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Abstract: Since the start of the COVID-19 pandemic at the end of 2019, more than 170 million patients
have been infected with the virus that has resulted in more than 3.8 million deaths all over the world.
This disease is easily spreadable from one person to another even with minimal contact, even more
for the latest mutations that are more deadly than its predecessor. Hence, COVID-19 needs to be
diagnosed as early as possible to minimize the risk of spreading among the community. However,
the laboratory results on the approved diagnosis method by the World Health Organization, the
reverse transcription-polymerase chain reaction test, takes around a day to be processed, where a
longer period is observed in the developing countries. Therefore, a fast screening method that is
based on existing facilities should be developed to complement this diagnosis test, so that a suspected
patient can be isolated in a quarantine center. In line with this motivation, deep learning techniques
were explored to provide an automated COVID-19 screening system based on X-ray imaging. This
imaging modality is chosen because of its low-cost procedures that are widely available even in
many small clinics. A new convolutional neural network (CNN) model is proposed instead of
utilizing pre-trained networks of the existing models. The proposed network, Residual-Shuffle-Net,
comprises four stacks of the residual-shuffle unit followed by a spatial pyramid pooling (SPP) unit.
The architecture of the residual-shuffle unit follows an hourglass design with reduced convolution
filter size in the middle layer, where a shuffle operation is performed right after the split branches
have been concatenated back. Shuffle operation forces the network to learn multiple sets of features
relationship across various channels instead of a set of global features. The SPP unit, which is
placed at the end of the network, allows the model to learn multi-scale features that are crucial to
distinguish between the COVID-19 and other types of pneumonia cases. The proposed network is
benchmarked with 12 other state-of-the-art CNN models that have been designed and tuned specially
for COVID-19 detection. The experimental results show that the Residual-Shuffle-Net produced the
best performance in terms of accuracy and specificity metrics with 0.97390 and 0.98695, respectively.
The model is also considered as a lightweight model with slightly more than 2 million parameters,
which makes it suitable for mobile-based applications. For future work, an attention mechanism can
be integrated to target certain regions of interest in the X-ray images that are deemed to be more
informative for COVID-19 diagnosis.

Keywords: COVID-19 screening; X-ray imaging; convolutional neural networks; lightweight model

1. Introduction

Even after a year since the start of the Coronavirus disease 2019 (COVID-19) pandemic,
there are still many countries that struggle with the increased number of COVID-19 cases
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everyday [1]. Moreover, there are several new COVID-19 mutations that are more prevalent
among the younger peoples that have a higher infection rate [2]. Luckily, several of the
developed vaccines like AstraZeneca, Pfizer, and Moderna have been proven to work well
in reducing the number of infected cases even for these new COVID-19 variants [3]. Thus,
the screening task of the COVID-19 cases is becoming more important so that high-risk
patients can be identified immediately, which is a crucial step in breaking the infection chain
of the virus. These patients were then to be quarantined in dedicated centers, whereby
patients with severe symptoms need to be admitted to the hospitals for further intensive
treatment. According to the World Health Organization, the suggested diagnosis method
to detect this severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2,
which is the cause for the COVID-19 disease is through a reverse transcription-polymerase
chain reaction (RT-PCR) test [4]. However, the cost of the RT-PCR test can be considered as
expensive for most of the developing countries, whereby their economies have also been
affected heavily by this pandemic. Hence, an effective screening method that can detect the
disease immediately such as a rapid antigen test has been proposed to screen the patient
with a high likelihood to be positive of COVID-19 [5]. In general, the rapid antigen test is
slightly less accurate with 90% sensitivity and hence the results still need to be confirmed
with the RT-PCR test [6]. Nevertheless, the advantage of fast screening outweighs the
danger of spreading the viruses caused by the late notification of SARS-CoV-2 infection.

According to the current market price, a rapid antigen test costs around 30 USD, and
it is still a pricey cost in the case of mass testing, especially in the industrial settings [7].
Therefore, an automated X-ray based screening method has been proposed to offer a
low-cost screening alternative, while still producing fast screening results. The cost of
an X-ray procedure is around one-fourth of the rapid antigen test and the machine is
widely available all over the world [8]. Therefore, no additional specific equipment is
needed, whereby small clinics are also known to have an X-ray machine. However, this
imaging procedure needs to be complement with an automated screening method since
not all health practitioners are well versed in the COVID-19 detection [9]. An X-ray-based
screening requires a lot of prior experience, where the general health practitioners need to
familiarize themselves with the COVID-19 prognosis as seen from the chest X-ray image.
In line with this argument, this paper proposes an automated screening algorithm to detect
the likelihood of COVID-19 cases based on X-ray images using an advanced machine
learning technique. The proposed system will only focus on full-frontal chest X-ray images;
as such, any side or sliced frontal X-ray images as shown in Figure 1 will be removed from
the dataset. This step is taken because of two-fold reasons, which are to limit the variation
of the input images and to reduce inaccurate learning of the model due to noisy data in the
COVID-19 class.

