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Abstract 
 
Background: The COVID-19 incidence rates across different geographical regions (e.g., counties 
in a state, states in a nation, countries in a continent) follow different shapes and patterns. The 
overall summaries at coarser spatial scales, that are obtained by simply averaging individual 
curves (across regions), hide nuanced variability and blur the spatial heterogeneity at finer spatial 
scales. For instance, a decreasing incidence rate curve in one region is obscured by an increasing 
rate curve for another region, when the analysis relies on coarse averages of locally 
heterogeneous transmission dynamics. 
 
Objective: To highlight regional differences in COVID-19 incidence rates and to discover 
prominent patterns in shapes of incidence rate curves in multiple regions (USA and Europe). 
 
Methods: We employ statistical methods to analyze shapes of local COVID-19 incidence rate 
curves and statistically group them into distinct clusters, according to their shapes. Using this 
information, we derive the so-called shape averages of curves within these clusters, which 
represent the dominant incidence patterns of these clusters. We apply this methodology to the 
analysis of the daily incidence trajectory of the COVID-pandemic for two geographic areas: A 
state-level analysis within the USA and a country-level analysis within Europe during late-
February to October 1st, 2020.  
 
Results: Our analyses reveal that pandemic curves often differ substantially across regions. 
However, there are only a handful of shapes that dominate transmission dynamics for all states 
in the USA and countries in Europe. This approach yields a broad classification of spatial areas 
into different characteristic epidemic trajectories. In particular, spatial areas within the same 
cluster have followed similar transmission and control dynamics. 
 

https://www.researchsquare.com/article/rs-223226/v1


Conclusion: The shape-based analysis of pandemic curves presented here helps divide country or 
continental data into multiple regional clusters, each cluster containing areas with similar trend 
patterns. This clustering helps highlight differences in pandemic curves across regions and 
provides summaries that better reflect dynamical patterns within the clusters. This approach adds 
to the methodological toolkit for public health practitioners to facilitate decision making at 
different spatial scales. 
 
 
Keywords:  Covid-19 incidence rates; epidemic curves; statistical shape analysis; region 
clustering; pandemic trends; flattening curves. 
 
 
 
 
  



Background 
 
The	ongoing	pandemic	of	novel	 coronavirus	disease	 (COVID-19)	 that	erupted	 in	China	 in	
December	2019	continues	to	generate	substantial	morbidity	and	mortality	impact	around	
the	world	[5,26,27].	As	the	novel	coronavirus	continues	its	march	around	the	world,	the	daily	
trajectory	 of	 the	 epidemic	 in	 terms	 of	 new	 cases	 or	 deaths	 represents	 a	 key	 tool	 for	
epidemiologist	and	public	health	scientists	to	quantify	the	reproduction	number,	assess	the	
evolution	of	 the	doubling	 time,	 and	 evaluate	 the	 impact	 of	 social	 distancing	 strategies	 in	
different	parts	of	the	word	[27,	4].	The	temporal	evolution	of	daily	counts	of	reported	cases	
forms	 longitudinal	 data	 or	pandemic	 curves	 that	 are	 crucial	 in	 evaluating	 the	 spread	 and	
growth	dynamics	of	the	pandemic	[2,7,8,9,10,12,14,16,17,24].	However,	the	commonly	used	
summary	 curves,	 obtained	by	accumulating	or	averaging	pandemic	 curves	 collected	over	
large	regions,	can	hide	substantial	differences	in	transmission	dynamics	that	exist	at	finer	
spatial	scales	[8].	These	nuanced	patterns	associated	with	individual	regions	may	be	critical	
to	 inform	 the	 type	 and	 intensity	 of	 interventions	 to	 bring	 the	 epidemics	 under	 control	
[19,24].		
	
