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Rubella is a highly contagious and serious human disease caused by the rubella virus. It affects everyone around 
the world, but it is especially common in pregnant women and children. In particular, when pregnant women 
are infected with the rubella virus, it causes Congenital Rubella Syndrome (it transmit vertically from mother to 
fetus, which causes that the new born baby to inherit birth defect disease). In order to prevent this viral disease, 
children must receive an MMR (measles, mumps and rubella) vaccine twice. If children receive two doses of 
the vaccine, then they develop long life immunity (protected against rubella). Based on the biological behavior

of rubella disease, the SVPEIRS (susceptible, vaccinated, protected, exposed, infected, recovered) deterministic 
mathematical model of rubella disease dynamics is proposed. From the perspective of the qualitative behavior of 
the model, it is bounded in the invariant region and all the solutions of the compartment are positive. In addition, 
the equilibrium points and the stability of the equilibrium points (local and global) are also analyzed. The basic 
reproductive number is determined using a next-generation matrix. The results of the sensitivity analysis show 
that rubella is spread in a community if the values of contact rate, vertical transmission (neonatal infection) 
rate, exposure rate and rate of waning out of the first vaccinating dose are increase by keeping other parameters 
constant. On the other hand, increasing the first and second vaccination rate and treatment rate can help to 
control rubella in the community. Numerical simulation results show that due to the lack of protection for 
women before pregnancy, the number of infections increases with the birth of infected children, and the two 
doses of vaccine play a significant role in reducing and eliminating rubella. Therefore, to eliminate rubella in the 
community, healthcare and policymakers must pay attention to these parameters.

1. Introduction

Rubella, also known as German measles or three-day measles, is a highly contagious and severe human disease caused by the rubella virus 
(Banatvala and Peckham, 2006). This viral disease spreads from person to person through droplets released from the respiratory secretions of 
rubella-infected persons, touching tissues contaminated with the rubella virus, touching the urine of children infected with rubella and sharing a 
cup used by a rubella-infected person (Mawson and Croft, 2019). If pregnant women are affected by this virus, their newborn babies will inherit a 
birth defect disease called Congenital Rubella Syndrome (CRS). CRS leads to malformations, stillbirths, mental retardation, heart disease, diabetes, 
encephalitis, low birth weight, and deafness.

Up to 50% of rubella-infected people are asymptomatic, but if they do develop symptoms, they usually start on the face and spread to other parts 
of the body (WHO, 2012). A pink or red rash appears 14 to 17 days after exposure. Mild fever, fatigue, headache, encephalitis, miscarriage, pruritic, 
malaise, arthritic, muscular pain, pain in joints, polyarthritis, and loss of appetite are symptoms of this viral disease (Goodson et al., 2011; Mahdy 
et al., 2021). The MMR (Measles, Mumps, and Chickenpox) vaccine is the most recommended vaccine to prevent this infection and is considered 
eradicable (WHO, 2012). According to Centers for Disease Control and Prevention recommendations, children should be vaccinated twice with the 
MMR vaccine. The first dose of the vaccine is recommended between 12 and 15 months of age and provides greater than 95% immunity. The second 
dose of vaccine is recommended between 4 and 6 years of age and provides permanent immunity to the virus (Grant et al., 2019).
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About 12.5 million people were infected with rubella in the United States between 1964 and 1965 during the global rubella epidemic that began 
in Europe in 1962 (Plotkin, 2006). This complication includes 20,000 children born with CRS, 2000 cases of encephalitis, 11,250 cases of abortions, 
and 2,100 cases of infant deaths. In Africa, the estimated incidence of CRS is 246 per 100,000 people (Metcalf et al., 2012). According to Tamirat 
et al. (2017), between 2009 and 2015, about 2,615 people in Ethiopia were affected by rubella; most of them (52.2%) were female, and the ages of 
confirmed cases ranged from 1 month to 42 years. The highest recorded cases were in the hot and dry season from January to June, and the lowest 
cases in August and September (Getahun et al., 2016).

In the public health community, mathematical models are useful tools to describe and analyze dynamic behaviors, transmission mechanisms, 
predictive control strategies, and generate visualizations of infectious disease over time (Li, 2018). The concept of disease transmission and control 
is based on the mathematical rules used in the research planning process to provide information for the design of infectious diseases (Herzog et al., 
2017).

Many authors have studied the public health complications of rubella disease, the dynamics of its transmission, and developed different 
mathematical models to predict the control mechanisms. For instance, to study the rubella disease transmission with a vaccine, a deterministic 
mathematical model of rubella disease dynamics was formulated by Prawoto et al. (2020), where the total population was divided into five classes, 
namely: susceptible S(t), exposed E(t), infected I(t), recovered R(t) and vaccinated V(t) classes (SEIRV deterministic mathematical model). This study 
pointed out that rubella is a re-infectious viral disease. Al Qurashi (2020) also used fractional differential equations to optimize the sequence and 
developed mathematical model rubella disease dynamics by dividing the total population into four classes, namely susceptible S(t), exposed E(t), 
infected I(t), and recovered R(t). Koca (2018) proposed a SEIVR (susceptible-exposed-infected-vaccinated-recovered) model of rubella transmission 
based on non-singular and non-local fractional derivatives. Baleanu et al. (2020) modified the Koca model by replacing the derivative in time with 
the new Caputo Fabrizio fractional differential equation. The SEIVR mathematical model was developed by Yang and Freitas (2019) in order to 
study the biological perspective of vaccination and strategy to eliminate rubella and reduce CRS in the community. Van der Heijden et al. (1998) 
constructed a deterministic model based on the National Rubella Vaccination Program and the CRS assessment where the total population was 
divided into six classes: maternal antibody, susceptible S(t), vaccinated V(t), exposed E(t), infected I(t) and recovered R(t) classes.

As far as we know, no studies have been conducted on deterministic mathematical models of rubella disease dynamics under the consideration 
of vertical transmission and the second vaccine in their model. Therefore, in this study, the vertical transmission of rubella disease from mother to 
her fetus that occurs during pregnancy and the two-dose vaccine, in which a person who receives two doses of MMR vaccines will have permanent 
immunity (protected) for the rest of his/her life. The remaining part of this paper is organized as: In Section 2, the formulation and description of 
the model are discussed. In Section 3, the model analysis and sensitivity analysis are performed. In Section 4, the numerical simulation of the model 
is discussed. Finally, in Section 5, the discussion and conclusion of the study are presented.

2. Model formulation and description

Based on the behavior of rubella disease, the total population size at a given time t, denoted by N(t), is divided into six classes, namely: susceptible 
S(t), vaccinated V(t), protected P(t), exposed E(t), infected I(t) and recovered R(t) classes. The susceptible class consists of a group of individuals 
who have not yet been infected with rubella but are at risk of infection. The first vaccinated class consists of a group of individuals who have 
received the first dose vaccine. The protected class includes a group of individuals who have received second doses of the MMR vaccine and have 
active immunity, which means that individuals who have received two doses of the MMR vaccine will not get rubella disease in their lifetime (Grant 
et al., 2019). The exposed class is the class where susceptible individuals have contact with infected people and those infected but asymptomatic. 
Individuals classified as infected include a group of individuals who developed symptoms of rubella illness, and individuals classified as recovered 
are people who have acquired temporary immunity.

Individuals in the susceptible class will increase with the recruitment rate 𝜋, rate of the inflow of waning out of the first dose 𝜔 and the rate 
of immunity loss due to recovery of individuals at a rate of 𝜌. This class will be decreased by contacting infected individuals at a rate of 𝛽 and 
administering the first vaccine dose at a rate of 𝛼. The exposed class will be increased through contact with infected individuals at a rate of 𝛽
and decreased by breakthrough into the infected class at a rate of 𝜗. Individuals in the infected class will be increases at a rate of 𝜗 from exposed 
individuals and at a rate of 𝜃 due to the vertical transmission of the disease from mother to fetus. It will be decreased with deaths caused by rubella 
at a rate of 𝜀 and recovery rate at 𝛾 which is produced when infected individuals get rest, drink soft drinks, and take treatment under the doctor’s 
advice. When the first dose of vaccine is received at a susceptibility rate 𝛼, the number of vaccinated classes will be increased. Since the first dose 
of vaccine has been reduced, vaccinated individuals are rapidly entering the susceptible population at the rate 𝜔. This class will be decreased by 
receiving the second vaccine dose at a rate 𝛿. The protected class will be increased with the second dose of vaccine at a rate 𝛿. Due to natural death 
at a rate of 𝜇, all classes are decreased.

