
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INTRODUCTION

Parkinson’s disease (PD) is characterized by degeneration of
dopaminergic neurons in the substania nigra pars compacta
(SNc) resulting in motor symptoms including bradykinesia, rest
tremor, postural instability, and rigidity (Davie, 2008; Jankovic,
2008). High-frequency deep brain stimulation (DBS) of the
subthalamic nucleus (STN) or globus pallidus internus (GPi) is a
well-established surgical therapy to treat the motor symptoms of
PD (Krack et al., 2003; Rodriguez-Oroz et al., 2005; Odekerken
et al., 2016). Current clinical DBS technology is open loop—
stimulation is always on and the stimulation parameters are
tuned periodically through manual adjustments by health care
professionals. The process of selection of DBS parameters is
challenging due to the large number of parameters (Kuncel and
Grill, 2004). Therefore, the efficacy of current open-loop DBS
may be suboptimal and patients can experience side effects,
including speech deficits and cognitive dysfunction (Deuschl
et al., 2006; Okun and Foote, 2010; Massano and Garrett, 2012;
Cyron, 2016).

Recent clinical studies suggest that closed-loop DBS (CL DBS)
may be more efficient at suppressing PD motor symptoms with
reduced side effects as compared to continuous high-frequency
STNDBS (Rosin et al., 2011; Carron et al., 2013; Hebb et al., 2014;
Rossi et al., 2016). However, the design of CL DBS controllers
comes with several challenges including selection of a feedback
signal reflecting PD symptoms and the capacity of the controller
to adapt to dynamic changes in the reference signal (Hebb et al.,
2014; Arlotti et al., 2016a; Parastarfeizabadi and Kouzani, 2017).
Concurrent neuronal recordings and behavioral assessments
from PD patients and animal models of PD showed a strong
correlation between beta band oscillations (13–35Hz) and PD
motor symptoms, especially bradykinesia (Zaidel et al., 2010;
Jenkinson and Brown, 2011; Little and Brown, 2012; Hoang et al.,
2017), and beta band activity may be an appropriate feedback
signal for CL DBS. However, beta oscillations in the basal ganglia
desynchronize in preparation and during voluntary movement
(Levy et al., 2002; Brittain and Brown, 2014). Therefore, a fixed
beta power reference may not be appropriate for control of DBS,

FIGURE 1 | (A) The CL DBS framework. The spike times of model neurons in the GPi were calculated, and the beta band power of these spike times was used as the

feedback signal y (k). The error term e (k) between the desired beta power ysp (k) and actual value y (k) was input to the PI controller to calculate the stimulation

frequency u (k). The stimulation signal Idbs (t) delivered to the cortex-basal ganglia-thalamus network model was subsequently determined. (B) The transformed linear

system of the CL DBS system. This transformed linear system was used to determine the appropriate parameters for the PI controller, and the PI parameters were

constant once calculated.

and it may be beneficial to include in the controller design the
ability to adapt to dynamic changes in the reference signal.

The objective of this study was to design a controller for
CL DBS that can adapt to dynamic changes in the reference
signal. We evaluated the performance of a proportional integral
(PI) controller using a network model of the basal ganglia (BG)
(Kumaravelu et al., 2016). The parameters of the PI controller
were tuned by coupling a linear controlled auto-regressive
(CAR) model with Routh-Hurwitz stability analysis. The PI
controller was successful in adapting to dynamic changes in the
reference signal, and such a control scheme may be suitable for
implementation in CL DBS systems.

METHODS

A block diagram of the proposed CL DBS framework is shown
in Figure 1A. The signal power of model neuron activity in
the beta band was used as the feedback signal y

(

k
)

, and the
error e

(

k
)

between the actual beta power and the desired beta
power ysp

(

k
)

was sent to the PI controller to calculate the
stimulation frequency u

(

k
)

. Thus, the PI controller calculated
the DBS frequency according to the variation of beta oscillatory
power. The calculated DBS frequency determined the time of the
next stimulation pulse Idbs (t) delivered to a biophysical network
model of the parkinsonian cortex-basal ganglia-thalamus (CTx-
BG-Th) network. The selection of appropriate PI controller
parameters was required for the actual beta power to track
dynamic variations in the desired power. Below we propose
a stability analysis method to calculate automatically the
PI parameters.