Figure 1. Samples of removed X-ray images. The first two samples are removed because they were
captured from the side view, while the third sample is removed because of the incomplete information
on the frontal chest X-ray image.

In this work, a lightweight convolutional neural network (CNN) is proposed using
the Residual-Shuffle network concept, in which the main branch will be split into two
sub-networks that will later be concatenated and shuffled together to better learn the
features from various prior layers. A residual skip connection [10] is also added to reduce
the possibility of a zero-gradient diminishing issue, where the full architecture of the
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proposed network consists of four stacks of the Residual-Shuffle unit. At the bottom layer,
three parallel branches of a spatial pyramid pooling (SPP) unit [11] are also added to
improve the network capability in handling multi-scale detection. The added unit will
be useful for the detection of COVID-19 cases with various severity levels, whereby the
size of the air pocket in the X-ray images will be different as the disease becomes more
severe. The design of this SPP unit is in contrast to the simplified SPP network as used
in [12], in which their multi-scale feature maps are directly obtained through repeated
down-pooling without performing any convolution operation. Overall, the proposed
architecture utilizes slightly more than 2 million parameters, which is a lot smaller than the
upper threshold of a lightweight network as defined in [8]. Due to its lightweight nature,
it can be implemented on various types of mobile platforms and still achieve acceptable
processing speed. Therefore, the main novelties of the proposed Residual-Shuffle-Net
are its lightweight and accurate CNN model with just ∼2 million parameters, and the
residual-shuffle unit that allows better feature learning across several groups of channels.
Moreover, the network has also been integrated with three parallel branches of an SPP unit
to extract multi-scale features, which are crucial in distinguishing COVID-19 cases and
other types of pneumonia cases. It is worth noting that the proposed method aims to be an
early screening method, after which the patients still need to be diagnosed by qualified
medical practitioners. Therefore, this method is more applicable to developing countries,
whereby the cost of mass diagnosis is considerably high compared to the average wage
rate. Besides that, due to the lack of good laboratory facilities in developing countries, the
results of the RT-PCR test will usually come out a few days after the samples are taken,
which makes the proposed fast screening method a good complimentary test.

This paper is organized into five sections, where a review of the CNN-based system in
screening COVID-19 disease is summarized in Section 2. Section 3 discusses in detail the full
architecture of the proposed Residual-Shuffle Network (Residual-Shuffle-Net). The source
code for the Residual-Shuffle-Net can be found at https://github.com/asyrafzulkifley/
Residual-Shuffle-Net/blob/main/Residual_Shuffle_Net%20Model (accessed on 1 August
2021). Section 4 provides details of the database used for the validation tests and the
outputs of the experiments, whereby comprehensive discussions on their performance are
elaborated with respect to the state-of-the-art benchmarked methods. Section 5 summarizes
the limitations of the proposed work, while a concise section on conclusions and future
works is proposed at the end of this paper.

2. Convolutional Neural Networks for COVID-19 Detection

Convolutional neural networks have been successfully applied in many applications
such as video analytic [13], intelligent remote sensing [14], two-dimensional signal pro-
cessing [15], biomedical diagnosis [16], and many more. The technology relies on a set of
optimal features to represent a dedicated application, whereby the features are trained
using large numbers of data, contrary to the handcrafted features in the standard machine
learning approach. As an example of the standard machine learning approach, the work
in [17] has extracted a set of handcrafted COVID-19 features as the input to a naive Bayes
classifier. They have utilized textures and several morphological features to represent the
possibility of COVID-19 cases. Moreover, there are two popular imaging modalities have
been explored in COVID-19 detection, which are X-ray images and computed tomogra-
phy (CT) scans. According to Sverzellati et al. [18], X-ray is the better imaging modality
compared to the CT scan in screening the possibility of COVID-19 cases, coupled with its
low-cost procedures and wide availability of the X-ray machine. However, researchers
in [19] found out that the segmentation of lung condition using CT scans produced a
clearer mask for identifying the COVID-19 symptoms. In general, researchers have focused
on either using a pre-trained model or developing a new dedicated model for the task
of COVID-19 detection. This issue has been explored initially by Pham et al. [20], in
which they have run several tests on the existing CNN models to verify the network’s
effectiveness for the COVID-19 detection. They concluded that using pre-trained models
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of AlexNet, GoogleNet, and SqueezeNet were enough to achieve more than 98% accura-
cies on a three-class classification problem. However, there is an issue of class imbalance
where they have used only 55 images of COVID-19 X-ray images compared to more than
1000 images for the other two classes.