The model was developed under the following assumptions:

➢ If susceptible individuals make contact with the respiratory droplets of rubella-infected individuals, they will become exposed to rubella 
(Mawson and Croft, 2019).

➢ During pregnancy, vertical transmission occurs from mother to fetus.

➢ Individuals infected with rubella will recover or die due to rubella disease.

➢ The recovered and first-vaccinated individual is susceptible to rubella disease.

➢ An individual who receives the two doses of the MMR vaccine develops active immunity (Grant et al., 2019).

➢ All the parameters to be used in this model are positive.

By considering the above descriptions, assumptions, and interrelationships between compartments and parameters, the dynamics of rubella disease 
is illustrated in Fig. 1.
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Fig. 1. A diagram of the Rubella disease dynamics.

Table 1. Parameters and their description.

Parameters Description Parameters Description

𝛽 Contact rate 𝜗 Exposed rate

𝛼 First vaccination rate 𝜇 Natural death rate

𝛿 Second vaccination rate 𝜋 Recruitment rate

𝜔 Waning out of first vaccination rate 𝛾 Treatment rate

𝜃 Vertical transmission rate 𝜀 Death rate

𝜌 Lose of temporary immunity rate

From the schematic diagram, the following system of ordinary differential equations is formulated.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜌𝑅+𝜔𝑉 − 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝑆

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − (𝛿 +𝜔+ 𝜇)𝑉

𝑑𝑃

𝑑𝑡
= 𝛿𝑉 − 𝜇𝑃

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 − (𝜗+ 𝜇)𝐸

𝑑𝐼

𝑑𝑡
= 𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − (𝜇 + 𝜌)𝑅,

(1)

with the initial conditions 𝑆 (0) ≥ 0, 𝑉 (0) ≥ 0, 𝑃 (0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 (Table 1).

3. Qualitative analysis

This section discusses some basic qualitative behaviors of the model, such as the boundedness of the model, positivity of the solutions, equilibrium 
points, stability of equilibrium points, basic reproductive number, and sensitivity analysis of the model.

3.1. Positivity of the solutions

Theorem 1. For all 𝑡 > 0, the solutions of the system of equation (1) are non-negative, with 𝑆 (0) ≥ 0, 𝑉 (0) ≥ 0, 𝑃 (0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0.

Proof. To prove Theorem 1, let’s take the first equation of the system of equations (1):

𝑑𝑆

𝑑𝑡
= 𝜋 + 𝜌𝑅+𝜔𝑉 − 𝛽𝑆(𝑡)𝐼 − (𝛼 + 𝜇)𝑆(𝑡). (2)

By considering only the negative part of equation (2), we obtain

𝑑𝑆

𝑑𝑡
≥ −𝛽𝑆(𝑡)𝐼 − (𝛼 + 𝜇)𝑆(𝑡). (3)

To solve equation (3), let’s apply the separation of variables method and integrate both sides of the equation as follows:

∫
𝑑𝑆(𝑡)
𝑆(𝑡)

≥ −∫ (𝛽𝐼(𝑡) + 𝛼 + 𝜇)𝑑𝑡

𝑙𝑛 |𝑆(𝑡)| ≥ −∫ (𝛽𝐼(𝑡) + 𝛼 + 𝜇)𝑑𝑡

exp(𝑙𝑛 |𝑆(𝑡)|) ≥ exp(−∫ (𝛽𝐼(𝑡) + 𝛼 + 𝜇)𝑑𝑡)

𝑆 (𝑡) ≥ 𝑆(0)𝑒𝑥𝑝(−∫ (𝛽𝐼(𝑡) + 𝛼 + 𝜇)𝑑𝑡). (4)

In the same process, the positivity of the other compartments are proved and we get the following solutions: 𝑉 (𝑡) ≥ 𝑉 (0) 𝑒𝑥𝑝 (− (𝛿 +𝜔+ 𝜇) 𝑡), 
𝑃 (𝑡) ≥ 𝑃 (0) 𝑒𝑥𝑝 (−𝜇𝑡), 𝐸 (𝑡) ≥𝐸 (0) 𝑒𝑥𝑝 (− (𝜗+ 𝜇) 𝑡), 𝐼 (𝑡) ≥ 𝐼 (0) 𝑒𝑥𝑝 (− (𝜇 + 𝛾 + 𝜀) 𝑡), 𝑅(𝑡) ≥𝑅(0)𝑒𝑥𝑝(−(𝜇+ 𝜌)𝑡). Since the value of the exponential function 
is positive, then 𝑆 (𝑡) > 0, 𝑉 (𝑡) > 0, 𝑃 (𝑡) > 0, 𝐸 (𝑡) > 0, 𝐼 (𝑡) > 0 and 𝑅 (𝑡) > 0. Therefore, if all solutions to the system equation (1) with positive initial 
conditions remain positive for all 𝑡 > 0, then the developed model is epidemiologically and mathematically meaningful.
3
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3.2. Invariant region of the model

Theorem 2. The solution of the system of equations (1) with initial conditions 𝑆(0) ≥ 0, 𝑉 (0), ≥ 0, 𝑃 (0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0 and 𝑅(0) ≥ 0 is bounded in 
set Ω = {(𝑆, 𝑉 , 𝑃 , 𝐸, 𝐼, 𝑅) ∈𝑅6

+ ∶ 0 ≤𝑁(𝑡) ≤ 𝜋

𝜇
}.

Proof. To prove Theorem 2, let’s consider the total population at a given time 𝑡 by:

𝑁(𝑡) = 𝑆(𝑡) + 𝑉 (𝑡) + 𝑃 (𝑡) +𝐸(𝑡) + 𝐼(𝑡) +𝑅(𝑡). (5)

Differentiating both sides of equation (5) with respect to time 𝑡 gives

𝑑𝑁

𝑑𝑡
= 𝑑𝑆
𝑑𝑡

+ 𝑑𝑉
𝑑𝑡

+ 𝑑𝑃
𝑑𝑡

+ 𝑑𝐸
𝑑𝑡

+ 𝑑𝐼
𝑑𝑡

+ 𝑑𝑅
𝑑𝑡
. (6)

Substitute 𝑑𝑆
𝑑𝑡
, 𝑑𝑉
𝑑𝑡
, 𝑑𝑃
𝑑𝑡
, 𝑑𝐸
𝑑𝑡
, 𝑑𝐼
𝑑𝑡

and 𝑑𝑅
𝑑𝑡

from the system of equation (1) into equation (6):

𝑑𝑁

𝑑𝑡
=𝜋 + 𝜌𝑅+𝜔𝑉 − 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝑆 + 𝛽𝑆𝐼 − (𝜗+ 𝜇)𝐸 + 𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼

+ 𝛼𝑆 − (𝛿 + 𝜇)𝑉 −𝜔𝑉 + 𝛿𝑉 − 𝜇𝑃 + 𝛾𝐼 − 𝜇𝑅− 𝜌𝑅

=𝜋 + 𝜃𝐼 − 𝜀𝐼 − 𝜇(𝑆 + 𝑃 + 𝑉 +𝐸 + 𝐼 +𝑅)

=𝜋 + 𝜃𝐼 − 𝜀𝐼 − 𝜇𝑁. (7)

If there is no death due to rubella and no rubella infection in a newly born baby, then

𝑑𝑁

𝑑𝑡
≤ 𝜋 − 𝜇𝑁. (8)

Use the separation of variables method to solve equation (8) as follows:

𝜋 − 𝜇𝑁 ≥ 𝑒𝑥𝑝(−𝜇𝑡+ 𝑐). (9)

Here, lim𝑡→∞ 𝑒𝑥𝑝(−𝜇𝑡 + 𝑐) = 0. This means that as 𝑡 →∞ in equation (9), the total population size 𝑁 → 𝜋

𝜇
, that is lim𝑡→∞𝑁(𝑡) = 𝜋

𝜇
. Since the non-

negative solution of the model is proved in Theorem 1, then 𝑁(𝑡) ≤ 𝜋

𝜇
for all 𝑡 ≥ 0. Therefore, the model is well posed and epidemiologically 

meaningful in the region Ω = {(𝑆, 𝑉 , 𝑃 , 𝐸, 𝐼, 𝑅) ∈𝑅6
+ ∶ 0 ≤𝑁(𝑡) ≤ 𝜋

𝜇
}.