Computational Model of the Cortex-Basal
Ganglia-Thalamus Network
We used a model of the CTx-BG-Th network as a test bed
to evaluate the performance of the closed-loop control scheme
(Kumaravelu et al., 2016), and a implementation of this model in
MATLAB can be downloaded from ModelDB (https://senselab.
med.yale.edu/modeldb/). The CTx-BG-Th model included the
cortex, striatum, STN, globus pallidus externus (GPe), GPi
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and a thalamic nucleus, and each region was comprised
of 10 single-compartment Hodgkin-Huxley type neurons. In
the original publication, the model was validated extensively,
including matching the responses evoked in the basal ganglia
by cortical stimulation in rats (Kita and Kita, 2011), model
neuron firing rates and patterns that were consistent with
parkinsonian rats (Mallet et al., 2008), and responses to STN
DBS at different frequencies that matched those measured
experimentally (McConnell et al., 2012; So et al., 2012).Model BG
neurons exhibited exaggerated low-frequency oscillatory activity
in the parkinsonian state compared to the healthy condition,
similar to that seen in vivo. Since, beta oscillatory activity
is well-correlated with PD symptoms (Leventhal et al., 2012;
Stein and Bar-Gad, 2013), we chose the beta band (13–35Hz)
power present in the activity of the GPi neurons as the model-
based proxy for symptoms (Brocker et al., 2013) to evaluate
the effectiveness of the CL DBS controller. There is a strong
correlation between single unit firing and LFPs in the beta
band in the STN (Levy et al., 2002; Kühn et al., 2005) and
in the GP (Goldberg et al., 2004), and the power spectrum
calculated from the single unit spike times of GP neurons was
correlated with motor symptoms of parkinsonism (McConnell
et al., 2012). Simulations were implemented in MATLAB R2016a
and equations were solved using the forward Euler method with a
time step of 0.01ms; spectral analyses were performed using the
“mtspecgrampt” function of the Chronux neural signal analysis
package (chronux.org) (sliding 1 s window, 0.1 s step size and [3
5] tapers (3 is the time-bandwidth product and 5 is the number
of tapers)). The spectrum of all 10 GPi neurons spike time series
was calculated using the multi-taper spectral estimation method.

Identification of Relationship Between
Stimulation Frequency and Beta Band
Power of GPi Model Neurons Spike Times
The oscillations within the CTx-BG-Th network were similar
across the different parts of the loop (Kumaravelu et al., 2016), for
STN, GPi, and GPe both single neuron and local field potentials
(LFPs) exhibited excessive beta band oscillation in the PD state,
while for thalamus and cortex single neuron oscillation were not
dominant (Stein and Bar-Gad, 2013). The beta band power of GPi
model neurons spike times was chosen to characterize the model
state. The dynamics of the CTx-BG-Th network were highly
non-linear and therefore it was inappropriate to use the linear
PI controller to control directly the network model of PD. A
linear model of the plant between the stimulation frequency and
the beta band power of GPi model neuron spike times was first
identified using a CARmodel. The structure of a CARmodel was

(

1+ a1z
−1 + a2z

−2 + · · · + anaz
−na

)

y
(

k
)

=
(

b0 + b1z
−1 + b2z

−2 + · · · + bnbz
−nb

)

u
(

k
)

+ ε
(

k
)

(1)

where z was the lag operator, u
(

k
)

was the input signal
(stimulation frequency) and y

(

k
)

was the output signal (beta
power of GPi model neuron spike times), nb and na were the
order of input and output sequences, respectively, and ε

(

k
)

was
assumed to be white noise. The identification process included
the following steps:

1. Collect input and output data from the CTx-BG-Th
network model.

2. Estimate model parameters a1 · · · ana and b0 · · · bnb .
3. Choose appropriate order parameters na and nb.
4. Quantify the prediction accuracy of the CAR model.

The identification accuracy of the CAR model was highly
dependent on the input output data that were selected, because
not all data provided an equal amount of information (Ljung,
1999). The designed stimulation sequence was delivered to the
CTx-BG-Th model (in the open loop), and the corresponding
output data (beta band power) was calculated. To obtain more
informative input/output data to identify the CAR model, the
frequencies (input data) of the stimulation waveform were
chosen randomly between 5 and 200Hz. Figure 2A illustrates
the stimulation sequence from 12 to 16 s, illustrating that
each frequency continued for 0.4 s to ensure that at least
two pulses were delivered for each random frequency. The
simulation duration was 400 s, resulting in responses to 1,000
frequency samples. The stimulation sequence was delivered to the
computational model of the CTx-BG-Th network, and spiking
activity was recorded fromGPimodel neurons. The time window
used to bin the beta power of GPi spike times was sensitive
to the temporal dynamics of beta power when the stimulation
frequencies were randomly changed (Figure 2C). Differences in
beta power across time window bins were compared using one-
way ANOVAwith post-hocTukey’s honestly significant difference
(HSD) test, and statistical significance was defined as α = 0.05.
The beta power varied across different time window bins (F =