Hence, several researchers have also explored basic pre-trained CNN such as the
works by Pandit et al. [21] and Panwar et al. [22], who have retrained the VGG-16
architecture for a two-class problem to identify either COVID-19 or normal cases. Kikkisetti
et al. [23] have also used the same VGG-16 architecture with minimal model modification,
just by changing the last layer connection to a set of four nodes. Again, the transfer learning
approach is used due to a limited number of datasets, whereby only 108 COVID-19 samples
were used during training and testing phases. Apostolopoulos and Mpesiana [24] have
experimented on five existing models for two and three-class classification problems, which
are VGG-19 [25], MobileNet V2 [26], Inception [27], Xception [28], and Inception ResNet V2
[29]. They found out that the simplest VGG-19 model produced the highest accuracy. These
results were obtained from limited numbers of training data with just 224 images of COVID-
19 X-ray, whereby the other deeper models might experience under-fitting issues. Similarly,
Narin et al. [9] have tested different sets of five CNN models, which are ResNet-50, ResNet-
101, ResNet-152 [10], Inception V3 [30], and Inception ResNet V2 [29], and concluded that
the simplest model ResNet-50 produces the highest accuracy. Again, only 341 X-ray images
of COVID-19 patients were used during their experiments, which might point to the same
underlying issue. Therefore, Loey et al. [31] have suggested the usage of a generative
adversarial network (GAN) to create a set of synthetic images so that the training data for
the COVID-19 class can be increased. A variety of GAN models have also been successfully
applied to other applications such as traffic sign recognition [32], in which the synthetic
training dataset has managed to improve their object detection accuracy. The work in [33]
improvised on the GAN design, in which a conditional deep convolutional GAN is used to
create the synthetic image separately for each class. Through this approach, more accurate
and dedicated samples for the COVID-19 class were generated, since the other class data
are more than enough for CNN training. In contrast, Ucar and Korkmaz [34] utilized a
lightweight CNN model, SqueezeNet [35], that uses 2 million parameters to screen the
COVID-19 cases. They have also optimized the hyper-parameters setup using Bayesian
optimization. This optimization approach was also applied in [36], where an optimal set of
hyper-parameters can boost the performance of the machine learning network.

On the other hand, Khan et al. [37] have modified the Xception network by changing
the bottom layer with a flatten operator instead of a regular global average pooling operator.
Even though Xception uses a separable convolution as its building block, the network
runs comparatively slow due to its large number of parameters. Hence, Panahi et al. [38]
have devised a fast network, FCOD, which requires just a total of 85,321 parameters. Their
lightweight model has utilized a separable convolution format with a low number of
convolution filter sets. Like the network by Khan et al., the work by Abdani et al. [8] has
modified the bottom layer of SqueezeNet to integrate a spatial pyramid pooling unit for
a three-class classification problem. They have argued that the air pockets in the X-ray
images varied in size, especially between different severity levels of the COVID-19 cases.
Hence, the CNN network must be able to capture these various scales of unique features,
so that a robust COVID-19 identification system can be produced. Contrary to the parallel
down-pooling unit in the SPP approach, Mahmud et al. [39] have introduced a network
with several parallel atrous convolutions with different dilation rates. Thus, the captured
receptive field size became bigger when the dilation rate was increased. They have also
utilized a two-stage training, whereby the first stage focuses on the general classification of
various pneumonia cases, and the second stage only focuses on differentiating between a
COVID-19 case or not. The network introduced by Gilanie et al. [40] is unique in the sense
that all convolution kernels are in the size of 5x5, which makes it less optimal for Tensorflow
application. Their straightforward network consists of eight layers of convolution operator
without applying any batch normalization technique. The CoroDet, which was introduced
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in [41], utilized a stack of seven down-sampling and up-sampling modules to produce
a lightweight COVID-19 classifier, which has been extensively tested for two, three, and
four-class classification problems. They have utilized a Leaky ReLU activation function,
whereby the down-sampling operation is done through maximum down-pooling, while
the up-sampling operation is done through feature map resize. These repeated down and
up-sampling procedures were operated at small-size feature maps, which leads to a lot
of information loss. Apart from COVID-19 detection, CNN has also been used to predict
the severity level of the COVID-19 infection. In [42], a pre-trained VGG-16 architecture is
used to predict the lung condition of the COVID-19 patients based on chest X-ray imaging.
The transfer learning approach is used to initialize the network parameters, in which the
last layer is modified to be a regressor node. Two different networks were trained for two
different regression goals, which are to identify the geographic extent and degree of opacity
of the lung. Similar to the previous work goals, Wong et al. [43] use a more complex
network architecture of COVID-Net S to determine the severity level of the patient’s
lung conditions. They have used the stratified Monte Carlo cross-validation method to
further improve sampling strategy by grouping the chest X-ray images according to the
age, sex, geographical location, imaging view, and imaging position attributes. They
have also augmented their training dataset with image manipulation methods so that the
dataset variability will be increased through translations, rotations, horizontal flips, zooms,
intensity shifts, cutout, and Gaussian noise addition.

