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The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the eti-
ologic agent of the coronavirus disease 2019 (COVID-19) pandemic, has dominated all aspects of life since
of 2020. Research studies on the virus and exploration of therapeutic and preventive strategies has been
moving at rapid rates to control the pandemic. In the field of bioinformatics or computational and struc-
tural biology, recent research strategies have used multiple disciplines to compile large datasets to
uncover statistical correlations and significance, visualize and model proteins, performmolecular dynam-
ics simulations, and employ the help of artificial intelligence and machine learning to harness computa-
tional processing power to further the research on COVID-19, including drug screening, drug design,
vaccine development, prognosis prediction, and outbreak prediction. These recent developments should
help us better understand the viral disease and develop the much-needed therapies and strategies for the
management of COVID-19.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The coronavirus disease 2019 (COVID-19) is caused by the Sev-
ere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),
which is thought to have a zoonotic origin and started as an out-
break in Wuhan, China, that later turned into a global pandemic.
As of July 2021, the virus has led to>184 million people infected
and over 3.9 million deaths globally, despite periodic controls
[1]. This number is way higher than a combined death toll from
the previous coronavirus outbreaks of the 2002 SARS and 2016
MERS (Middle East Respiratory Syndrome) of less than 2000
[2,3]. SARS-CoV-2 is a single-stranded, enveloped virus that pos-
sesses a positive-sense RNA genome of roughly 29.9 kb in length,
encoding the spike (S), envelope (E), membrane (M), and nucleo-
capsid (N) structural proteins and multiple other nonstructural
proteins [4–6]. The virus’ life cycle initiates from binding to host
angiotensin converting enzyme 2 (ACE2) by S protein, followed
by viral genome release into cytoplasm. Precursor polyprotein is
further auto-cleaved into various structural and non-structural
proteins via papain-like protease (nsp3) and main protease (Mpro
or 3CLpro; nsp5). Viral assembly takes place in ER-Golgi intermedi-
ate compartment, and nascent virions are released after S protein
glycosylation in Golgi apparatus [7]. Patients with COVID-19 usu-
ally experience fever, cough, and dyspnea; however, some patients
may be asymptomatic, while some others may develop fulminant
disease and require intensive care [8].

Significant research efforts have been invested in COVID-19
research, which generated several vaccine and drug candidates
[9,10]. However, full immunization coverage and therapeutic effi-
cacy evaluation in real-world situation remains an issue, which
necessitates the continuous development of optimal therapeutic
and prophylactic strategies for better management of COVID-19.
Such development can be accelerated using bioinformatics, which
has been rapidly evolving in recent years and is capable of tackling
issues at a scale that previously would not have been feasible. This
includes computational and structural biology, which is a relatively
new frontier, but has the ability to ‘decode’ pathogens and hosts
based on their genomic sequences, thus allowing researchers to
predict and accelerate their understanding of the pathogen and
also explore various strategies to help curb its spread. This aspect
is critical to public health and has since garnered importance over
the last decades with increasing number of emerging and re-
emerging viral infections (such as influenza, Ebola, and Zika). The
technology is further made powerful with the fast-paced develop-
ment of computational technology, particularly in artificial intelli-
gence (AI) and machine learning, that now has begun to see
increasing applications in biology, medicine, and public health,
and revolutionizing the way we approach a disease. Recently, it
has been widely used for drug screening, vaccine/drug design
and prediction of disease to tackle the COVID-19 pandemic. In this
review, we summarize how computational and structural biology
and AI platforms have been applied in the current pandemic.