252.54, p < 0.0001). When the time window bin was larger than
0.1 s, the calculated beta power was no <1.6 times the value with
time window bin equaled to 0.1 s. The choice of the short 0.1 s bin
enabled capture of small dynamic changes in beta power, as our
objective was to implement a controller that responded to such
changes. Bin sizes of 0.2 s or longer did not reflect the dynamic
variation of the beta power, as indicated by the invariance to bin
size. Since each frequency was delivered for 0.4 s and the bin
used to calculate beta power was 0.1 s, the beta power obtained
in Figure 2B was the average of four values within 0.4 s.

We used the recursive least squares (RLS) method
(Ljung, 1999) to estimate the CAR model parameters.
The CAR model was transformed into a standard LS form
(Ljung, 1999),

y
(

k
)

= −a1y
(

k− 1
)

− a2y
(

k− 2
)

− · · · − anay
(

k− na
)

+b0u
(

k
)

+ b1u
(

k− 1
)

+ b2u
(

k− 2
)

+ · · ·

+bnbu
(

k− nb
)

+ ε
(

k
)

= ϕT
(

k
)

θ+ε
(

k
)

(2)

where ϕ
(

k
)

=
[

−y
(

k− 1
)

, · · · ,−y
(

k− na
)

, u
(

k
)

, · · · , u
(

k−

nb)]
T was the known sequence of input and output data, and

θ=
[

a1, a2, · · · , ana , b0, b1, · · · , bnb
]T

was the vector of unknown
model parameters. From Equation (2), the current value of the
output signal was correlated with the past input and output
signals as well as the current input signal. Then, unknown model
parameters were estimated by the RLS method,

ye
(

k
)

= ϕT
(

k
)

θ̂ (3)
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FIGURE 2 | The stimulation sequence (A) and beta band power (B) obtained

from the CTx-BG-Th network model to train the CAR model. Only data from

12 to 16 s are presented to improve visualization. (A) The stimulation

frequency was randomly selected from 5 to 200Hz, and for each frequency

the corresponding stimulation sequence lasted for 0.4 s. (B) Circles represent

the beta power value in each 0.1 s, the collected beta power within 0.4 s was

the average of four values. (C) Mean ± standard deviation of beta power of

GPi model neuron spike times plotted as a function of time window bin (50

trials). The mean value of beta power varies across different time window bin

values, and values not sharing the same letter were significantly different (p <

0.05, Tukey’s HSD).

where θ̂ was the estimated parameter vector calculated using the
following equations:















θ̂
(

k
)

= θ̂
(

k− 1
)

+ K
(

k
)

[

y
(

k
)

− ϕT
(

k
)

θ̂
(

k− 1
)

]

K
(

k
)

=
P(k−1)ϕ(k)

1+ϕT(k)P(k−1)ϕ(k)
P

(

k
)

=
[

I − K
(

k
)

ϕT
(

k
)]

P
(

k− 1
)

(4)

The root mean square error (RMSE) between the actual output
signal and the CAR model predicted output signal was used to
quantify the prediction accuracy of the CAR model,

eRMSE =

√

1

N

∑N

k=1

(

y
(

k
)

− ye
(

k
))2

(5)

The eRMSE declined as the CAR model order (na and nb) was
increased (Figure 3A). Since the purpose of the identified CAR

model was to design the PI controller but not to substitute for the
original CTx-BG-Th network model, we were not interested in
higher-order dynamics. Akaike’s information criterion (AIC) was
used to select the model order (McQuarrie and Chih-Ling, 1998),

AIC =
2K − 2L

N
+

2K (K + 1)

N − K − 1
(6)

where K = na + nb + 1 was the number of parameters to
be estimated, N was the length of predicted data, and L =

−N
2 ln (2π) − N

2 ln
(

eRMSE
2

N

)

− N
2 . When na = 3 and nb = 3

the valued of AIC was minimized, thus, the structure of the CAR
model was

ye
(

k
)

= −a1ye
(

k− 1
)

− a2ye
(

k− 2
)

− a3ye
(

k− 3
)

+b0u
(

k
)

+ b1u
(

k− 1
)

+ b2u
(

k− 2
)

+b3u
(

k− 3
)

(7)

and the corresponding estimated CAR model parameters in each
iteration are shown in Figure 3B.