3. Residual-Shuffle Network with Spatial Pyramid Pooling Module

The Residual-Shuffle Network (Residual-Shuffle-Net) is a specialized lightweight
CNN model built for COVID-19 detection for X-ray-based imaging systems. The net-
work core component combines the residual skip connection with a compact shuffle unit,
whereby a set of group convolutions is applied to let the network to learn multiple local
features, instead of a set of global features. The design of this network is derived from
the basic module of the ShuffleNet V2 [44], whereby the main branch is split into two
branches at the beginning of the network and only one of the branches is treated with
a convolution operator, while the other branch acts as a feed-forward unit. Generally,
the Residual-Shuffle-Net consists of three modules of network flows, which are bottom,
middle, and top modules. Let us define the Residual-Shuffle-Net, RS as the following
withM representing the module and I representing the input image with the size of 256 ×
256 pixels:

RS =M1.M2.M3.I (1)

The bottom moduleM1 consists of an entry network that will extract rough features
using two layers of convolution (C) and maximum down-pooling (P) operators. Each
of the convolution operators applied in the Residual-Shuffle-Net will be followed by a
batch normalization operator and a leaky rectified linear unit (Leaky ReLU) activation
function. A small number of filter sizes is used for both convolution operations in the
bottom network with just 8 and 16 channels to keep the number of parameters minimal
during the early part of the network:

M1 = C1.P1.C2.P2 (2)

The middle moduleM2 comprises of the core Residual-Shuffle unit (RSU ). There
will be a stack of four sequentialRSU , where P is added between them to down-scale the
feature map size except for the fourth unit:

M2 = (
3

∏
i=0
RSU i.Pi).RSU 4 (3)
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The initial feature map size to this module is 64 x 64 pixels and the output feature map
size at the end of this module is 8 × 8 pixels. Therefore, the range of the feature map size
for this module is considerably small in order to maintain the lightweight nature of the
proposed model. There will be three convolution operators in each RSU , where its full
building block is shown in Figure 2. Residual-Shuffle-Net utilizes a bottleneck design for
the convolution operations; as such, the middle convolution operator will have a smaller
number of the filter set compared to the first and third convolution operators. The residual
skip connection input layer comes from the output of the first convolution, which will be
added to the output of the third convolution. Group and shuffle operations are performed
during the second convolution operation, in which a simple channel split procedure is used
to divide the feature maps into two equal groups, where it will be combined back using a
concatenate operator. The addition of group and shuffle operations force the network to
learn from various sets of feature branches, instead of one set of general features [45]. The
design of sequential RSU allows the network to learn multiple local features instead of
global features in each convolution layer.

Figure 2. Architecture of the Residual-Shuffle unit.

The final module M3 utilizes a spatial pyramid pooling (SPP) unit, followed by
a composite function of global average pooling and dense connection. Since this study
focuses on a three-class problem, a SoftMax activation function with three output classes
is used to come out with the likelihood of an image belong to each respective class. The
SPP unit is added with the goal of improving the network’s capability in extracting
multi-scale features of the diseases from X-ray images. In this paper, the dataset used
to validate the network performance consists of diseases from various severity levels of
COVID-19. Thus, the size of the air pocket seen in the X-ray images varies in size, and
some of them are difficult to identify and differentiate using naked eyes, especially for the
case between COVID-19 and other types of pneumonia cases. In line with the previous
reasoning, three parallel branches of down-pooling operators are employed to extract
the multi-scale features, which will be resized and concatenated back at the end of the
unit. Since the input feature map size is 8 x 8 pixels, a set of 2 by 2, 4 by 4, and 6 by 6
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down-pooling kernels has been utilized to produce equally spaced down-pooling scales as
shown in Figure 3.

Figure 3. Architecture of the spatial pyramid pooling unit.

Then, a standard global average pooling G operator is used to sample the best multi-
scale features before the classification process is done using a dense feedforward layer.
The full design of the Residual-Shuffle-Net architecture is given in Table 1, where each
layer information is detailed out in terms of the filter size, kernel size, and stride step
for all bottom, middle, and top modules. Let D represent the dense connection layer
with three output classes, where a SoftMax activation function is applied to complete the
Residual-Shuffle-Net classifier with a total of 2,090,491 parameters.

M3 = SPP .G.D (4)

Table 1. Overall architecture of the Residual-Shuffle-Net.

No. Layer Output Size Filter Size Kernel Size Stride

1 Convolution 256 × 256 8 3 × 3 1 × 1
2 Max Pooling 128 × 128 - 2 × 2 2 × 2
3 Convolution 128 × 128 16 3 × 3 1 × 1
4 Max Pooling 64 × 64 - 2 × 2 2 × 2
5 Residual-Shuffle (1) 64 × 64 32-16-32 3 × 3 − 1 × 1 − 3 × 3 1 × 1
6 Max Pooling 32 × 32 - 2 × 2 2 × 2
7 Residual-Shuffle (2) 32 × 32 64-32-64 3 × 3−1 × 1−3 × 3 1 × 1
8 Max Pooling 16 × 16 - 2 × 2 2 × 2
9 Residual-Shuffle (3) 16 × 16 128-64-128 3 × 3−1 × 1−3 × 3 1 × 1
10 Max Pooling 8 × 8 - 2 × 2 2 × 2
11 Residual-Shuffle (4) 8 × 8 256-128-256 3 × 3−1 × 1−3 × 3 1 × 1