3.3. Disease-free equilibrium point of the model

In this section, the point at which rubella disease disappears in a community is computed from the system of equation (1). It is determined by 
setting the right-hand side of the system of equation (1) equal to zero. This can happen when there are no infectious individuals in the population 
or the epidemic has disappeared from the population.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜋 + 𝜌𝑅+𝜔𝑉 − 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝑆 = 0

𝛼𝑆 − (𝛿 +𝜔+ 𝜇)𝑉 = 0

𝛿𝑉 − 𝜇𝑃 = 0

𝛽𝐼𝑆 − (𝜗+ 𝜇)𝐸 = 0

𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼 = 0

𝛾𝐼 − (𝜇 + 𝜌)𝑅 = 0.

(10)

At the disease-free equilibrium point, 𝐼 =𝐸 =𝑅 = 0. Then, the system of equation (10) is simplified as follows:

⎧⎪⎨⎪⎩
𝜋 +𝜔𝑉 − (𝛼 + 𝜇)𝑆 = 0

𝛼𝑆 − (𝛿 + 𝜇 +𝜔)𝑉 = 0

𝛿𝑉 − 𝜇𝑃 = 0.

(11)

From the second and third equations of the system of equations (11), we get 𝑆 = (𝛿+𝜇+𝜔)𝑉
𝛼

and 𝑉 = 𝜇𝑃

𝛿
. Inserting this into the first equation of (11) 

gives

𝜋 + 𝜔𝜇𝑃
𝛿

− (𝛼 + 𝜇) (𝛿 + 𝜇 +𝜔)𝜇𝑃
𝛼𝛿

= 0 ⇒ 𝑃 = 𝜋𝛼𝛿

((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)𝜇
.

Then, by using the value of 𝑃 we get 𝑉 = 𝜋𝛼

(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 and 𝑆 = 𝜋(𝛿+𝜇+𝜔)
(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 .

Therefore, the disease-free equilibrium point of the model is: {(𝑆∗, 𝑉 ∗, 𝑃 ∗, 𝐸∗, 𝐼∗, 𝑅∗) = ( 𝜋(𝛿+𝜇+𝜔)
(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 , 

𝜋𝛼

(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 , 
𝜋𝛼𝛿

((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 )𝜇 , 0, 0, 0)}.

3.4. Endemic equilibrium point the model

In this section, the point at which rubella disease persists in the community is obtained. From the second, third, fourth, and sixth equations of 
the system of equations (10), we get

𝑉 = 𝜇𝑃 . (12)

𝛿

4
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𝑆 = (𝛿 +𝜔+ 𝜇)𝜇𝑃
𝛼𝛿

. (13)

𝐸 = 𝛽𝐼𝑆

(𝜗+ 𝜇)
= (𝛿 +𝜔+ 𝜇)𝛽𝜇𝑃𝐼

𝛼𝛿(𝜇 + 𝜗)
. (14)

𝐼 = (𝜇 + 𝜌)𝑅
𝛾

. (15)

Inserting equation (14) into the fifth equation of the system of equations (10), we obtain

𝐼( (𝛿 +𝜔+ 𝜇)𝜗𝛽𝜇𝑃
𝛼𝛿(𝜇 + 𝜗)

− (𝜇 + 𝛾 + 𝜀− 𝜃)) = 0. (16)

Since 𝐼 ≠ 0, then equation (16) become

(𝛿 +𝜔+ 𝜇)𝜗𝛽𝜇𝑃
𝛼𝛿(𝜇 + 𝜗)

− (𝜇 + 𝛾 + 𝜀− 𝜃) = 0

⇒ 𝑃 = 𝛼𝛿(𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)
𝜗𝛽𝜇 (𝛿 +𝜔+ 𝜇)

.

After substituting 𝑃 in equations (12), (13) and (14), we get 𝑉 = 𝛼(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)
𝜗𝛽(𝛿+𝜔+𝜇) , 𝑆 = (𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)

𝜗𝛽
and 𝐸 = (𝛿+𝜔+𝜇)(𝜇+𝛾+𝜀−𝜃)𝜇𝐼

𝜗𝛼𝛿
. Next, put 𝑆, 𝑃 and 𝑉

in the first equation of the system of equation (10).

𝜋 + 𝜌𝑅+ 𝛼𝜔(𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)
𝜗𝛽 (𝛿 +𝜔+ 𝜇)

− (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) (𝜇 + 𝜌)𝑅
𝜗𝛾

− (𝛼 + 𝜇) (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)
𝜗𝛽

= 0

⇒𝑅 = 𝛾[𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗𝛽 (𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) (𝜇 + 𝜌))

.

Then, by inserting 𝑅 into equations (14) and (15), we get

𝐼 = [(𝛿 +𝜔+ 𝜇)𝜗𝛽𝜋 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗𝛽 (𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)

𝐸 = 𝜇 (𝜇 + 𝛾 + 𝜀− 𝜃) [𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗𝛽(𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)𝜗𝛼𝛿

.

Hence, the endemic equilibrium point of the system of equation (1) is {(𝑆, 𝑉 , 𝑃 , 𝐸, 𝐼, 𝑅) = ( (𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)
𝜗𝛽

,
𝛼(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)
𝜗𝛽(𝛿+𝜔+𝜇) ,

𝛼𝛿(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)
𝜗𝛽𝜇(𝛿+𝜔+𝜇) ,

𝜇(𝜇+𝛾+𝜀−𝜃)[𝜗𝛽𝜋(𝛿+𝜔+𝜇)−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)]
𝜗𝛽(𝜌𝜗𝛾−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)𝜗𝛼𝛿 ,

[𝜗𝛽𝜋(𝛿+𝜔+𝜇)−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)]
𝜗𝛽(𝛿+𝜔+𝜇)(𝜌𝜗𝛾−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃) ,

𝛾[𝜗𝛽𝜋(𝛿+𝜔+𝜇)−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)]
𝜗𝛽(𝛿+𝜔+𝜇)(𝜌𝜗𝛾−(𝜇+𝜗)(𝜇+𝛾+𝜀−𝜃)(𝜇+𝜌)) )}.

3.5. Basic reproductive number of the model

In this section, the basic reproductive number denoted by 𝑅0 which is defined as the average number of secondary infections caused by a 
single infected individual during the entire period of infectiousness (Jones, 2007). It is determined using the next-generation matrix method that 
mentioned in Heffernan et al. (2005) and considering the infected classes. The infected classes are:{ 𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 − (𝜗+ 𝜇)𝐸

𝑑𝐼

𝑑𝑡
= 𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼.

(17)

By using the next-generation matrix principle mentioned in Heffernan et al. (2005), let 𝑓 represent the rate of new infectious agents and 𝑣 represent 
the transfer of an individual out of the infected compartments. Then, from the system of equations (17), we have

𝑓 =

[
𝛽𝐼𝑆

𝜃𝐼

]
. (18)

𝑣 =

[
(𝜗+ 𝜇)𝐸

−𝜗𝐸 + (𝜇 + 𝛾 + 𝜀)𝐼

]
. (19)

Let 𝐹 and 𝑉 be the Jacobian matrices of 𝑓 and 𝑣, with respect to 𝐸 and 𝐼 at the disease-free equilibrium point, respectively, then

𝐹 =
⎡⎢⎢⎢⎣
𝜕𝑓

𝜕𝐸

𝜕𝑓

𝜕𝐼
𝜕𝑓

𝜕𝐸

𝜕𝑓

𝜕𝐼

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜕(𝛽𝐼𝑆)
𝜕𝐸

𝜕(𝛽𝐼𝑆)
𝜕𝐼

𝜕(0)
𝜕𝐸

𝜕(0)
𝜕𝐼

⎤⎥⎥⎥⎦ =
[
0 𝛽𝑆

0 𝜃

]
. (20)

𝑉 =
⎡⎢⎢⎢⎣
𝜕𝑣1
𝜕𝐸

𝜕𝑣1
𝜕𝐼

𝜕𝑣2
𝜕𝐸

𝜕𝑣2
𝜕𝐼

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

𝜕 (𝜗+ 𝜇)𝐸
𝜕𝐸

𝜕 (𝜗+ 𝜇)𝐸
𝜕𝐼

𝜕(−𝜗𝐸) + (𝜇 + 𝛾 + 𝜀)𝐼)
𝜕𝐸

𝜕(−(𝜗𝐸) + (𝜇 + 𝛾 + 𝜀)𝐼)
𝜕𝐼

⎤⎥⎥⎥⎦ =
[
𝜗+ 𝜇 0

−𝜗 𝜇 + 𝛾 + 𝜀

]
. (21)

The Jacobian matrices of 𝐹 and 𝑉 at the disease-free equilibrium point are

𝐹𝐷𝐹𝐸 =
⎡⎢⎢⎣
0 𝜋𝛽 (𝛿 + 𝜇 +𝜔)

(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇
0 𝜃

⎤⎥⎥⎦ and 𝑉𝐷𝐹𝐸 =

[
𝜗+ 𝜇 0

−𝜗 𝜇 + 𝛾 + 𝜀

]
.