Selection of PI Controller Parameters
Although a common Proportional-Integral-Differential (PID)
controller has three control terms (P, I, and D), we only chose
the P and I terms, because the D action is sensitive to the model
prediction accuracy (Aström and Hägglund, 1995). With the
selected CAR model, eRMSE = 27.9, there were still prediction
error, and the D term was not used due to these inaccuracies
of the CAR model. The transformed system with the CAR
model substituted for the network model was used to choose the
parameters of the PI controller (Figure 1B).

The structure of a discrete PI controller was (Aström and
Hägglund, 1995),

u
(

k
)

= u
(

k− 1
)

+ kp
[

e
(

k
)

− e
(

k− 1
)]

+ kie
(

k
)

(8)

and the aim was to select the P term and I term coefficients,
kp and ki. The Routh-Hurwitz stability criterion (Gopal, 2002)
was used to calculate automatically the PI parameters, where the
selected PI controller must ensure the stability of the system. The
forward transfer function of this system (Figure 1B) is given by
Equation (9).

G (z) =
Y (z)

E (z)
=

Y (z)

U (z)
·
U (z)

E (z)
=

b0z
3 + b1z

2 + b2z + b3

z3 + a1z2 + a2z + a3
·

(

kp + ki
)

z − kp

z − 1

=
b0

(

kp + ki
)

z4 +
[

b1
(

kp + ki
)

− b0kp
]

z3 +
[

b2
(

kp + ki
)

− b1kp
]

z2 +
[

b3
(

kp + ki
)

− b2kp
]

z − b3kp

z4 + (a1 − 1) z3 + (a2 − a1) z2 + (a3 − a2) z − a3
(9)

The closed-loop transfer function was

Φ (z) =
G (z)

1+ G (z)
(10)
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FIGURE 3 | (A) The relationship between the CAR model order parameters (na and nb) and the RMS error (eRMSE ) between the actual output signal and the CAR

model predicted output signal. (B) The estimated CAR model parameters across iterations to minimize eRMSE.

The characteristic equation of this system was

D (z) = 1+ G (z) =
[

1+ b0
(

kp + ki
)]

z4 + [(a1 − 1)

+b1
(

kp + ki
)

− b0kp
]

z3 +
[

(a2 − a1) + b2
(

kp + ki
)

−b1kp
]

z2 +
[

(a3 − a2) + b3
(

kp + ki
)

− b2kp
]

z − a3 − b3kp = 0 (11)

According to the Routh-Hurwitz stability criterion, we
substituted z with w, where z = w+1

w−1 , and the variable of
the characteristic equation became w.

D (w) = m4

(

w+ 1

w− 1

)4

+m3

(

w+ 1

w− 1

)3

+m2

(

w+ 1

w− 1

)2

+m1

(

w+ 1

w− 1

)

+m0 = 0 (12)

Combining Equations (11) and (12),m4 = 1+b0
(

kp + ki
)

,m3 =

(a1 − 1) + b1
(

kp + ki
)

− b0kp, m2 = (a2 − a1)+b2
(

kp + ki
)

−

b1kp, m1 = (a3 − a2) + b3
(

kp + ki
)

− b2kp, m0 = −a3 − b3kp.

Then multiplying both sides of Equation (12) by (w− 1)4, such
that, (w− 1)4 D (w) = n4w

4 + n3w
3 + n2w

2 + n1w + n0 = 0,
that is,

D1 (w) = n4w
4 + n3w

3 + n2w
2 + n1w+ n0 = 0 (13)

where n4 = m0+m1+m2+m3+m4, n3 = −4m0−2m1+2m3+

4m4, n2 = 6m0 − 2m2 + 6m4, n1 = −4m0 + 2m1 − 2m3 + 4m4,
n0 = m0 −m1 +m2 −m3 + m4.

The stability of this system was equivalent to the
following conditions:

ni > 0 (i = 0, 1, 2, 3, 4) , n3n2 > n4n1, n3n2n1 > n4n
2
1 + n23n0

(14)

Combining Equations (11)–(13), nicould also be described as
a function of kp and ki, and to ensure that all conditions in
Equation (14) were satisfied, we chose kp = 0.80, ki = 0.05.