This	motivates	 the	 need	 to	 better	 understand	 and	 characterize	 spatial	 differences	 in	 the	
trajectories	 of	 the	 COVID-19	 pandemic	 in	 different	 geographic	 areas	 around	 the	 world	
[26,27].	 Indeed,	 the	epidemic	curves	across	different	continents	or	countries	may	display	
completely	different	dynamics	at	a	given	 time	 [4]	and	 this	motivates	 the	need	 for	spatial	
epidemiology	methods	 [4,11].	At	 broader	 spatial	 sales,	 such	dynamics	 include	 increasing	
trends,	a	leveling	or	stationary	incidence	pattern,	and	decreasing	trends.	At	a	finer	level,	the	
growth	may	be	characterized	by	multiple	modes	depicting	multiple	waves	of	the	epidemic	
[4].	Similarly,	the	epidemic	curves	at	the	subnational	level	within	a	country	may	also	display	
different	 dynamics	 over	 time.	 The	 levels	 of	 pandemic	 can	 drastically	 change	 over	 time,	
depending	upon	the	growth	and	decline	cycles	of	the	disease	at	a	location.	Because	the	type	
and	intensity	of	public	health	interventions	are	expected	to	vary	across	space,	characterizing	
the	 spatial-temporal	 dynamics	 is	 an	 essential	 first	 step	 [3,19,25].	 Next,	 classifying	 and	
summarizing	the	spatial-temporal	dynamics	of	the	novel	coronavirus	in	local	areas	is	key	for	
real-time	public	health	decision	making.	The	resulting	epidemic	features	can	then	be	linked	
to	several	other	covariates,	such	as	hospital	capacity,	 testing	 facilities,	equipment	quality,	
personnel	training,	contact	tracing,	to	name	a	few,	that	influence	the	course	of	the	pandemic	
at	local	scales	[1].	In	this	paper	we	focus	only	on	the	features	of	the	epidemic	curves	and	how	
we	can	use	them	to	characterize	spatial	heterogeneity	across	spatial	units.	Epidemic	curves	
provide	important	information	about	the	trajectory	of	the	spread	albeit	they	hide	substantial	
information	about	the	spatial-temporal	distribution	of	the	cases	in	the	population	of	interest.	
	
While	researchers	track	several	variables	for	quantofying	COVID-19	dynamics,	we	focus	in	
this	paper	on	 the	daily	 counts	of	 new	positive	 tests	 as	daily	 functions	of	 time.	The	 same	
analysis	 can	 also	 be	 performed	 with	 other	 variables,	 such	 as	 the	 death	 counts,	
hospitalizations,	and	recovered	patients	also.	The	temporal	changes	 in	daily	new	positive	
tests,	 for	 different	 regions	 and	 communities,	 forms	 functional	 data	 or	 pandemic	 curves.	
Quantitative	methods	 for	analyzing	 functional	data,	 termed	Functional	Data	Analysis	 (see	
e.g.,	[18]),	can	help	compare	and	investigate	the	diversity	of	the	dynamics	of	transmission	of	



the	COVID-19.	They	can	provide	an	objective	framework	to	characterize	the	spatial-temporal	
dynamics	of	the	epidemic	in	different	geographic	areas	within	the	same	country.	In	the	past,	
functional	 data	 analysis	 has	been	used	 to	 study	biological	 structures	 [13],	 stock	markets	
trends,	weather	patterns,		medical	diagnostics	[28],	growth	rates	[20],	and	speech	data.	In	
the	context	of	the	COVID-19	pandemic,	clustering	of	curves	has	been	used	to	analyze	travel	
patterns	of	migrants	in	China	[6].		
	
Motivation for Shape Analysis 
Overall	 trends	 in	 a	 pandemic	 are	 often	 obtained	 by	 summarizing	 pandemic	 curves.	 Data	
scientists	tend	to	prepare	summaries	by	simply	averaging	data	across	experimental	units.	
Similarly,	national	or	continental	reports	for	COVID-19	developments	are	typically	prepared	
by	averaging	or	aggregating	curves	(whether	cumulative	counts,	or	new	positives,	or	deaths)	
over	different	counties,	states,	and	countries.	This	has	the	potential	for	obscuring	important	
trends	present	 in	the	individual	curves	characterizing	transmission	at	 finer	spatial	scales.	
For	instance,	a	decrease	in	infections	in	one	region	can	be	negated	by	an	increase	in	another;	
together	their	average	will	appear	as	roughly	constant	over	a	period	of	time.			To	handle	this	
issue	this	paper	advocates	the	averaging	of	“shapes”	of	curves,	rather	than	the	raw	curves	
themselves.	This	leads	to	more	natural	solutions	for	aggregating	and	averaging	curves.	
	