Next, we find the inverse of V and the product of 𝐹 and 𝑉 −1. Then
5
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𝑉 −1 = 𝑎𝑑𝑗𝑉

𝑑𝑒𝑡(𝑉 )
=

[
𝜇 + 𝛾 + 𝜀 0

−𝜗 𝜗+ 𝜇

]
(𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)

=
⎡⎢⎢⎢⎣

1
𝜗+ 𝜇

0

𝜗

(𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)
1

(𝜇 + 𝛾 + 𝜀)

⎤⎥⎥⎥⎦ . (22)

𝐹𝑉 −1 =
⎡⎢⎢⎢⎣

(𝛿 + 𝜇 +𝜔)𝜋𝛽𝜗
((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀− 𝜃) (𝜗+ 𝜇)

(𝛿 + 𝜇 +𝜔)𝜋𝛽
((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀− 𝜃)

𝜗𝜃

(𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)
𝜃

𝜇 + 𝛾 + 𝜀

⎤⎥⎥⎥⎦ . (23)

The characteristic polynomial formed from 𝐹𝑉 −1 is given by 𝑝(𝜆) = 𝑑𝑒𝑡(𝐹𝑉 −1 − 𝜆𝐼), where 𝐼 is the identity matrix.

⇒ 𝑝(𝜆) =

||||||||
(𝛿 + 𝜇 +𝜔)𝜋𝛽𝜗

((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)
− 𝜆 (𝛿 + 𝜇 +𝜔)𝜋𝛽

((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗𝜃

(𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)
𝜃

𝜇 + 𝛾 + 𝜀
− 𝜆

||||||||
= 𝜆(𝜆− 𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)

((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)
− 𝜃

𝜇 + 𝛾 + 𝜀
). (24)

Roots of the characteristic polynomial (24) are 𝜆1 = 0 and 𝜆2 =
𝜋𝛽𝜗(𝛿+𝜇+𝜔)

((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)(𝜇+𝛾+𝜀)(𝜗+𝜇) +
𝜃

𝜇+𝛾+𝜀 .

According to the principle of the next-generation matrix, the largest solution of a characteristic polynomial (i.e. the largest eigenvalue of the 
Jacobian matrix) is the basic reproductive number. Therefore, 𝑅0 =

𝜋𝛽𝜗(𝛿+𝜇+𝜔)
((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)(𝜇+𝛾+𝜀)(𝜗+𝜇) +

𝜃

𝜇+𝛾+𝜀 .

3.6. Local stability of disease-free equilibrium point

As cited in the study by Nurhasen (2017), the stability analysis of the disease-free equilibrium point of the model is performed by linearizing the 
non-linear system of equations. Thus, the stability of this point in the system of equation (1) is done by calculating the characteristic equation of the 
Jacobian matrix J. This is examined by using the eigenvalues of the corresponding Jacobian matrix, which depends on the model parameters.

Theorem 3. The disease-free equilibrium point of the system of equation (1) is locally asymptotically stable if 𝑅0 < 1, unless unstable if 𝑅0 > 1.

Proof. To prove Theorem 3, we have to construct the Jacobian matrix of the system of equations (1) as follows:

𝐽 (𝑆,𝑉 ,𝑃 ,𝐸, 𝐼,𝑅) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑓1
𝜕𝑆

𝜕𝑓1
𝜕𝑉

𝜕𝑓1
𝜕𝑃

𝜕𝑓1
𝜕𝐸

𝜕𝑓1
𝜕𝐼

𝜕𝑓1
𝜕𝑅

𝜕𝑓2
𝜕𝑆

𝜕𝑓2
𝜕𝑉

𝜕𝑓2
𝜕𝑃

𝜕𝑓2
𝜕𝐸

𝜕𝑓2
𝜕𝐼

𝜕𝑓2
𝜕𝑅

𝜕𝑓3
𝜕𝑆

𝜕𝑓3
𝜕𝑉

𝜕𝑓3
𝜕𝑃

𝜕𝑓3
𝜕𝐸

𝜕𝑓3
𝜕𝐼

𝜕𝑓3
𝜕𝑅

𝜕𝑓4
𝜕𝑆

𝜕𝑓4
𝜕𝑉

𝜕𝑓4
𝜕𝑃

𝜕𝑓4
𝜕𝐸

𝜕𝑓4
𝜕𝐼

𝜕𝑓4
𝜕𝑅

𝜕𝑓5
𝜕𝑆

𝜕𝑓5
𝜕𝑉

𝜕𝑓5
𝜕𝑃

𝜕𝑓5
𝜕𝐸

𝜕𝑓5
𝜕𝐼

𝜕𝑓5
𝜕𝑅

𝜕𝑓6
𝜕𝑆

𝜕𝑓6
𝜕𝑉

𝜕𝑓6
𝜕𝑃

𝜕𝑓6
𝜕𝐸

𝜕𝑓6
𝜕𝐼

𝜕𝑓6
𝜕𝑅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 𝑓1 = 𝜋 + 𝜌𝑅 + 𝜔𝑉 − 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛼 + 𝜇)𝑆, 𝑓2 = 𝛼𝑆 − (𝛿 +𝜔+ 𝜇)𝑉 , 𝑓3 = 𝛿𝑉 − 𝜇𝑃 , 𝑓4 = 𝛽𝑆(𝑡)𝐼(𝑡) − (𝜗+ 𝜇)𝐸, 𝑓5 = 𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼 and 
𝑓6 = 𝛾𝐼 − (𝜇 + 𝜌)𝑅. Then

𝐽 =

⎡⎢⎢⎢⎢⎢⎢⎣

−(𝛽𝐼(𝑡) + 𝛼 + 𝜇) 𝜔 0 0 −𝛽𝑆(𝑡) 𝜌

𝛼 −(𝛿 +𝜔+ 𝜇) 0 0 0 0
0 𝛿 −𝜇 0 0 0

𝛽𝐼(𝑡) 0 0 − (𝜗+ 𝜇) 𝛽𝑆(𝑡) 0
0 0 0 𝜗 −(𝜇 + 𝛾 + 𝜀− 𝜃) 0
0 0 0 0 𝛾 −(𝜇 + 𝜌)

⎤⎥⎥⎥⎥⎥⎥⎦
The Jacobian matrix at the disease-free equilibrium point 𝐽𝐷𝐹𝐸𝑃 becomes

𝐽𝐷𝐹𝐸𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝛼 + 𝜇) 𝜔 0 0 𝜋𝛽 (𝛿 + 𝜇 +𝜔)
(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇

𝜌

𝛼 (𝛿 +𝜔+ 𝜇) 0 0 0 0

0 𝛿 −𝜇 0 0 0

0 0 0 −(𝜗+ 𝜇) − 𝜋𝛽 (𝛿 + 𝜇 +𝜔)
(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇

0

0 0 0 𝜗 𝜃 − (𝜇 + 𝛾 + 𝜀) 0

0 0 0 0 𝛾 −(𝜇 + 𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let 𝐴 = 𝛼 +𝜇, 𝐵 = 𝛿 +𝜔 +𝜇, 𝐶 = 𝜗 +𝜇, 𝐷 = 𝜋𝛽(𝛿+𝜇+𝜔)

(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇 , 𝐸 = 𝜇+ 𝛾 + 𝜀 − 𝜃, 𝐹 = 𝜇+ 𝜌. Then, the characteristic polynomial of 𝐽𝐷𝐹𝐸𝑃 is computed from 
𝑑𝑒𝑡(𝐽𝐷𝐹𝐸𝑃 − 𝜆𝐼), where 𝐼 is the identity matrix.
6
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⇒ 𝑝(𝜆) =

|||||||||||||||||

−(𝐴+ 𝜆) 𝜔 0 0 𝐷 𝜌

𝛼 −(𝐵 + 𝜆) 0 0 0 0

0 𝛿 −(𝜇 + 𝜆) 0 0 0

0 0 0 −(𝐶 + 𝜆) −𝐷 0

0 0 0 𝜗 −(𝐸 + 𝜆) 0

0 0 0 0 𝛾 −(𝐹 + 𝜆)

|||||||||||||||||
=(𝜇 + 𝜆) (𝐹 + 𝜆) ((𝐶 + 𝜆) (𝐸 + 𝜆) −𝐷𝜗)[(𝐴+ 𝜆) (𝐵 + 𝜆) − 𝛼𝜔]. (25)

Next, we have to compute the corresponding eigenvalues of 𝐽𝐷𝐹𝐸𝑃 which is the same as the roots of 𝑝(𝜆).