2. Virtual drug screening

2.1. Identification of novel drugs

When the COVID-19 pandemic hit, one of the biggest concerns
was finding an active antiviral. Structure-based in silico screening
allows screening libraries of pharmacologically active compounds
with documented activities to confer insight on how they may dic-
tate interactions with host or viral proteins [11,12]. Recently, com-
putational models using molecular docking screening followed by
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) analysis and molecular dynamics simulations have been
widely utilized to identify compounds that potentially target
188
SARS-CoV-2 proteins. Compounds identified include potential
SARS-CoV-2 S receptor-binding domain (RBD)-specific terpenes
NPACT01552, NPACT01557, and NPACT00631 [13], Mpro inhibi-
tors tinosponone [14], ChEMBL275592, montelukast,
ChEMBL288347 [15], quercetin-3-O-rhamnoside [16], and bifla-
vone amentoflavone [17], RNA-dependent RNA polymerase (RdRp)
inhibitors Galidesivir and the two drug-like compounds
CID123624208 and CID11687749 [18]. Such method could also
be utilized for high-throughput screening. A study screening plant
secondary metabolites suggested flavonoid glycosides, biflavo-
noids, ellagitannins, anthocyanidins, and triterpenes to be poten-
tial TMPRSS2, SARS-CoV-2 S, Mpro and RdRp inhibitors [19]. Of
note, one of the top-ranked triterpenoid saponins glycyrrhizic acid
(glycyrrhizin) has demonstrated antiviral activities against SARS-
CoV [20] and SARS-CoV-2 [21] in vitro and are being evaluated in
clinical trials [22]. Another study incorporated molecular docking
with machine learning to further expedite the screening procedure
and identified six potential Mpro inhibitors from over 2000 natural
compounds [23].

2.2. Drug repurposing

Computational approaches such as network-based or expression-
based algorithms and docking simulations have also been widely
applied during the pandemic to identify candidates for drug repur-
posing [24,25]. Incorporation of these methods with AI platforms
may facilitate more efficient large-scale screening, and in vitro valida-
tion may further improve the platforms’ accuracy. For instance, Ke
et al. constructed a deep neural network (DNN) platform to screen
thousands of previously identified antivirals against SARS-CoV, influ-
enza virus, and human immunodeficiency virus (HIV) or known 3CL
pro inhibitors. The predicted drugs were then verified in vitro with a
similar feline coronavirus, feline infectious peritonitis (FIP) virus, and
reconfigured into the AI algorithm to refine future predictions [26].
Aside from antivirals, due to COVID-19 induced inflammatory
response, databases were screened to locate clinical drugs with
anti-inflammatory capabilities. For example, the Janus kinase (JAK)
inhibitor baricitinib was predicted to be useful by BenevolentAI, a
platform that combines Monte Carlo tree search (MCTS), neural net-
works, and symbolic AI [27], and was further verified for its anti-
inflammatory and antiviral activities in vitro and in a small group
of COVID-19 patients [28] with bigger clinical trials underway. AI
can also be used to analyze how combinations of certain approved
drugs affect their efficacy. IDentif.AI, a platform based on orthogonal
array composite design (OACD), was utilized to identify a triple-drug
combination of remdesivir, ritonavir, and lopinavir that increased
antiviral efficacy by 6.5-fold compared to remdesivir alone in vitro
[29]. While validation needs to be done in vivo, the applications of
AI to predict synergistic effects can provide new platforms of devel-
oping treatment modalities.

2.3. Identification of druggable targets

Interestingly, computational analyses can be further adapted for
identifying novel drug targets, such as host factors, in curbing the
viral infection. For example, Gordon et al. established a high-
throughput method to analyzed protein–protein interaction (PPI)
between 26 SARS-CoV-2 viral proteins and host proteins that physi-
cally interact with them. Host factors extracted from PPIs of viral and
human proteins will function as druggable targets for identifying can-
didates from approved, clinical, and preclinical drugs [30]. On the
other hand, Riva et al. performed an in vitro high-throughput antivi-
ral screening of more than 11000 compounds from the ReFRAME
drug-repurposing library and evaluated the results with gene set
enrichment analysis (GSEA) to determine drug targets and select
compounds for further antiviral verification [31].
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3. Drug design

3.1. Small molecules

Besides drug screening, computational analysis is also a power-
ful tool for designing small molecules or peptides targeting viral
proteins. For example, Zhang et al. optimized a-ketoamide class
Mpro inhibitors with additional functional groups by applying x-
ray crystallography and molecular docking and validated with
in vitro inhibition assay to determine the best candidates [32]. Sim-
ilar approach is applied by Dai et al. to design novel Mpro inhibi-
tors with a specific backbone [33]. Apart from small molecules,
peptide-based inhibitors were developed to target viral proteins
as well. A common strategy is to utilize the structure of human
ACE2 and SARS-CoV-2 S RBD complex to design peptide inhibitors
that contain critical ACE2 residues and are able to bind to the RBD,
thereby blocking its interaction with ACE2 on host cells [34–37].