While	epidemic	curves	have	been	analyzed	statistically	in	the	past,	the	focus	on	their	shapes	
is	a	relatively	new	concept.	Past	research	has	mainly	focused	on	estimation	and	prediction	
of	the	curves	[2,7,9,14,16,17]	rather	than	on	their	analysis.		
	
	

	
Figure 1: Demonstrating the concept of shapes of curves: All the curves in the left panel are deemed to 
have the same shape, as they differ only in their vertical scales and horizontal shifts. The curves in the right 
panel have different shapes. 
	
We	motivate	this	new	focus	by	answering	the	question:	Why	is	it	interesting	to	study	shapes	
of	these	curves?	By	focusing	on	shapes,	one	is	more	interested	in	the	numbers	and	relative	
heights	of	peaks	and	valleys	in	a	curve,	rather	than	their	precise	locations.	For	instance,	all	
bell-shaped	curves	will	be	deemed	similar	in	shape	even	if	their	peaks	are	located	at	slightly	
shifted	 points	 and	 the	 peak	 heights	 are	 different.	 These	 bell	 curves	 will	 be	 considered	
different	 from	 other	 shapes,	 say	monotonically	 increasing	 curves.	We	 point	 out	 	 that	 	 a	
comprehensive	handling	of	the	diversity	of	shapes	(of	pandemic	curves)	makes	this	paper	



different	from	some	past	works,	for	example	[9],	where	all	epidemic	curves	are	modeled	as	
bell-shaped	functions	and	are	classified	into	different	classes	according	to	their	means	and	
dispersion.	The	curves	with	different	up	and	down	patterns	will	also	be	considered	different	
irrespective	 of	 the	 locations	 of	 their	 crossover	 points.	 (Figure	 1)	 illustrates	 this	 idea	
pictorially.	 In	 the	 left	 panel	 we	 see	 a	 number	 of	 curves	 that	 differ	 only	 in	 heights	 and	
horizontal	 shifts.	 All	 these	 curves	 are	 deemed	 to	 have	 the	 exact	 same	 shape	 despite	
differences	 in	 the	corresponding	y-values.	 In	 the	right	panel	we	see	curves	with	different	
numbers,	 locations,	 and	 relative	heights	 of	 the	modes.	 These	 curves	 are	deemed	 to	have	
different	shapes	and	one	can	quantify	the	shape	differences	using	tools	from	shape	analysis.		
	
A	 further	motivation	 for	 analyzing	 shapes	 of	 curves	 is	 presented	 through	 an	 example	 in	
(Figure	2).	The	left	panel	of	this	figure	shows	ten	smooth	unimodal	curves	in	different	colors	
and	 their	 classical	 Euclidean	 average	 in	 black.	 Suppose	 that	 these	 colored	 curves	 depict	
incidence	rates	for	ten	different	states,	over	a	certain	observation	time	period.	Even	though	
each	 of	 these	 individual	 curves	 have	 a	 similar,	well-defined	 peak,	 their	 average	 shows	 a	
bimodal	shape.	Thus,	this	average	curve	does	not	provide	a	good	summary	or	representation	
of	the	original	data.	This	discrepancy	is	due	to	the	fact	that	the	locations	of	peaks	in	different	
curves	are	different	and	this	misalignment	blurs	out	the	peaks	in	the	averaging.	The	solution	
is	to	use	a	(nonlinear)	alignment	algorithm	that	time	warps	these	functions	and	aligns	their	
peaks.	Time	warping	 is	 a	 technique	 to	modify	 the	 time	domain	of	 a	 curve	 that	 results	 in	
moving	points	on	that	curve	horizontally,	without	points	crossing	each	other.	Some	part	of	
the	time	interval	gets	stretched	while	other	gets	shrunk,	keeping	the	overall	interval	size	the	
same.		Once	the	peaks	are	aligned	across	curves	using	time	warping,	we	can	compute	their	
average	(and	other	statistics),	as	illustrated	in	the	right	panel.	This	is	called	an	averaging	of	
the	shapes	of	curves.		
	

	
Figure 2: Averaging curves: The left panels shows ten curves in different colors and their classical 
Euclidean average in black. The right panel shows these curves after temporal alignment and the new 
average in black. This new average is called their shape average.  
	