12 Spatial Pyramid
Pooling 8 × 8 128-128-128 2 × 2−4 × 4−6 × 6 1 × 1

13 Global Average
Pooling 1 × 1 - 8 × 8 1 × 1

14 Dense + SoftMax - 3 1 × 1 1 × 1

4. Experiments and Discussion
4.1. Dataset

The proposed model is validated by using a three-class problem of X-ray image classi-
fication, which consists of COVID-19, other types of pneumonia, and normal cases. Due to
the limited number of X-ray images for each category of bacterial and viral pneumonia,
this study has chosen a three-class classification problem. Therefore, the class of other
types of pneumonia contains both the virus and bacteria-caused pneumonia, except for
COVID-19 cases for a fair deep learning comparison. The images for all three classes of
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X-ray radiography dataset were downloaded from two publicly available databases, which
are Medical Imaging Databank of the Valencia Region (BIMCV) [46] and Radiological
Society of North America (RSNA) [47]. The BIMCV dataset is the sole provider for the
COVID-19 cases, while the RSNA dataset is the provider for the other types of pneumonia
and normal cases. The dataset was skimmed through to select a set of quality images such
that X-ray images with unrelated patterns or conditions will be removed. The main reason
for this removal is to limit the possibility of the deep learning model in learning unrelated
features to the disease such as color variation, background objects, side view images, and
many more. If these images were not removed, these noisy patterns will be captured by
the CNN model as parts of the disease patterns, which will produce an unfair comparison
to the good X-ray imaging. In this case, the overall quality of the RSNA dataset is better
than the BIMCV dataset. Besides that, even if the BIMCV dataset provides the radiological
findings, this paper has omitted them as the respective findings are not available for the
RSNA dataset. For the COVID-19 cases, all positive cases have also been confirmed with
the RT-PCR test. The original mean age of the COVID-19 patient is 63 years old with a
relatively fair distribution between the gender, with 46% of them being male and 54% of
them being female. The dataset was captured from various types of X-ray machines, which
were initially saved in Digital Imaging and Communications in Medicine (DICOM) format.
According to the report in Vaya et al. [46], the majority of X-ray images were captured using
fixed X-ray machines that include Konica Minolta 0862 342, GMM Accord DR 255, and
Siemens FD-X X-ray machines. In the end, there are 1341 X-ray images for COVID-19 cases,
1341 images for other types of pneumonia cases, and 1341 images for normal cases, which
sums up to 4023 X-ray images in total. All images are then saved in Portable Network
Graphics (PNG) format with a standard resolution of 1024 × 1024 pixels, which is bigger
than the input requirements of all benchmarked CNN models. Some samples of the X-ray
images used in this paper are shown in Figure 4.

Figure 4. Samples of X-ray images for each category of COVID-19, normal and other types of pneumonia cases.

4.2. Evaluation Metrics

There are six evaluation metrics used to evaluate the performance of the proposed
Residual-Shuffle-Net and its benchmarked methods. The selected metrics are accuracy
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(ACC), sensitivity (SEN), specificity (SPE), precision (PRE), F1-Score, and number of
parameters. (ACC) concerns more on the true detection rate either for the positive or
negative cases, while (SEN) and (SPE) concern more true positive rates and true negative
rates, respectively. On the other hand, (PRE) measures the ratio of the correctly detected
case and the total samples that have been predicted as positive, while F1-Score measures
the harmonic mean between (SEN) and (PRE). All five of these metrics rely on basic units
of true positive (TPos), true negative (TNeg), false positive (FPos), and false negative (FNeg).
The (FPos) and the (FNeg) are the cases when the predicted class does not match the labeled
ground truth, whereby the prediction should have been positive and negative detection,
respectively. On contrary, the (TPos) and the (TNeg) are the cases when the predicted
class exactly matches the ground truth label for both of the cases. Finally, the number of
parameters represents the total number of trainable and non-trainable parameters utilized
by the respective CNN model. The evaluation metrics are calculated as follows:

ACC =
TPos + TNeg

TPos + TNeg + FPos + FNeg
(5)

SEN =
TPos

TPos + FNeg
(6)

SPE =
TNeg

TNeg + FPos
(7)

PRE =
TPos

TPos + FPos
(8)

F1− Score =
2TPos

2TPos + FPos + FNeg
(9)