⇒ (𝜇 + 𝜆) (𝐹 + 𝜆) ((𝐶 + 𝜆) (𝐸 + 𝜆) −𝐷𝜗)[(𝐴+ 𝜆) (𝐵 + 𝜆) − 𝛼𝜔] = 0

(𝜇 + 𝜆) (𝐹 + 𝜆) = 0 or (𝐶 + 𝜆) (𝐸 + 𝜆) −𝐷𝜗 = 0 or (𝐴+ 𝜆) (𝐵 + 𝜆) − 𝛼𝜔 = 0

⇒𝜆 = −𝜇 or𝜆 = −𝐹 or𝜆2 + (𝐶 +𝐸)𝜆+𝐶𝐸 −𝐷𝜗 = 0 or𝜆2 + (𝐴+𝐵)𝜆+𝐴𝐵 − 𝛼𝜔.

According to the Routh-Hurwitz stability criterion of the quadratic function, the system of characteristic equations is stable if and only if both 
coefficients are greater than zero (Nurhasen, 2017). Then

i. 𝐴 +𝐵 > 0 ⇒ 𝛼 + 𝜇 + 𝛿 +𝜔 + 𝜇 = 𝛼 + 𝛿 +𝜔 + 2𝜇 > 0.

ii. 𝐶 +𝐸 > 0 ⇒ 𝜗 + 𝜇 + 𝜇 + 𝛾 + 𝜀 − 𝜃 = 𝜗 + 2𝜇 + 𝛾 + 𝜀 − 𝜃 > 0.

iii. 𝐴𝐵 − 𝛼𝜔 > 0 ⇒ (𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇 > 0.

iv.

𝐶𝐸 −𝐷𝜗 > 0⇒ (𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇) − 𝜃 (𝜗+ 𝜇) − 𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)
(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇

> 0

⇒ − 𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)
(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇

− 𝜃 (𝜗+ 𝜇) > −(𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)

⇒
𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)

(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇
+ 𝜃 (𝜗+ 𝜇) < (𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇) ⇒

𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)
((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀) (𝜗+ 𝜇)

+ 𝜃

(𝜇 + 𝛾 + 𝜀)
< 1.

Since 𝑅0 =
𝜋𝛽𝜗(𝛿+𝜇+𝜔)

((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)(𝜇+𝛾+𝜀)(𝜗+𝜇) +
𝜃

𝜇+𝛾+𝜀 , then the disease-free equilibrium point of system of equation is locally asymptotically stable, if 𝑅0 < 1.

3.7. Global stability of disease-free equilibrium point

Theorem 4. The disease-free equilibrium point of the system of equation (1) is globally asymptotically stable, if 𝑅0 < 1.

Proof. Considering the infected classes of system of equation (1), let’s construct the Lyapunov function technically as follows:

𝐿 = 𝑢𝐸 + 𝑣𝐼, (26)

where 𝑢 and 𝑣 are positive constants.

By differentiating both sides of the equation (26) with respect to time 𝑡, we get

𝑑𝐿

𝑑𝑡
= 𝑢𝑑𝐸

𝑑𝑡
+ 𝑣𝑑𝐼

𝑑𝑡
. (27)

Next, substituting 𝑑𝐸
𝑑𝑡

and 𝑑𝐼
𝑑𝑡

from system of equation (1) into equation (27) gives

𝑑𝐿

𝑑𝑡
= 𝑢𝛽𝐼𝑆 − 𝑣 (𝜇 + 𝛾 + 𝜀− 𝜃)𝐼 − 𝑢 (𝜗+ 𝜇)𝐸 + 𝑣𝜗𝐸. (28)

Let’s take 𝑣 = ( 𝜗+𝜇
𝜗

)𝑢, then

𝑑𝐿

𝑑𝑡
=𝑢𝛽𝐼𝑆 − (𝜗+ 𝜇

𝜗
)𝑢 (𝜇 + 𝛾 + 𝜀− 𝜃)𝐼 − 𝑢 (𝜗+ 𝜇)𝐸 + (𝜗+ 𝜇

𝜗
)𝑢𝜗𝐸

=(𝜗𝛽𝑆 + 𝜃(𝜗+ 𝜇) − (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗

)𝑢𝐼 − 𝑢 (𝜗+ 𝜇)𝐸 + (𝜗+ 𝜇)𝑢𝐸

=(𝜗𝛽𝑆 + 𝜃(𝜗+ 𝜇) − (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗

)𝑢𝐼. (29)

At disease-free equilibrium point, then equation (29) become

⇒
𝑑𝐿

𝑑𝑡
=
(

(𝛿 + 𝜇 +𝜔)𝜋𝛽
(𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇

+ 𝜃(𝜗+ 𝜇)
𝜗

− (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗

)
𝑢𝐼

= (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗

(
(𝛿 + 𝜇 +𝜔)𝜋𝛽𝜗

((𝜗+ 𝜇) (𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜇 + 𝛾 + 𝜀)
+ 𝜃

(𝜇 + 𝛾 + 𝜀)
− 1

)
𝑢𝐼

= (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
𝜗

(𝑅0 − 1)𝑢𝐼. (30)
7
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Here, 𝑑𝐿
𝑑𝑡
< 0, if 𝑅0 < 1. This implies that the disease-free equilibrium point of the system of equation (1) is globally asymptotically stable if 𝑅0 < 1.

3.8. Local stability of endemic equilibrium point of the model

To verify the stability of an endemic equilibrium point, we have to verify the existence and uniqueness of this point.

Theorem 5. The model has a unique endemic equilibrium point, if 𝑅0 > 1.

Proof. Since the disease is persisting at this point, then both 𝐼 and 𝐸 are greater than zero.

𝑖. ⇒ 𝐼 = (𝜇 + 𝜌) [𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗𝛽 (𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) (𝜇 + 𝜌))

> 0

⇒ 𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) + ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)(𝜇 + 𝜗)𝜃 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) > 0
𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇)

(𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)
+ 𝜃

𝜇 + 𝛾 + 𝜀
> 1

⇒𝑅0 > 1.

𝐸 =[𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗𝛽 (𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)

> 0

⇒ 𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) + ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)(𝜇 + 𝜗)𝜃 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) > 0
𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇)

(𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)
+ 𝜃

𝜇 + 𝛾 + 𝜀
> 1

⇒𝑅0 > 1.

Hence, the endemic equilibrium point of the model exists and is unique if 𝑅0 > 1.

Theorem 6. A unique endemic equilibrium point of equation (1) is locally asymptotically stable, if 𝑅0 > 1.

Proof. The Jacobian matrix J of the system of equations (1) at the endemic equilibrium point 𝐽𝐸𝐸𝑃 is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝛽𝐼∗(𝑡) + 𝛼 + 𝜇) 𝜔 0 0 −𝛽𝑆∗(𝑡) 𝜌

𝛼 −(𝛿 +𝜔+ 𝜇) 0 0 0 0

0 𝛿 −𝜇 0 0 0

𝛽𝐼∗(𝑡) 0 0 − (𝜗+ 𝜇) 𝛽𝑆∗(𝑡) 0

0 0 0 𝜗 −(𝜇 + 𝛾 = 𝜀− 𝜃) 0

0 0 0 0 𝛾 −(𝜇 + 𝜌)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Let 𝐴 = (𝛽𝐼(𝑡) +𝛼+𝜇), 𝐵 = 𝛿+𝜔 +𝜇, 𝐶 = 𝜗 +𝜇, 𝐷 = 𝛽𝑆(𝑡), 𝐸 = − (𝜇 + 𝛾 + 𝜀− 𝜃), 𝐹 = 𝜇+𝜌, 𝐺 = 𝛽𝐼(𝑡). Now, let’s compute the characteristic polynomial.