By	comparing	the	shapes	of	epidemic	curves,	each	representing	the	transmission	dynamics	
in	different	geographic	areas	within	the	same	country	or	the	same	continent,	we	can	classify	
these	 curves	 into	 groups	 or	 clusters	 that	 exhibit	 a	 similar	 growth-decline	 pattern.	 This	
approach	 offers	multiple	 benefits.	 Indeed,	 it	 allows	 us	 to	 compute	 overall	 averages	 that	
better	reflect	 the	actual	growth	patterns	of	 the	states.	Secondly,	and	more	 importantly,	 it	
helps	 label	 each	 state	 in	 terms	of	 the	 state	 of	 the	pandemic.	 It	 can	 also	help	us	discover	



predominant	patterns	in	epidemic	growth,	using	data	across	different	locations,	times,	and	
scales.	These	shapes	can,	in	turn,	be	used	in	further	statistical	and	modeling	analyses,	e.g.	
evaluating	the	effects	of	countermeasures.	
	
The	next	question	is:	How	does	one	quantify	and	statistically	analyze	shapes	of	rate	curves?	
Mathematically,	shape	is	a	property	that	remains	unchanged	if	we	rescale	axes	or	translate	
the	curves	along	vertical	or	horizonal	axes.	In	fact,	one	even	allows	nonlinear	time	warping	
of	the	time	axis,	resulting	in	uneven	horizontal	shifts	of	the	peaks	and	valleys,	to	be	deemed	
shape-preserving	transformations.	The	invariance	of	shape	to	such	transformations	makes	
shape	 analysis	 a	 difficult	 problem.	 In	 order	 to	 compare	 and	 analyze	 shapes	 of	 multiple	
curves,	 one	 has	 to	 standardize	 their	 domains	 by	 scaling	 axes,	 normalizing	 heights,	 and	
aligning	their	peaks	and	valleys	using	time	warping	functions	(as	shown	in	the	right	panel	of	
Figure	 2).	 The	 resulting	 curves	 can	 then	 be	 analyzed	 for	 shapes.	 We	 employ	 a	 well-
established	methodology	for	shape	analysis	of	functional	data,	introduced	and	described	in	
[20].	This	framework,	called	elastic	functional	data	analysis,	provides	comprehensive	tools	
for	generating	 statistical	 summaries	and	modeling	of	 curves	while	 focusing	only	on	 their	
shapes.	We	apply	these	tools	to	incidence	rate	curves	of	the	COVID-19	pandemic	with	the	
goal	 of	 providing	 a	 well-defined	 framework	 to	 guide	 public	 health	 decision	 making	 at	
different	 spatial	 scales.	 The	 following	 sections	 describe	 the	methodology	 to	 analyze	 and	
cluster	rate	curves	of	COVID-19	reported	cases.	We	first	pre-process	the	data	into	smooth	
incidence	rate	curves	for	each	local	unit	(a	state	or	a	country)	over	the	observation	interval.	
Then,	we	analyze	shapes	of	 these	rate	curves	 to	compare,	cluster	and	summarize	growth	
rates.	
	
Specific Aims 
	
In	this	paper	we	seek	to:	

1. Adapt	 techniques	 for	 shape	 analysis	 of	 curves	 to	 compare	 and	 cluster	 pandemic	
curves	associated	with	different	regional	units	(counties	in	a	state,	states	in	a	county,	
or	countries	in	a	continent).	

2. Generate	 representative	 epidemic	 curves	 at	 cluster	 level,	 thus	 avoiding	 loss	 of	
information	 that	results	 from	aggregating	 local	epidemic	curves	at	coarser	spatial	
scales.		

3. Apply	this	methodology	to	the	analysis	of	the	daily	incidence	trajectory	of	the	COVID-
pandemic	at	two	spatial	scales:	A	state-level	analysis	within	the	USA	and	a	country-
level	analysis	within	Europe	during	mid-February	to	mid-October	2020.		

4. Provide	regional	summaries	that	may	help	guide	public	health	decision	making	at	
different	spatial	scales.	

 

Methods 
 
Next	we	describe	the	methodology	used	to	analyze	and	cluster	COVID-19	incidence	curves.	
The	method	involves	pre-processing	raw	count	data	to	produce	smoothened	and	normalized	
incidence	curves	and	methods	for	analyzing	their	shapes.	We	start	by	providing	a	step-by-



step	listing	of	the	overall	procedure.	.		
 