4.3. Experimental Setup

There are 12 state-of-the-art CNN models from recent COVID-19 works that have
been selected to be the performance benchmark for the proposed Residual-Shuffle-Net. All
12 models have utilized CNN classifiers for their COVID-19 detection system based on
input from X-ray images, which are Hussain et al. [41], Abdani et al. [12], Khan et al. [37],
Panahi et al. [38], Pandit et al. [21], Ozturk et al. [48], Mahmud et al. [39], Loey et al. [31],
Ucar et al. [34], Panwar et al. [22], Narin et al. [9], and Gilanie et al. [40]. Five of the
methods have used existing popular models, in which the models have been properly
defined by the original authors, while the other seven methods have been selected because
of their networks’ details were fully explained in their paper. All benchmarked models
and the proposed Residual-Shuffle-Net have been coded on the Python platform using the
Keras-Tensorflow library for a fair comparison, whereby their hyper-parameter settings
have been tuned for the maximum classification performance. This is because the majority
of the benchmarked papers have tested less than 600 images of COVID-19 cases. The main
criterion used to judge for optimized hyperparameter settings for all methods is error
convergence for training and validation loss function. The cutoff threshold value for both
of the errors is 0.1, as such all models have been trained to produce errors less than the
pre-set threshold value. Hence, a set of optimized settings as shown in Table 2 has been
found using grid search methodology, whereby all the models achieved error convergence
in their training and validation datasets. The performance metrics were also coded and
analyzed using the Numpy library from Python software. One hot encoded labeling with
SoftMax activation function is standardized as the last dense layer for all models. The
Adam optimizer with a fixed learning rate is used to update the parameter values during
the training phase, which has been set up to optimize the cross-entropy loss function with
an accuracy performance metric. No simple or complex data augmentation was utilized,
except for the image resizing operation to fit the input requirement of each model. In the
Residual-Shuffle-Net case, the input image is resized to the resolution of 256 × 256 pixels.
Batch size selection will depend on the model size, whereby the maximum possible batch
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size is used to train each of the models using a single Nvidia RTX 2080 Ti graphics card.
Our Intel i9-9900K machine with a 3.60 GHz clock rate can afford to process Residual-
Shuffle-Net with a batch size of 64 images. The proposed Residual-Shuffle-Net uses a total
of 2,090,491 parameters, whereby 2,087,275 of them are trainable parameters, while 3216 of
them are non-trainable parameters.

Table 2. Hyper-parameter settings for the Residual-Shuffle-Net.

Criteria Hyper-Parameter Setting

Batch size 64
Training epoch 80

Backpropagation method Adam optimizer
Input image size 256 × 256 pixels

Optimizer learning rate 0.0001
Optimizer momentums β1 = 0.9, β2 = 0.999

Loss function categorical cross-entropy
Labeling format One-hot encoded

A five-fold cross-validation scheme is used to divide the dataset into general training
and testing pots, so that the sampling bias can be reduced, whereas the over-fitting issue
on the selected samples can be minimized. Then, the testing pot is further divided into
two equal classes between validation and test dataset, whereby the final dataset is divided
according to the ratio of 8:1:1 between training, validation, and testing phases. Therefore,
for one validation fold, the number of X-ray images used for the training, validation, and
testing are 3217, 403, and 403 images, respectively.

4.4. Discussion on the Residual-Shuffle-Net and Its Benchmarked Models Performance

In general, all the tested methods have been trained until convergence for both accu-
racy and loss functions as shown in Figures 5 and 6, respectively. During the training phase,
the error for all CNN models converged towards zero value, while the accuracy for 10 out
of the 12 models converged towards maximum accuracy of 1.0. Besides that, the other two
models by Panwar et al. [22] and Hussain et al. [41] have converged to 0.95 accuracies after
80 epochs of training update. The convergence pattern assumption is also supported by the
validation loss curves as shown in Figure 7 that proved the Residual-Shuffle-Net and all
the benchmark methods have been trained until convergence. The trend for both training
and validation losses for all methods has converged towards zero error. Although there are
six performance metrics were calculated in this study, two of them carry more weightage in
determining the best detection method for COVID-19 screening. The goal of the screening
stage is to detect as many true positive cases as possible that will be confirmed later by
the RT-PCR test. Therefore, the ACC and PRE metrics were prioritized in ranking the
benchmark methods, where both of them measure a certain ratio of positive cases over the
total number of cases. However, it is worth noting that the false negative metric still plays
an important role in COVID-19 screening. A screening method will be rendered useless if
none of the cases were screened at the early stage, which will directly increase the cost of
healthcare to the government. Table 3 shows the performance of the Residual-Shuffle-Net
and its benchmark methods using all six performance metrics, which were ranked using
ACC and PRE. As a whole, Residual-Shuffle-Net performed the best in five out of the six
evaluation metrics, except for the total number of parameters. It achieved the highest ACC
and PRE with 0.97390 and 0.97403, respectively, while maintaining a relatively lightweight
model with just 2 million parameters.
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Figure 5. Training accuracy for Residual-Shuffle-Net and all of its benchmark methods.

Figure 6. Training loss for Residual-Shuffle-Net and all of its benchmark methods.
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Figure 7. Validation loss for the Residual-Shuffle-Net and all of its benchmark methods.

Table 3. Performance results of the Residual-Shuffle-Net and the benchmark methods.