⇒ 𝑝(𝜆) =

|||||||||||||||||

−(𝐴+ 𝜆) 𝜔 0 0 𝐷 𝜌

𝛼 −(𝐵 + 𝜆) 0 0 0 0

0 𝛿 −(𝜇 + 𝜆) 0 0 0

0 0 0 −(𝐶 + 𝜆) −𝐷 0

0 0 0 𝜗 −(𝐸 + 𝜆) 0

0 0 0 0 𝛾 −(𝐹 + 𝜆)

|||||||||||||||||
The following characteristic polynomial is obtained by following the same method and formula used in subsection 3.6.

𝑝(𝜆) = (𝜇 + 𝜆) [𝜆5 + (𝐴+𝐵 +𝐶 +𝐸 + 𝐹 )𝜆4 + (𝐴𝐵 +𝐶(𝐸 + 𝐹 +𝐴+𝐵) +𝐸𝐹 + (𝐸 + 𝐹 )(𝐵 +𝐴) +𝐷𝜗−𝜔𝛼)𝜆3

+ ((𝐶 +𝐸 + 𝐹 )𝐴𝐵 −𝜔𝛼) + (𝐶𝐸 +𝐶𝐹 +𝐷𝜗)(𝐴+𝐵) + 𝐹 (𝐶𝐸 +𝐷𝜗) +𝐺𝐷𝜗)𝜆2

+ [(𝐶𝐸 +𝐷𝜗+𝐶𝐹 +𝐸𝐹 )(𝐴𝐵 −𝜔𝛼) + 𝐹 (𝐶𝐸 +𝐷𝜗)(𝐵 +𝐴) +𝐷𝐺𝜗(𝐵 + 𝐹 ) − 𝜌𝛾𝐺𝜗]𝜆

+ 𝐹 (𝐶𝐸 +𝐷𝜗)(𝐴𝐵 − 𝛼𝜔) +𝐺𝜗𝐵(𝐷𝐹 − 𝜌𝛾]. (31)

Let

𝑥1 =𝐴+𝐵 +𝐶 +𝐸 + 𝐹 .

𝑥2 =𝐴𝐵 +𝐶(𝐸 + 𝐹 +𝐴+𝐵) +𝐸𝐹 + (𝐸 + 𝐹 )(𝐵 +𝐴) +𝐷𝜗−𝜔𝛼.

𝑥3 = (𝐶 +𝐸 + 𝐹 )(𝐴𝐵 −𝜔𝛼) + (𝐶𝐸 +𝐷𝜗)(𝐵 +𝐴+ 𝐹 ) + (𝐶𝐹 +𝐸𝐹 )(𝐵 +𝐴) +𝐷𝐺𝜗.

𝑥4 = (𝐶𝐸 +𝐷𝜗+𝐶𝐹 +𝐸𝐹 )(𝐴𝐵 −𝜔𝛼) + 𝐹 (𝐶𝐸 +𝐷𝜗)(𝐵 +𝐴) +𝐷𝐺𝜗(𝐵 + 𝐹 ) − 𝜌𝛾𝐺𝜗.

𝑥5 = 𝐹 (𝐶𝐸 +𝐷𝜗)(𝐴𝐵 − 𝛼𝜔) +𝐺𝜗𝐵(𝐷𝐹 − 𝜌𝛾).

Thus, equation (31) become:
8
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𝑝(𝜆) = −(𝜇 − 𝜆)(𝜆5 + 𝑥1𝜆4 + 𝑥2𝜆3 + 𝑥3𝜆2 + 𝑥4𝜆+ 𝑥5). (32)

Next, we find the eigenvalues of 𝐽𝐸𝐸𝑝 from 𝑝(𝜆) = 0.

⇒ 𝜆 = −𝜇 or𝜆5 + 𝑥1𝜆4 + 𝑥2𝜆3 + 𝑥3𝜆2 + 𝑥4𝜆+ 𝑥5 = 0

Let

𝑓 (𝜆) = 𝜆5 + 𝑥1𝜆4 + 𝑥2𝜆3 + 𝑥3𝜆2 + 𝑥4𝜆+ 𝑥5 (33)

According to Routh-Hurwitz stability, the characteristic equation (33) has a negative real root if the following conditions are satisfied:

i. 𝑥1 > 0, 𝑥2 > 0, 𝑥3 > 0, 𝑥4 > 0, 𝑥5 > 0
ii. 𝑥1𝑥2 − 𝑥3 > 0, 𝑥1𝑥2𝑥3 − 𝑥21𝑥4 − 𝑥

2
3 > 0

iii. 𝑥25𝑥3𝑥1 − 𝑥
3
5 − 𝑥

2
5𝑥

2
2𝑥1 − 𝑥

2
5𝑥

2
3𝑥

2
2 + 𝑥25𝑥4𝑥1 − 𝑥

2
1𝑥

2
4𝑥5 − 𝑥1𝑥2𝑥3𝑥4𝑥5 − 𝑥4𝑥5𝑥

2
3 > 0.

This implies

𝑥1 =𝐴+𝐵 +𝐶 +𝐸 + 𝐹 = 3𝜇 + 𝛿 + 𝛽𝐼 + 𝛼 + 𝜗+ 𝜃 + 𝜌− 𝜀− 𝛾 > 0

𝑥2 =𝐴𝐵 +𝐶(𝐸 + 𝐹 +𝐴+𝐵) +𝐸𝐹 + (𝐸 + 𝐹 )(𝐵 +𝐴) +𝐷𝜗−𝜔𝛼 > 0.

𝑥3 =(𝐶 +𝐸 + 𝐹 )(𝐴𝐵 −𝜔𝛼) + (𝐶𝐸 +𝐷𝜗)(𝐵 +𝐴+ 𝐹 ) + (𝐶𝐹 +𝐸𝐹 )(𝐵 +𝐴) +𝐷𝐺𝜗

=(𝜗+ 𝜇 + 𝜌− 𝛾 − 𝜀− 𝜃)((𝛽𝐼 + 𝛼 + 𝜇)(𝛿 +𝜔+ 𝜇 −𝜔𝛼) − ((𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀− 𝜃) − 𝛽𝜗𝑆)((𝛽𝐼 + 𝛼 + 3𝜇 + 𝛿 +𝜔+ 𝜌)

+ [(𝜇 + 𝜌)(2𝜗− 𝛾 − 𝜀][𝛽𝐼 + 𝛼 + 2𝜇 + 𝛿 +𝜔] + 𝛽2𝜗𝑆𝐼 > 0.

𝑥4 = (𝐶𝐸 +𝐷𝜗+𝐶𝐹 +𝐸𝐹 )(𝐴𝐵 −𝜔𝛼) + 𝐹 (𝐶𝐸 +𝐷𝜗)(𝐵 +𝐴) +𝐷𝐺𝜗(𝐵 + 𝐹 ) − 𝜌𝛾𝐺𝜗 > 0.

𝑥5 =𝐹 (𝐶𝐸 +𝐷𝜗)(𝐴𝐵 − 𝛼𝜔) +𝐺𝜗𝐵(𝐷𝐹 − 𝜌𝛾) > 0

=(𝜇 + 𝜌)[(𝜗+ 𝜇) (−𝜇 − 𝛾 − 𝜀+ 𝜃) + 𝛽𝜗𝑆][(𝛽𝐼 + 𝛼 + 𝜇)(𝛿 +𝜔+ 𝜇) − 𝛼𝜔]

+ 𝛽𝜗𝐼(𝛿 +𝜔+ 𝜇)[(𝛽𝑆(𝜇 + 𝜌) − 𝜌𝛾) > 0.

By substituting 𝐼 and 𝑆 in the above inequality (condition 𝑥5 > 0), we obtain

(𝜇 + 𝜌)((𝜗+ 𝜇) (−𝜇 − 𝛾 − 𝜀+ 𝜃) + (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)) ∗

[( [𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
𝜗 (𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)

+ 𝛼 + 𝜇)(𝛿 +𝜔+ 𝜇) − 𝛼𝜔]

+ [𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]
(𝛿 +𝜔+ 𝜇) (𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)

(𝛿 +𝜔+ 𝜇)[( (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)
𝜗

(𝜇 + 𝜌) − 𝜌𝛾] > 0

⇒
[𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)]

(𝜌𝜗𝛾 − (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃)
∗ ( (𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀− 𝜃) (𝜇 + 𝜌) − 𝜗𝜌𝛾

𝜗
) > 0

⇒ 𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) + 𝜃(𝜇 + 𝜗)((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)

> (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)(𝜇 + 𝜗)

⇒
𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇)

(𝜇 + 𝜗) (𝜇 + 𝛾 + 𝜀) ((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)
+ 𝜃

𝜇 + 𝛾 + 𝜀
> 1

⇒𝑅0 > 1.