Overview of the Procedure 
	
We	 start	 by	 providing	 a	 step-by-step	 overview	 of	 the	 process	 of	 discovering	 dominant	
patterns	 of	 pandemic	 growth	 in	 different	 regions.	 The	 analysis	 consists	 of	 the	 following	
steps:		
	

1. Pre-Processing	 Step:	 Start	 with	 (daily	 update	 of)	 the	 cumulative	 count	 data	 of	
positive	 COVID-19	 tests	 for	 each	 region	 and	 perform	 pre-processing	 to	 result	 in	
normalized	and	smoothed	incidence	rate	curves.		

2. Temporal	Alignment	Step:	Perform	alignment	of	all	curves	in	a	country	or	continent	
using	nonlinear	time	warping,	in	order	to	align	their	peaks	and	valleys.		

3. Distance	Computation	Step:	Compute	pairwise	distance	between	aligned	curves	to	
result	in	a	full	distance	matrix.		

4. Clustering	Step:	Perform	clustering	of	regions	into	a	small	number	of	subgroups	or	
cluster	using	this	distance	matrix.		

5. Mean	Shape	Computations:	Re-align	curves	within	each	cluster	and	compute	 the	
average	of	 the	aligned	curves.	This	average	shape	 is	used	as	a	 representative	or	a	
summary	of	 incidence	 rate	 curves	 in	 that	 cluster.	We	also	 compute	one	 standard-
deviation	bands	around	the	mean	curves	as	a	measure	of	confidence.		

	
This	process	classified	all	spatial	units	into	a	pre-determined	number	of	clusters	and	their	
corresponding	average	incidence-rate	curves.		
	

Pre-Processing Step  

 
The	following	three	steps	constitute	pre-processing	applied	to	raw	COVID-19	daily	count	
data	for	each	region	individually.	We	start	with	the	cumulative	counts	of	people	testing	
positive	on	a	daily	basis.	This	data	for	USA	and	Europe	is	shown	in	the	leftmost	column	of	
(Figure	3).		
	

• Time-Differencing:	Since	the	data	includes	cumulative	counts	(or	total	number)	of	
positive	 test	 counts	 for	 different	 regions,	 we	 first	 calculate	 time	 differences	
(approximating	time	derivatives)	of	the	data	to	reach	daily	new	incidence	counts.	If	
𝑓!(𝑡)	denotes	the	given	cumulative	positive	counts	for	state	i	at	time	t,	then	the	per-
day	incidence-rate	for	that	state	at	time	t	is	given	by	𝑔!(𝑡) = 𝑓!(𝑡) − 𝑓!(𝑡 − 1).	These	
rate		curves	for	US	States	and	European	countries	are	shown	in	the	second	column	of	
(Figure	3).	The	third	column	shows	the	classical	Euclidean	average	of	these	curves,	as	
a	 representative	 of	 the	 pandemic	 situation	 for	 the	 whole	 country	 or	 the	 whole	
continent.		
	

• Re-Scaling:	The	volumes	of	incidence	rates	for	different	regions	are	very	different,	
depending	upon	population	counts,	densities,	and	other	variables.	In	order	to	focus	



on	the	shapes	of	the	curves,	we	rescale	each	curve	as	follows.	We	compute	the	total	
positive	tests	for	a	state	over	the	observed	time	interval,	i.e.	𝑟! = ∑ 𝑔!(𝑡)" 	and	then	we	
define	the	re-scaled	curves	to	be	ℎ!(𝑡) = 𝑔!(𝑡)/𝑟! .	
	

• Smoothing:	Next,	we	smooth	these	normalized	growth	rate	curves	using	the	smooth	
function	in	Matlab.	This	smoothing	is	performed	to	reduce	observation	noise	and	to	
help	focus	on	the	overall	shape	of	the	curve.	With	a	slight	abuse	of	notation,	we	shall	
call	the	resulting	functions	ℎ!(𝑡)	also.	These	are	the	smoothed	and	normalized	growth	
rate	curves,	or	simply	rate	curves	henceforth.	The	last	column	of	(Figure	3)	shows	
these	rate	curves	for	the	two	populations:	USA	states	(top)	and	European	countries	
(bottom).		
	