Closed-Loop Frequency Modulation
Considering the established physiological responses to different
pulse repetition frequencies of DBS (Birdno and Grill, 2008),

we constrained the calculated stimulation frequency to between
5 and 200Hz. When the calculated frequency was larger than
200Hz, it was set to 200Hz; when the calculated frequency was
<5Hz, it was set to 5 Hz.

u
(

k
)

=







5 u
(

k
)

< 5

u
(

k− 1
)

+ kp
[

e
(

k
)

− e
(

k− 1
)]

+ kie
(

k
)

5 ≤ u
(

k
)

≤ 200

200 u
(

k
)

> 200

(15)

The stimulation frequency was calculated using the PI controller,
which required knowledge of the beta power at the kth and
(k-1)th time points. The beta power of the kth time point was
calculated from (t−0.1) s to t s, the beta power of the (k-1)th time
point was calculated from (t1-0.1) s to t1 s. The time difference
between t and t1 was 0.008 s. Note this was not the time step for
the controller to update the DBS frequency, and the controller
updated the DBS frequency only after the former interpulse
interval ended.

RESULTS

Prediction Performance of the CAR Model
The performance of the CAR model during the model training
process is shown in Figure 4A. The correlation coefficient
between the actual and estimated data in the model training
process was r

(

y, ye
)

= 0.84. In addition, we generated different
sequences of random stimulation frequencies, and delivered
the corresponding stimulation signals to the network model
to calculate the resulting sequences of beta power. The same
sequences of stimulation frequencies were also delivered to
the trained CAR model. The prediction performance of the
trained CAR model on two example data sequences is shown
in Figures 4B,C. In this testing phase, the correlation coefficient
between the two outputs were r

(

y, ye
)

= 0.82 and r
(

y, ye
)

=

0.80. Thus, the prediction accuracy of the CARmodel was∼80%.
To create a quantitative comparator for the prediction

accuracy of the identified CAR model, we delivered an identical
test stimulation signal to the CTx-BG-Th network model five
times. The mean correlation coefficient among any two output
datasets was 0.95. Since the CTx-BG-Th was highly non-linear,
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FIGURE 4 | The prediction performance of the CAR model during model training (A) and testing (B,C). The datasets used to train and test the CAR model were

generated as described in section Computational Model of the Cortex-Basal Ganglia-Thalamus Network. The black line represented the beta power calculated from

the original CTx-BG-Th network model, and the red line represented the beta power data predicted by the identified CAR model.

FIGURE 5 | The relationship between DBS frequency and the beta band power of GPi model neuron spike times. Standard error bars are shown for 50 trials. The

dotted line labels the 110 target beta power value.

while the structure of the CAR model presented here was linear,
the difference between 0.95 and 0.8 may reflect the unmodeled
non-linear dynamics between the stimulation frequency and the
beta power. However, since our aim in identifying the CARmodel
was as a tool to design the PI controller, the 80% accuracy was
deemed sufficient.

Tracking of Constant Beta Power
The relationship between the DBS pulse repetition frequency and
the beta power of GPi model neuron spike times in the CTx-
BG-Th model is shown in Figure 5. The beta band power in
the healthy and PD states of the CTx-BG-Th model were 162
and 222.5, respectively. Similar to the effects of DBS frequency

on motor symptoms (Birdno and Grill, 2008), reductions in
beta band oscillatory activity were observed only for higher
frequencies of DBS. The target beta power was selected to be
110, which was approximately the value generated by DBS at
115Hz. When the stimulation frequency was larger than 100Hz,
the variations of beta power with changes in frequency were quite
small, and the selection of a specific beta power target level had
no particular impact on the results.

The spectrograms of the spike times from model GPi, GPe,

and STN neurons in the parkinsonian condition, during 115Hz
DBS, and during CL DBS are shown in Figure 6. Under the

parkinsonian condition, the model neurons in these three nuclei
exhibited oscillatory activity around 20Hz. During the 115Hz
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FIGURE 6 | Spectrograms of the spike times from model GPi, GPe, and STN neurons in the normal (A), parkinsonian condition (B), during 115Hz DBS (C), and

during CL DBS (D). In the parkinsonian condition, all neurons exhibited excessive oscillatory activity compared with the normal condition. The 115Hz DBS and CL

DBS began at t = 2 s, and greatly reduced the beta band oscillatory activity.

DBS and CL DBS cases, stimulation began at t = 2 s, after which
the oscillatory activity rapidly diminished. CL DBS produced
intermittent oscillatory activity in model STN neurons in the low
frequency band (3–12Hz), which was 6.2 times larger than the
lower frequency power present during open loop DBS (OL DBS)
at 115Hz. The dynamic sequence of stimulation frequencies
during CL DBS (Figure 7A) exhibited peaks in the power
spectrum both around 115Hz and between 3 and 12Hz. DBS
(Figure 7D). The stimulation signal power 3–12Hz generated
oscillatory activity in model STN neurons in the low frequency
band that was larger than during 115Hz OL DBS. Thus, although
both stimulation methods reduced the power in the beta band,
they may act through different mechanisms.