This indicates that the endemic equilibrium point is locally asymptotically state if 𝑅0 > 1.

3.9. Global stability of endemic equilibrium point

Theorem 7. The unique endemic equilibrium point of the system of equation (1) is globally asymptotically stable, if 𝑅0 > 1.

Proof. To prove this theorem, let’s consider the following Lyapunov function L that is constructed technically:

L
(
𝑆∗, 𝑉 ∗, 𝑃 ∗,𝐸∗, 𝐼∗,𝑅∗) =(

𝑆 − 𝑆∗ −𝑆∗ ln𝑆
)
+
(
𝑉 − 𝑉 ∗ − 𝑉 ∗𝑙𝑛𝑉

)
+
(
𝑃 − 𝑃 ∗ − 𝑃 ∗𝑙𝑛𝑃

)
+
(
𝐸 −𝐸∗ −𝐸∗𝑙𝑛𝐸

)
+
(
𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛𝐼

)
+
(
𝑅−𝑅∗ −𝑅∗𝑙𝑛𝑅

)
. (34)

By differentiating both sides of equation (34) with respect to 𝑡, we get

𝑑𝐿

𝑑𝑡
=
(
𝑑𝑆

𝑑𝑡
− 𝑆

∗

𝑆

𝑑𝑆

𝑑𝑡

)
+
(
𝑑𝑉

𝑑𝑡
− 𝑉

∗

𝑉

𝑑𝑉

𝑑𝑡

)
+
(
𝑑𝑃

𝑑𝑡
− 𝑃

∗

𝑃

𝑑𝑃

𝑑𝑡

)
+
(
𝑑𝐸

𝑑𝑡
− 𝐸

∗

𝐸

𝑑𝐸

𝑑𝑡

)
+
(
𝑑𝐼

𝑑𝑡
− 𝐼

∗

𝐼

𝑑𝐼

𝑑𝑡

)
+
(
𝑑𝑅

𝑑𝑡
− 𝑅

∗

𝑅

𝑑𝑅

𝑑𝑡

)
=
(
𝑆 − 𝑆∗

𝑆

)
𝑑𝑆

𝑑𝑡
+
(
𝑉 − 𝑉 ∗

𝑉

)
𝑑𝑉

𝑑𝑡
+
(
𝑃 − 𝑃 ∗

𝑃

)
𝑑𝑃

𝑑𝑡
+
(
𝐸 −𝐸∗

𝐸

)
𝑑𝐸

𝑑𝑡
+
(
𝐼 − 𝐼∗
𝐼

)
𝑑𝐼

𝑑𝑡
+
(
𝑅−𝑅∗

𝑅

)
𝑑𝑅

𝑑𝑡

=
(
1 − 𝑆

∗)
(𝜋 + 𝜌𝑅+𝜔𝑉 − 𝛽𝑆𝐼 − (𝛼 + 𝜇)𝑆) +

(
1 − 𝑉

∗)
(𝛼𝑆 − (𝛿 +𝜔+ 𝜇)𝑉 ) +

(
1 − 𝑃

∗)
(𝛿𝑉 − 𝜇𝑃 ) +

(
1 − 𝐸

∗)
(𝛽𝐼𝑆 − (𝜗+ 𝜇)𝐸)
𝑆 𝑉 𝑃 𝐸

9
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Table 2. Parameters and their sensitivity indicators of the model.

Parameters Description Sensitivity indicators

𝜋 recruitment rate Positive

𝛽 contact rate Positive

𝜗 exposure rate Positive

𝜔 rate of waning out of the first vaccination 
dose

Positive

𝜃 vertical transmission rate Positive

𝛿 rate of the second vaccination dose Negative

𝛾 treatment rate Negative

𝛼 first vaccination dose Negative

+
(
1 − 𝐼

∗

𝐼

)
(𝜃𝐼 + 𝜗𝐸 − (𝜇 + 𝛾 + 𝜀)𝐼) +

(
1 − 𝑅

∗

𝑅

)
(𝛾𝐼 − (𝜇 + 𝜌)𝑅)

=𝜋 +𝑆∗(𝛽𝐼 + 𝛼 + 𝜇) + 𝑉 ∗(𝛿 + 𝜇 +𝜔) + 𝑃 ∗𝜇 +𝐸∗(𝜗+ 𝜇) + 𝜃𝐼 + 𝐼∗(𝜇 + 𝛾 + 𝜀) +𝑅∗(𝜇 + 𝜌) − (𝜇𝑆 + 𝑆
∗

𝑆
(𝜋 + 𝜌𝑅+𝜔𝑉 )

+ 𝜇𝑉 + 𝑉
∗𝛼𝑆

𝑉
+ 𝜇𝑃 + 𝑃

∗𝛿𝑉

𝑃
+ 𝜇𝐸 + 𝐸

∗𝛽𝐼𝑆

𝐸
+ (𝜇 + 𝜀)𝐼 + 𝐼∗𝜃 + 𝐼

∗

𝐼
𝜗𝐸 + 𝜇𝑅+ 𝑅

∗𝛾𝐼

𝑅
). (35)

Let

𝑋 =𝜋 +𝑆∗(𝛽𝐼 + 𝛼 + 𝜇) + 𝑉 ∗(𝛿 +𝜔+ 𝜇) + 𝑃 ∗𝜇 +𝐸∗(𝜗+ 𝜇)

+ 𝜃𝐼 + 𝐼∗(𝜇 + 𝛾 + 𝜀) +𝑅∗(𝜇 + 𝜌)

𝑌 =𝜇𝑆 + 𝑆
∗

𝑆
(𝜋 + 𝜌𝑅+𝜔𝑉 ) + 𝜇𝑉 + 𝑉

∗𝛼𝑆

𝑉
+ 𝜇𝑃

+ 𝑃
∗𝛿𝑉

𝑃
+ 𝜇𝐸 + 𝐸

∗𝛽𝐼𝑆

𝐸
+ (𝜇 + 𝜀)𝐼 + 𝐼∗𝜃 + 𝐼

∗

𝐼
𝜗𝐸 + 𝜇𝑅+ 𝑅

∗𝛾𝐼

𝑅
.

Then, equation (35) is written as

𝑑𝐿

𝑑𝑡
=𝑋 − 𝑌 . (36)

This implies that the endemic equilibrium point is the largest set of compact invariant singletons in {𝑆 = 𝑆∗, 𝑉 = 𝑉 ∗, 𝑃 = 𝑃 ∗, 𝐸 = 𝐸∗, 𝐼 = 𝐼∗, 𝑅 =
𝑅∗} ∈Ω ∶ 𝑑𝐿

𝑑𝑡
= 0. Therefore, the endemic equilibrium point is globally asymptotically stable in Ω, if 𝑋 ≤ 𝑌 .

3.10. Sensitivity analysis and it’s interpretation

A sensitivity analysis of the basic parameters is performed to determine their impact on the basic reproductive number. It also helps to measure 
the relative change of the variable as the basic parameter changes. Therefore, to perform the sensitivity analysis of the basic parameter on basic 
reproductive number, we used the formula given by 𝑃𝑥𝑖𝑅0 =

𝜕𝑅0
𝜕𝑥𝑖

∗ 𝑥𝑖

𝑅0
, where the parameter 𝑃 is sensitivity indicators and 𝑥𝑖 is the parameter in the 

basic reproductive number.