3.2. Neutralizing antibodies

Another strategy often considered to tackle the disease is the
identification and characterization of neutralizing antibodies.
Incorporating in vitro neutralization assays and cryo-EM, several
studies were able to identify neutralizing antibodies from conva-
lescent plasma and reconstitute their antibody-S complexes for
structural analyses [38–43]. Knowing the structure of antibody-S
complexes and critical residues for effective neutralization, Luan
et al. were able to establish an automated workflow, using molec-
ular docking simulation and free energy perturbation (FEP)
method, to perform in silico mutagenesis and identify potential
mutations that enhanced binding of neutralizing antibody to
SARS-CoV-2 S [44]. Similarly, in a preprint, Boorla et al. were able
to analyze solvent-exposed residues on the RBD and design poten-
tial antibody variable regions (Fv) with neutralizing properties
[45].

4. Vaccine development strategies

While there were more than a few hundred vaccine candidates
that started, only a handful of candidates have emerged as fron-
trunners [46,47]. For this reason, reverse-vaccinology can be uti-
Table 1
Summary of machine learning models developed for disease prediction.

Readout Parameters Algorithm Sensitivity
(Recall)

Mortality 33 clinical parameters Random forest 85.71 %
Mortality 45 proteins Bayesian

network
92.68%

Mortality CRP, BUN, serum calcium, serum
albumin, lactic acid

SVM 91%

In-hospital
mortality

Age, lymphocyte, D-dimer, CRP,
creatinine (ALDCC)

Logistic
regression

0.91 ± 0.03

In-hospital
mortality

Age, hs-CRP, lymphocyte, d-dimer Logistic
regression

0.839

In-hospital
mortality

LDH, neutrophils, lymphocyte, hs-
CRP, age (LNLCA)

Logistic
regression

92 ± 2.6%

In-hospital
mortality

PTA, urea, WBC, IL-2r, indirect
bilirubin, myoglobin, FgDP

LASSO logistic
regression

98%

In-hospital
mortality

Disease severity, age, hs-CRP, LDH,
ferritin, IL-10

Simple-tree
XGBoost

>85%

Disease
severity

28 blood and urine parameters SVM –

Disease
severity

Different biomarker combinations Penalized logistic
regression

>82%

BUN, blood urea nitrogen; CRP, c-reactive protein; FgDP, fibrinogen degradation produc
interleukin-10; LASSO, least absolute shrinkage and selection operator; LDH, lactate d
predictive value; PTA, prothrombin; SVM, support vector machine; WBC, white blood ce
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lized to identify epitopes or immunogenic regions on SARS-CoV-2
proteins that can be targeted for vaccine design to reduce costs
and provide another layer of verification to speed up vaccine
research. To this end, immune-informatics approaches were
applied to identify immunogenic T cell and B cell epitopes from
SARS-CoV-2 viral proteins [48,49]. Selected epitopes were recon-
structed in silico and analyzed for their antigenicity, allergenicity,
toxicity, physicochemical properties, and their binding stability
to toll-like receptors (TLR), to identify the best vaccine constructs.
An immune simulation was further carried out to predict the
humoral and cellular immune responses after administering the
vaccine candidates.

AI and machine learning algorithms have also been developed
to expedite reverse vaccinology. Software such as NEC Immune
Profiler [50], the newly developed neural network-based ArdIm-
mune Rank model [51], and the eXtreme Gradient Boosting
(XGBoost)-based Vaxign-MLmodel [52,53] have been used to iden-
tify immunogenic epitopes from the SARS-CoV-2 proteome. These
approaches may provide significant help in designing multi-
epitope chimeric vaccines with theoretically higher immunogenic-
ity and assist the design of further biological experiments to exam-
ine the candidates.
5. Disease prediction

Aside from therapeutic development, machine learning has
been widely explored to predict the severity or mortality of
COVID-19. Proteomics and biochemical profile of blood and urine
samples from patients with or without COVID-19, and with differ-
ent severity and outcomes, were analyzed to determine prognostic
biomarker combinations. Various machine learning models, such
as regression analyses, XGBoost, random forest, Bayesian network,
and support-vector machines (SVMs), have been used to select
parameters that may predict mortality [54,55], in-hospital mortal-
ity [56–60], and disease severity [61,62]. A summary of the afore-
mentioned examples and their evaluation matrices are listed in
Table 1. Furthermore, lung lesion characterized by chest computed
tomography (CT) scans were also proposed to predict disease pro-
gression [63–65]. An algorithm combining the imaging, clinical and
biological attributes has been further constructed based on deep
convolutional neural networks to generate a holistic forecast
Specificity Precision
(PPV)

F1-score Accuracy AUROC Test
Cohort

Ref.