The variations of DBS frequency and the corresponding
changes in beta band power in model GPi neurons during CL

DBS are shown in Figures 7A,B, respectively. The stimulation
began at t = 2 s, the initial stimulation frequency was set
to 5Hz, and the CL DBS system calculated the subsequent
frequencies automatically to drive the beta band power to the
target of 110. The mean stimulation frequency from 2 to 30 s
was 118.7Hz, and the mean beta power from 2 to 30 s was
114.3, while the mean beta power during OL DBS from 2 to
30 s was 111.3 (Figure 7C). Compared to OL DBS at 115Hz,
the CL DBS controller generated a wider distribution of power
in the stimulation frequency sequence (Figure 7D), and the
power present in the low frequency band of the stimulation
signal generated low frequency power in STN model neurons
during CL DBS (Figure 6D). The response time was shorter
for open loop 115Hz DBS (0.09 s) than for CL DBS (0.66 s);
however, the response time was strongly dependent on the initial

Frontiers in Neuroscience | www.frontiersin.org 7 September 2019 | Volume 13 | Article 956

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Su et al. Model-Based Evaluation of Closed-Loop DBS

FIGURE 7 | Variations of DBS frequency (A) and beta power of spike times from model GPi neurons during CL DBS (B) and regular 115Hz DBS (C). The stimulation

signal began at t = 2 s, and the beta power converged to the target of 110 at t = 2.66 s in (B) and at t = 2.09 s in (C). (D) The corresponding spectral power of the

stimulation sequence for this CL DBS example. (E) The relationship between the initial frequency of the CL controller and response time in the CL DBS system. The

initial frequency of CL DBS was randomly selected from a uniform distribution between 5 and 200Hz, and the corresponding response time was calculated across

200 trials.

value of frequency during CL DBS (Figure 7E). As the initial
frequency was increased the response time decreased, and when
the initial frequency was ≥60Hz, the response time for CL DBS
was <0.15 s.

To assess the robustness of the PI controller, we changed the
target beta power while keeping the PI parameters unchanged
(Figure 8A). Figures 8B–E illustrate the stimulation frequency
and beta power variation when the desired beta power was 140
and 180, respectively. When the target beta power was 140, the
response time was 0.89 s, and the mean stimulation frequency
was 74Hz. When the target beta power was 150, the response
time was 1.15 s, and the mean stimulation frequency was 56Hz.
When the target beta power was larger than 160, the tracking

performance declined. Thus, as the desired beta power was larger,
the convergence time of GPi beta power became longer. When
the target beta power was set to 60 (i.e., a value not achievable
with OL DBS, Figure 5), the calculated stimulation frequency
varied between 155 and 200Hz (mean= 177.8Hz), themean beta
power from 2 to 30 s was 82.3, and with OL DBS at 177.8Hz, the
mean beta power was 87.91.

Tracking of Dynamic Changes in Target
Beta Power
Beta power in the BG exhibits dynamic changes prior to and
during voluntary movement and a fixed target beta power may
not be appropriate for functional control of DBS.
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FIGURE 8 | Performance of the PI controller across different levels of target beta power. (A) The dotted line represented the value of desired beta power, and the solid

line represented the value of controlled beta power; standard error bars are shown for 50 trials. The variation of DBS frequency and beta power of model GPi neuron

spike times when the desired beta power was 140 (B,C) and 180 (D,E), respectively. The red solid line in (C,E) are the desired beta power value. The red dotted line

in (C,E) indicate the time when the controlled beta power reached the desired beta power.