Method ACC SEN SPE PRE F1 − Score Total
Parameters

Trainable
Parameters

Hussain et al. [41] 0.78695 0.78695 0.89347 0.81998 0.77785 3,798,083 3,798,083
Narin et al. [9] 0.83765 0.76155 0.88078 0.8376 0.72718 23,567,299 23,514,179

Ozturk et al. [48] 0.84629 0.84629 0.92318 0.92572 0.81911 1,167,363 1,164,143
Ucar et al. [34] 0.92841 0.92841 0.96420 0.93130 0.92866 1,078,211 1,078,211

Mahmud et al. [39] 0.93686 0.93686 0.96843 0.94025 0.93609 1,338,291 1,164,143
Loey et al. [31] 0.94058 0.94058 0.97029 0.94387 0.94067 11,192,003 11,182,275

Panahi et al. [38] 0.94406 0.94406 0.97203 0.94674 0.94385 85,321 83,849
Pandit et al. [21] 0.94858 0.94858 0.97429 0.94859 0.94834 33,609,539 33,609,539

Panwar et al. [22]. 0.95700 0.95700 0.978500 0.95746 0.95692 14,747,715 14,747,715
Khan et al. [37] 0.96247 0.96247 0.98123 0.96334 0.96247 88,054,139 87,958,763
Abdani et al. [8] 0.96395 0.96395 0.98197 0.96454 0.96388 1,862,331 859,883
Gilanie et al. [40] 0.96868 0.96868 0.98434 0.96884 0.96863 2,339,267 2,339,267

Residual-Shuffle-Net 0.97390 0.97390 0.98695 0.97403 0.97387 2,090,491 2,087,275

It is interesting to note that the second and the third-best CNN models, which are the
methods by Gilanie et al. [40] and Abdani et al. [12], respectively, are both a specialized
model designed for COVID-19 detection. The method by Gilanie et al. achieved an ACC
of 0.96868, while the method by Abdani et al. achieved an ACC of 0.96395. Both of them
can also be regarded as lightweight CNN models with total usage of parameters of less
than 10 million. The uniqueness of the method by Gilanie et al. is in the selection of
convolution kernel size, whereby 5 × 5 kernels were used throughout their network. A
bigger kernel size can better capture the unique features on the X-ray images but comes
with the main weakness of slower processing speed. On the other hand, Abdani et al.
achieved good detection performance by relying on the simplified spatial pyramid pooling
module that was able to capture multi-scale features of the X-ray images, which was crucial
in distinguishing the cases of COVID-19 and other types of pneumonia. Their three parallel
down-pooling branches did not consist of convolution operation, where the features maps
were directly flattened for dense connections, which allows their network to maintain a
small size of the total number of parameters.
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The best pre-trained model performance among the benchmark models is returned by
Khan et al. [37] method through the usage of Xception-71 architecture. They have slightly
modified the top layer of the network to include a global average pooling operator instead
of the original flatten operation. Their method managed to record an ACC of 0.96247 and a
SPE of 0.98123 but requires a large model size of 88 million parameters, which is more than
42 times total number of parameters compared to the proposed Residual-Shuffle-Net. Even
with a big-sized model, their model has utilized separable convolution schemes to reduce
the demand of memory usage but its three-layer convolution unit still uses a large filter
size of 728 channels. Surprisingly, a simple VGG-16 model, which was employed by Pandit
et al. [21] and Panwar et al. [22] delivered the next best evaluation performance among
the pre-trained models. Their architecture used 13 layers of the convolutional operation
without utilizing any residual or feedforward branches. However, Panwar et al. modified
the top layer of the network, by using a global average pooling operator, which resulted
in much smaller model size, from the original 33 million parameters down to 14 million
parameters. The three-layer dense connections in the original network used by Pandit
et al. require a large number of parameters because there is a connection on each of the
4096 nodes, which also produced worse ACC of 0.94858 than the work by Panwar et al.

The overall worst performing method is recorded by the model designed by
Hussain et al. [41]. Their model is relatively lightweight, in which they utilized repeated
down-sampling and up-sampling processes on a small feature map size. The up-sampling
operations that were applied to the small feature map size did not increase their network
capability in extracting meaningful features from the X-ray images, which resulted in
low ACC and F1-Score values of 0.78685 and 0.77785, respectively. However, the lowest
F1-Score of 0.72718 was returned by the method of Narin et al. [9] that uses a pre-trained
model of ResNet-50 architecture. Their low F1-score indicates that ResNet-50 produced a
low ratio of true positive detection compared to the number of false detection, which makes
it not suitable for the screening task. However, the method by Narin et al. produced a much
higher ACC and SPE with 0.83765 and 0.88078, respectively, when compared to the method
by Hussain et al. Contrary to that, a smaller version of ResNet-18 used by Loey et al. [31]
managed to produce a better ACC of 0.94058 compared to the larger ResNet versions.
Similar findings were also concluded in the work of Apostolopoilos and Mpesiana [24],
where their simplest model among VGG-19, MobileNet V2, Inception, Xception-41, and
Inception ResNet V2 produced the best COVID-19 detection. The reasoning behind these
findings can be pointed towards small differences in COVID-19 features and other types of
pneumonia cases, where the addition of compact multi-scale approach used in Residual-
Shuffle-Net and method by Abdani et al. is more crucial to the classification performance
rather than a deep residual connection network.