92.45% – – 89.47% 0.921 No [54]
86% – – 89.01% 0.953 No [54]

91% 62.5% – – 0.93 No [55]

0.78 ± 0.04 0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.992 Yes [56]

0.794 – – – 0.881 Yes [57]

92 ± 3% – – – 0.991 Yes [58]

91% – – – 0.997 No [59]

– >90% >0.90 >0.90 1.000 Yes [60]

– – – 0.8148 – Yes [61]

>71% >87% – >85% – Yes [62]

ts; hs-CRP, high-sensitivity C-reactive protein; IL-2r, interleukin-2 receptor; IL-10,
ehydrogenase; MCHC, mean corpuscular hemoglobin concentration; PPV, positive
ll activity; XGBoost, eXtreme Gradient Boosting.
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model, which has an area under curve (AUC) of 0.86 and 0.76 for
predicting short-term and long-term mortality, respectively [66].
In addition, it is known that several variants of concern are
reported to cause higher fatality rates [67–69], and it has been
observed that the addition of viral clade or genetic information
to demographic parameters (e.g. age and sex) could improve pre-
diction model performance for severe outcomes [70,71]. Nonethe-
less, increasing evidence are suggesting that, like other prediction
models, external validation of these machine learning-based mod-
els is extremely crucial and should be performed prior to adopting
them in clinical practice [72,73].

At present, it remains challenging to computationally predict
the emergence of future clinically significant SARS-CoV-2 variants,
but a couple of approaches have been developed to model the
interaction between newly identified SARS-CoV-2 variants and
their host and predict their infectivity. A computational pipeline
‘‘SpikePro”, consisting of three-step in silico mutagenesis experi-
ments, calculates the stability of mutant spike protein, the binding
affinity between mutant spike and human ACE2, and the binding
affinity between mutant spike and neutralizing antibodies to pre-
dict viral fitness [74]. Another recently published work also estab-
lished a neural network model that could predict binding affinity
changes of spike mutations to human ACE2 [75]. Such tools may
be helpful in screening emerging mutants/variants that are better
adapted to humans and are potentially more infective.

6. Outbreak prediction

Finally, to better control the pandemic, machine learning has
been investigated as a tool to predict the epidemic curve of
COVID-19. Various algorithms such as long short-term memory
(LSTM) network [76–79], Grey Wolf Optimizer (GWO)-LSTM
Fig. 1. Applications of computational and structural biology and artificial in
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hybrid model [80], autoregressive integrated moving average
(ARIMA) [81–83], XGboost [84], support vector regression (SVR)
[85,86], and genetic programming [87] were explored for their
ability to forecast confirmed cases, recovered cases, and death in
some of the most affected countries. With publicly available statis-
tics, these models may be helpful in predicting COVID-19 transmis-
sion and may facilitate policy-making to prevent new outbreaks.

7. Discussion and perspectives

In summary, computational and structural biology with AI
assistance has emerged as a new tool to tackle COVID-19 in prog-
nosis and management of the disease (Fig. 1). However, due to the
fact that these simulation models serve to provide candidates for
preliminary selection, it is crucial that predictions generated from
computational approaches be verified with biological confirma-
tion, and to take into account the complex biological reactions
[88]. Consequently, the accuracy of the computational models can-
not be asserted merely based on simulation models. The represen-
tativeness of datasets utilized should also be carefully examined,
since most of the prediction models rely on established databases
or cohorts, and selection bias may magnify between different stud-
ies. Hence, it is vital to incorporate multiple datasets with diverse
background to minimize the impact of selection bias. Nonetheless,
results obtained from validation tests could be further used to opti-
mize initial prediction models, thereby showing how AI can be uti-
lized at multiple steps in various aspects. Indeed, computational
research applied in the biology domain has emerged as a powerful
technology to provide us with potential robust and efficient solu-
tions in tackling challenging diseases including the COVID-19 pan-
demic. The rapid processing with AI may be especially beneficial
when different variants are emerging worldwide, resulting in more
telligence (AI) in the COVID-19 pandemic. Created with BioRender.com
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cases, fatality, and decreased vaccine protection [89]. Disease pre-
diction models may also become useful for identifying potential
patients who are prone to post-acute symptoms or complications
[90]. With accumulated experiences, the inclusion of AI-assisted
computational and structural biology will likely continuously be
refined and become a norm and critical parameter in future pre-
paredness and rapid management of viral outbreaks and pandemic
diseases.
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