Therefore, we tested the performance of the control system
with time-varying beta power. According to Figure 5, when
the stimulation frequency of regular DBS increased from 50
to 130Hz, the GPi beta band power decreased gradually from
220 to 110, and the beta band power tended to saturate at
DBS frequencies larger than 130Hz. Therefore, the target values
randomly selected from a uniform distribution between 110
and 220. The duration of the target value varied from 10 to
1 s (Figures 9a1–h1). The correlation coefficient between the
target beta power and actual beta power between 3.5 and 30 s
was calculated, as this mitigated the confounding effects of the
initial stimulation frequency. The tracking performance of the
CL DBS declined with the duration of the target value, and
when the duration was 10, 5, 2, 1, and 0.5 s, the correlation
coefficients were 0.83, 0.82, 0.71, 0.69, and 0.49, respectively.
Sinusoidal trajectories of target beta power with frequencies
ranging from 0.05 to 1 Hz were also tested. The BG model can
generate beta power between 90 and 200 during regular DBS, and
the minimum and maximum amplitude of the target sinusoidal
trajectories were therefore set to be 90 and 200, respectively.
The tracking performance and variation of stimulation frequency
of the CL DBS system are shown in Figures 9a2–h2, and the
correlation coefficient between the actual beta power and the
target trajectory was used to quantify the tracking accuracy.
The tracking performance declined with the increase in target
sinusoidal frequency, and the correlation coefficient was 0.85,
0.65, 0.49, and 0.17 for sinusoidal frequencies of 0.05, 0.3, 0.5,
and 1 Hz, respectively.

DISCUSSION

Beta band oscillatory activity in the BG is correlated with motor
symptoms in PD and may be a suitable biomarker for CL
DBS in PD (Little and Brown, 2012; Hoang et al., 2017). For
example, Arlotti et al. (2016b) and Little et al. (2013) used the
beta oscillation amplitude to control the on time of DBS. DBS
was delivered only when the beta-band oscillation amplitude
was larger than a pre-set threshold, which reduced energy
consumption compared to continuous DBS, while increasing the
therapeutic effects on motor symptoms. Subsequently, Dan et al.
demonstrated that this approach was also effective in a PD patient
with chronically implanted DBS (Piña-Fuentes et al., 2017). In
complementary modeling studies, Grant and Lowery designed a
CL DBS system to modulate the amplitude of DBS based on beta
band oscillations of LFPs, where the coupling strength within the
cortico-basal ganglia network was altered to illustrate the ability
of CL DBS to respond to changes in network activity (Grant and
Lowery, 2013).

However, beta oscillatory activity exhibits dynamic changes

(desynchronization) during movement, and Johnson et al. found

that a constant beta set point may not be suitable as CL DBS

performed poorly during reaching behavior (Johnson et al.,
2016). Therefore, if beta power is to be used as a feedback control
signal, a constant reference value might not be appropriate. In
more recent studies, DBS voltage was adjusted proportionally to
the STN LFP beta power, and this adaptive DBS reduced side
effects compared to traditional open-loop DBS (Rosa et al., 2015;
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FIGURE 9 | (a1–h1) The performance of the PI controller tracking dynamic changes in target beta power and the corresponding variation in stimulation frequency by

the CL DBS system. The duration of the target beta power was 10 s (a1), 5 s (c1), 2 s (e1) and 1 s (g1), respectively. The black line represents the desired beta power,

and the red line represents the actual beta power during CL DBS. (b1,d1,f1,h1) show the respective variations in stimulation frequency during CL DBS. When the

duration of target beta power declined from 10 to 0.5 s, the correlation coefficients between the desired and actual beta power were 0.83, 0.82, 0.71, 0.69, 0.49,

respectively. (a2–h2) The performance of the PI controller tracking sinusoidal trajectories at different frequencies and the associated DBS frequencies determined by

the CL controller. The black line in (a2,c2,e2,g2) represented the desired beta power, and the red line represented the actual beta power. When the frequency of

target sinusoidal trajectories increased from 0.05 to 1Hz, the correlation coefficients between the desired and actual beta power were 0.85, 0.65, 0.49, and 0.17,

respectively. Sinusoidal trajectories of target beta power with frequencies ranging from 0.05 to 1Hz were also tested. The BG model can generate beta power

between 90 and 200 during regular DBS, and the minimum and maximum amplitude of the target sinusoidal trajectories were therefore set to be 90 and 200,

respectively. The tracking performance and variation of stimulation frequency of the CL DBS system are shown in (a2–h2), and the correlation coefficient between the

actual beta power and the target trajectory was used to quantify the tracking accuracy. The tracking performance declined with the increase in target sinusoidal

frequency, and the correlation coefficient was 0.85, 0.65, 0.49, and 0.17 for sinusoidal frequencies of 0.05, 0.3, 0.5, and 1Hz, respectively.