Figure 8 shows the confusion matrix of the proposed Residual-Shuffle-Net in identi-
fying the three classes of normal, COVID-19, and other types of pneumonia cases. This
confusion matrix reports the performance of each class with respect to the other classes,
instead of average performance information as shown in Table 3. The matrix provides the
exact number of true positive, true negative, false positive, and false negative detections
with regard to each of two other classes. The total number of samples on each class is
uniform so that a fair comparison can be made to identify the weakness of the Residual-
Shuffle-Net. The best true positive cases among the classes were recorded by the COVID-19
cases with 1329 out of 1341 X-ray images were correctly identified. Only eight cases of
COVID-19 X-ray images were wrongly identified to be the other types of pneumonia cases.
The main weakness of the proposed Residual-Shuffle-Net can be traced to false detection
in the case of normal patients, where 51 normal cases were screened as other types of
pneumonia cases. Similarly, 28 cases of other types of pneumonia were wrongly identified
to be normal cases. One of the contributing factors behind this weakness is the quality of
the X-ray images, whereby the datasets for normal and other types of pneumonia cases
were captured in a more uniform setup. Contrary to that, X-ray images for COVID-19 cases
were captured by using various machines with a different setup that leads to more variety
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in the imaging quality. Hence, it is easier to distinguish the COVID-19 cases compared to
the other classes. However, the true positive detection for all classes remains high with the
lowest case of 1282 true detections for the other types of pneumonia class, which is still
a high accuracy with 95.6% true detection. For completion of the results, Figure 9 shows
the receiver operating characteristic (ROC) curves for the proposed Residual-Shuffle-Net.
The area under the curve (AUC) value for each validation fold is also provided, whereby
the highest AUC of 0.9981 is achieved by the first fold, while the lowest AUC of 0.9963 is
achieved by the second fold. Generally, the performance difference between the folds is
very minimal with an AUC variance of 4.85 × 10−7.

Figure 8. Confusion matrix performance of the Residual-Shuffle-Net in identifying the three classes
of COVID-19, normal and other types of pneumonia cases using frontal chest X-ray images.

Figure 9. Receiver operating characteristic (ROC) curves for the Residual-Shuffle-Net with its respective area under the
curve values.
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5. Limitations

There are few limitations of the proposed work, mainly due to the hardware limi-
tation, emergence of new variants of concerns, and clinical test requirements. The core
of the proposed method relies on the deep convolutional network that requires heavy
computational power, especially during the training process. Therefore, an efficient compu-
tational platform is crucial during the training phase, while a lesser intensive computation
is needed during the testing or screening phase. Moreover, the proposed deep network
cannot distinguish the various types of the COVID-19 mutation, especially with regard to
the recent variants of concern such as delta and lambda variants. This is because most of
the existing X-ray images were taken from the early variants of COVID-19, whereby images
of the newer mutations are still being added continuously to the dataset. Besides this, the
proposed method still requires confirmation diagnosis from the medical practitioners. This
approach is still in the early phase of development, whereby more clinical testings need to
be performed before it is suitable for mass usage.

6. Conclusions

In conclusion, this study managed to prove the effectiveness of the Residual-Shuffle-
Net in detecting COVID-19 cases based on the X-ray imaging input. The main novelty of
the proposed network lies in its lightweight residual-shuffle unit that combines the split
and shuffle unit with a residual skip connection. This architecture allows the network
to better learn the distinguishing features between the COVID-19 cases and other class
categories. In addition, the network is also embedded with a spatial pyramid pooling unit
that enables it to extract multi-scale features, which is important for detecting COVID-19
cases of various severity levels. The Residual-Shuffle-Net returned the best performance
for five performance metrics, which are ACC, SEN, SPE, PRE, and F1-Score with 0.97390,
0.97390, 0.98695, 0.97403, and 0.97387, respectively. Although the method by Panahi et al.
uses the lowest total number of parameters, Residual-Shuffle-Net is still considered as a
lightweight model with just 2,090,491 parameters. The classification performance can be
further improved by considering an attention mechanism that allows the network to focus
on selected regions of interest, rather than treating the whole image as equal. Besides this,
a separable convolution approach can also be implemented to reduce memory usage.
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Abbreviations
The following abbreviations are used in this manuscript:

SPP Spatial Pyramid Pooling
CNN Convolutional Neural Networks
COVID-19 Coronavirus Disease 2019
RT-PCR Reverse Transcription Polymerase Chain Reaction
CT Computed Tomography
GAN Generative Adversarial Network
Residual-Shuffle-Net Residual-Shuffle Network
Leaky ReLU Leaky Rectified Linear Unit
BIMCV Medical Imaging Databank of the Valencia Region
RSNA Radiological Society of North America
DICOM Digital Imaging and Communications in Medicine
PNG Portable Network Graphics
ROC Receiver Operating Characteristic
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