1. For 𝑥𝑖 = 𝜋, 𝑃𝜋𝑅0 =
𝜕𝑅0
𝜕𝜋

∗ 𝜋

𝑅0
= 𝜗𝛽𝜋(𝛿+𝜔+𝜇)
𝜗𝛽𝜋(𝛿+𝜔+𝜇)+𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇) > 0

2. For 𝑥𝑖 = 𝛽, 𝑃𝛽𝑅0 =
𝜕𝑅0
𝜕𝛽

∗ 𝛽

𝑅0
= 1 > 0

3. For 𝑥𝑖 = 𝛼, 𝑃𝛼𝑅0 =
𝜕𝑅0
𝜕𝛼

∗ 𝛼

𝑅0
= − 𝜋𝛽𝜗𝛼(𝛿+𝜇+𝜔)(𝛿+𝜇)

(𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)[𝜗𝛽𝜋(𝛿+𝜔+𝜇)+𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)] < 0

4. For 𝑥𝑖 = 𝜔, 𝑃𝜔𝑅0 =
𝜕𝑅0
𝜕𝜔

∗ 𝜔

𝑅0
= 𝜋𝛽𝜗𝛼𝜔(𝛿+𝜇)

((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)[𝜗𝛽𝜋(𝛿+𝜔+𝜇)+𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)] > 0

5. For 𝑥𝑖 = 𝛿, 𝑃𝛿𝑅0 =
𝜕𝑅0
𝜕𝛿

∗ 𝛿

𝑅0
= − 𝜔𝛼𝜋𝛽𝜗𝛿

((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)[𝜗𝛽𝜋(𝛿+𝜔+𝜇)+𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)] < 0

6. For 𝑥𝑖 = 𝜃, 𝑃𝜃𝑅0 =
𝜕𝑅0
𝜕𝜃

∗ 𝜃

𝑅0
= 𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇)
𝜗𝛽𝜋(𝛿+𝜔+𝜇)+𝜃(𝜇+𝜗)((𝛼+𝜇)(𝛿+𝜇)+𝜔𝜇) > 0.

7. For 𝑥𝑖 = 𝛾 ,

𝑃𝛾𝑅0 =
𝜕𝑅0
𝜕𝛾

∗ 𝛾

𝑅0

= − ( 𝜋𝛽𝜗 (𝛿 + 𝜇 +𝜔)
((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇) (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)

+ 1
𝜇 + 𝛾 + 𝜀

) ∗

( 𝛾(𝜇 + 𝜗)((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)
𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) + 𝜃(𝜇 + 𝜗)((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)

) < 0.

8. For 𝑥𝑖 = 𝜗,

𝑃𝜗𝑅0 =
𝜕𝑅0
𝜕𝜗

∗ 𝜗

𝑅0
= 𝛽 (𝛿 + 𝜇 +𝜔)𝜗𝜋𝜇

[𝜗𝛽𝜋 (𝛿 +𝜔+ 𝜇) + 𝜃(𝜇 + 𝜗)((𝛼 + 𝜇) (𝛿 + 𝜇) +𝜔𝜇)] (𝜗+ 𝜇) (𝜇 + 𝛾 + 𝜀)
> 0.

The basic parameter with a positive sensitivity indicator such as 𝛽, 𝜃, 𝜗 and 𝜔 has a great impact on the spread of rubella in the community if 
its value is increased by keeping the other parameters unchanged. However, rates with negative sensitivity indicators, such as 𝛼, 𝛾 and 𝛿 have the 
function of controlling (minimizing) rubella when their value increases (Table 2).
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Table 3. Parameter, Description, Value and Source.

Parameter Description Value Source

𝜋 The recruitment rate 0.015 Prawoto et al. (2020)

𝛽 Contact rate 0.4 Al Qurashi (2020)

𝜗 Exposure rate 0.85 Prawoto et al. (2020)

𝜀 Death rate due to rubella disease 0.08 Assumed

𝛿 Rate of second vaccination dose 1 Assumed

𝜇 Natural death rate 0.4 Koca (2018)

𝛾 Recovery rate 0.15 Prawoto et al. (2020)

𝜃 Rate of infected infants 0.55 Assumed

𝛼 Rate of first vaccinated dose 0.3 Baleanu et al. (2020)

𝜔 waning rate of first vaccination dose 0.6 Assumed

𝜌 Rate of temporary immunity 0.01 Assumed

𝜇 Natural death rate 0.4 Koca (2018)

Fig. 2. Graph of a system of ordinary differential equations (1) applying all parameters.

4. Numerical simulations

Investigating the qualitative behavior of the developed model is performed using numerical simulation. The simulation mainly focuses on the 
exposed and infected classes and observes their behavior over time as their associated parameters change. The numerical analysis of the model 
is shown by displaying the graphs using the MATLAB R2020a computer software and for loop method of the Matlab program. To perform the 
numerical simulation, the values of parameters were taken from related published articles and made assumptions for some of the other parameters 
of the model, whose values and sources are provided in the Table.

Fig. 2 is drawn using the parameter values provided in Table 3 that represent the graph of susceptible 𝑆(𝑡), vaccinated 𝑉 (𝑡), protected 𝑃 (𝑡), 
exposed 𝐸(𝑡), infected , 𝐼(𝑡) and recovered 𝑅(𝑡). The figure shows that the susceptible, vaccinated and protected populations are close to zero and 
as time increases, the population in the infected class will increase.

4.1. Impact of contact rate on exposed and rubella-infected people

Here, we investigate the impact of contact rate on the exposed and infected people. As shown in Fig. 3 to the right, increasing the contact 
rate will significantly increase the number of infected people. This happens when susceptible individuals come into contact with rubella-infected 
individuals, contacting the urine of a rubella-infected person and sharing the same items, such as a cup. From the simulation results of Fig. 4 to the 
left, we can observe that increasing contact rate leads to an increase in the number of exposed individuals. Therefore, it is necessary to control the 
spread of rubella in the community.

4.2. Impact of vertical transmission and exposure rates on rubella-infected people

Fig. 4 from the right reveals the impact of infected newborns on the rubella disease dynamics. As it is seen from the figure, increasing the 
rate of infected newborns (passive infection of newborns caused by vertical transmission from mother to fetus) results in increasing the number of 
rubella-infected people in the community while keeping other parameters unchanged. The result is obtained by varying the value of 𝜃 from 0.45 
to 0.65. Therefore, to eradicate rubella and reduce CRS, pregnant women must protect themselves from the interaction of rubella-contaminated 
materials. The impact of the exposure rate is shown in Fig. 4 on the left. It shows that if someone lives in the community for a long period of time 
without symptoms, the number of people infected with rubella will increase.

4.3. Impact of vaccination and treatment rates on rubella-infected people

As shown in Fig. 5 from the left, when the rate of first and second-dose vaccination increases, the number of rubella-infected individuals 
approaches zero. This reveals that if everyone is vaccinated before contacting this viral disease, especially new born babies who must receive the 
MMR vaccine twice, then rubella disease can be controlled. As shown in Fig. 5 from right, the impact of the treatment rate on the rubella-infected 
11
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Fig. 3. Graph depicting the impact of contact rate on exposed and rubella-infected people.

Fig. 4. Graph depicting the impact of exposed (left) and vertical transmission (right) rates on rubella-infected people.

Fig. 5. A graph depicting the effect of vaccination doses (left) and treatment rate (right) on rubella-infected people.

people is studied, and the results of the numerical simulation are obtained by varying the value of the treatment rate while keeping the other 
parameters constant. Increasing the value of 𝛾 will result in a decrease in the number of rubella infections. This indicates that the increment in the 
value of this rate has a great contribution to reducing rubella disease in the community.

5. Discussion and conclusion

In this study, the SVPEIRS deterministic mathematical model of rubella disease dynamics is formulated and analyzed. The basic qualitative 
analysis of the model is discussed in Section 3. The result of the qualitative analysis shows that the solution of the constructed model is bounded 
and positive. The local stability of the disease-free equilibrium point in the developed model is determined using the Jacobian matrix and is locally 
12
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asymptotically stable if the number of secondary infected individuals caused by a single rubella infected individual is greater than one. The basic 
reproductive number is calculated using the next-generation matrix to determine the existence of the rubella disease in the community.

A sensitivity analysis that determines the contribution of each basic parameter to the dynamics of rubella disease is performed. The results of 
the analysis show that the recruitment rate (𝜋), contact rate (𝛽), vertical transmission (neonatal infection) rate (𝜃) and exposure rate (𝜗) all have 
positive sensitivity indicators. Increasing the value of these parameters has the greatest impact on the spread of the rubella disease. However, the 
treatment rate (𝛾), the first dose (𝛼) and second dose rates (𝛿) have negative sensitivity indicator. Thus, they have a role in controlling rubella 
disease when their value increases.

Finally, using MATLAB R2020a computer software, the numerical simulation and the effect of the parameters that are used to investigate the 
effect of some basic parameters are performed and the result of the simulation is shown graphically. According to our simulation results, increasing 
values of some parameters like 𝛾 , 𝛼 and 𝛿 as well as decreasing the values of 𝛽, 𝜃 and 𝜗, have a significant role in controlling the spread of rubella 
in the community. Therefore, these findings suggest that healthcare professionals and policy-makers pay attention to these parameters.
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