Arlotti et al., 2018). In another alternative to simply reducing
oscillatory activity below a fixed threshold, Santaniello et al.
automatically adjusted the stimulation voltage in a mathematical
model to match a desired profile of oscillatory neuronal activity
(Santaniello et al., 2011). During go/no-go voluntary movements,
dynamic changes in beta band power occur at 0.3–1Hz (Sanes
and Donoghue, 1993; Zaepffel et al., 2013). The proposed
controller could track dynamic changes slower than 1Hz, and
thus such an approach may account for the dynamic changes
in beta oscillatory power that occur during movement. Instead
of simply switching the stimulation on and off, or adjusting the
stimulation amplitude, the controller regulated the stimulation
frequency in real time. If the variation in beta band power
during a wide range of movements was known a priori, such a
closed-loop system that modulates stimulation frequency to track
dynamic beta oscillatory activity may facilitate a wide range of
individual patient motor behaviors.

The proposed closed-loop stimulation algorithm was
simulated using a validated CTx-BG-Th model (Kumaravelu
et al., 2016). There are several other potential models of the

network effects of DBS, which might be used for development
and evaluation of closed-loop controllers. Hahn and McIntyre
developed a network model of the effects of DBS in the STN of
the parkinsonian non-human primate, and demonstrated that
effective DBS suppressed burst activity in the GPi (Hahn and
McIntyre, 2010). Subsequently, Holt and Netoff implemented
a mean field version of this model and analyzed the effects of
different frequencies of DBS (Holt and Netoff, 2014). Similarly,
Santaniello et al. (2015) implemented a network model of
the effects of STN DBS in the parkinsonian non-human
primate and demonstrated the importance of both antidromic
and orthodromic activation. We selected the Kumaravelu
et al. network model because it replicated a wide range of
electrophysiological data from the unilateral 6-OHDA lesioned
rat model of PD (Kumaravelu et al., 2016) thereby facilitating
subsequent in vivo evaluation of the controller.

The proposed CL DBS controller was successful at regulating
the beta oscillatory activity of spike times of model GPi
neurons to track different beta reference values. The stimulation
frequency was automatically calculated by the PI controller, and
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PI parameters were calculated using stability analysis of the
system rather than trial-and-error adjustment (Gorzelic et al.,
2013). However, there were several potential limitations of the
proposed CL DBS method. The identified linear CAR model
described only 80% of the relationship between the stimulation
frequency and the beta power. Therefore, although the PI
controller was robust to changes in the reference beta power,
the dynamic changes in beta power could be tracked well only
at frequencies of ≤1Hz. When the target beta power changed
faster than 1Hz, the tracking error increased, likely as a result of
the unmodeled dynamics. In subsequent trial-and-error tuning,
it appeared that the best PI controller parameters were different
for different beta power targets. Thus, adaptive controllers that
modulate the PI controller parameters with the variation of
target beta power may improve the tracking performance for
dynamic reference signals. The CTx-BG-Th network was highly
non-linear, and performance might also be improved using a
non-linear controller. The beta oscillatory power was selected
as the biomarker in this study, however, other biomarkers
such as the spike time entropy (Dorval et al., 2008) and
phase amplitude coupling (de Hemptinne et al., 2015) are also
correlated with parkinsonian symptoms, and might be suitable
feedback control signals. The application of other biomarkers
or multiple biomarkers in the design of closed-loop stimulation
for PD is worth exploring (Hoang et al., 2017). The controller
regulated the stimulation frequency, but the effects of DBS are
also dependent on the pulse amplitude, pulse duration, and
stimulation pattern (Kuncel and Grill, 2004; Grill, 2018). Further,
Holt et al. demonstrated that the effects of burst DBS in a network
model of the basal ganglia (Hahn and McIntyre, 2010) were
strongly dependent on timing relative to the phase of oscillatory
activity (Holt et al., 2016).

We demonstrated successful tracking of different dynamic
beta power reference signals, and the simulated dynamic
targets could represent different movements of PD patients.
Thus, an important challenge to implement the proposed CL

DBS approach experimentally or clinically is to determine

the relationship between reference beta oscillation power and
the movement. In addition to real-time electrophysiological
recording, movement sensors might also be useful to establish the
dynamic reference signal.

CONCLUSION

CL DBS was proposed to reduce energy consumption and
alleviate side effects compared to continuous fixed-parameter
DBS. This requires design of a suitable closed-loop system that
can account for dynamic changes in the feedback signal that
occur during voluntary movement. We used the beta oscillatory
power of GPi model neuron spike times as a biomarker of
model state, and used a PI controller to calculate the DBS
frequency according to dynamic variations in the beta power.
This closed-loop adjustment of stimulation frequency approach
was tested in a computational model of the CTx-BG-Th network
and was able to track constant as well as dynamic beta
oscillatory activity.
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