 

Figure 3: Preprocessing COVID-19 data into growth rate functions. From left to right: Original positive 
test data; Curves of daily new cases; Smoothed and scaled rate curves; Average of rate curves. The top row 
shows data for 51 American regions (50 states + DC) and bottom row shows the data for 53 European 
countries (after removing some outliers and missing data). 
 

Temporal Alignment and Clustering of Incidence Curves 
 

The	 resulting	 smoothed	and	normalized	 rate	 curves	are	 then	used	 in	 statistical	 analyses.	
There	are	several	possibilities	 for	this	analysis,	 including	modeling,	 testing,	prediction	[7,	
12,16]	and	classification	[17].	As	mentioned	earlier,	a	raw	averaging	of	data	across	all	states	
is	bound	to	smooth	over	 interesting	patterns	and	 lose	 interesting	smaller	structures.	The	
third	column	of	(Figure	3)	show	averaging	of	 the	daily	counts	of	regions	for	each	dataset	
(USA	 and	 Europe).	 Looking	 at	 these	 average	 curves,	 one	 gets	 the	 impression	 that	 the	
incidence	rate	is	either	declining	or	rising	universally	at	any	time.	However,	this	conclusion	
overlooks	 the	 local	 heterogeneity	 of	 dynamics	 in	 different	 regions.	 Consequently,	 it	 is	
difficult	to	justify	the	use	of	overall	averages	as	representatives	of	pandemic	patterns.		
	



Since	our	main	goal	 is	 to	analyze	 shapes	of	 rate	 curves	 for	different	 regions,	we	 start	by	
temporally	aligning	these	curves.	This	process	of	alignment	of	curves	is	also	called	phase-
amplitude	 separation	 [15].	 There	 are	 several	 algorithms	 present	 in	 the	 literature	 for	
alignment	of	functions.	In	this	paper	we	use	the	elastic	alignment	algorithm	introduced	in	
[21]	and	described	in	Chapter	8	of	Srivastava	and	Klassen	[20].	The	basic	idea	behind	this	
approach	is	as	follows.	Let	ℎ! , ℎ#represent	two	rate	curves	that	need	to	be	aligned	temporally.	
In	other	words,	time	warp	curve(s)	in	such	a	way	that	their	peaks	and	valleys	are	co-located.	
The	time	warping	function	is	given	by	γ,	a	smooth,	monotonically	increasing	function	on	the	
observation	 interval.	 For	 a	 pandemic	 curve	ℎ# ,	 the	 composition	ℎ# 	 ∘ γ	 is	 called	 the	 time	
warping	of	ℎ# .	For	alignment	purposes,	one	defines	a	transformation	of	a	curve,	called	the	
square	root	velocity	function	(SRVF),	as	follows:	for	any	curve	ℎ: [0,1] → 𝑅,	define	its	SRVF	

using	𝑞(𝑡) = 𝑠𝑖𝑔𝑛 <ℎ̇(𝑡)>?@ℎ̇(𝑡)@,	where	 ℎ̇(𝑡)	denotes	the	time	derivative	of	ℎ.	To	align	ℎ# 	

with	ℎ! ,	one	solves	the	optimization	problem:		𝑚𝑖𝑛$ || 𝑞! − C𝑞# ∘ γDEγ̇||	,	where	||	. ||,	denotes	

the	L2	norm	of	a	function.	That	is,	||𝑞|| = E(∑ 𝑞(𝑡)%" ).		The	minimization	is	performed	using	
the	well-known	Dynamic	Programming	algorithm	as	described	in	[19].	The	optimal	warping	
γ*	 is	 then	 applied	 to	 ℎ# ,	 according	 to	 ℎ# 	 ∘ γ*,	 to	 obtain	 the	 desired	 alignment.	 To	 align	
multiple	 rate	curves	one	applies	 this	 idea	repeatedly,	by	applying	each	given	curve	 to	an	
overall	mean.	
	
A	simulated	illustration	of	this	alignment	process	is	shown	in	(Figure	2).	The	left	panel	of	the	
figure	shows	ten	unaligned	curves	and	the	right	panel	shows	the	same	curves	aligned	using	
time	warping	as	mentioned	above.	One	can	see	that	the	peaks	and	the	slopes	of	these	curves	
are	very	well	aligned.	We	perform	a	similar	alignment	of	COVID-19	incidence	curves,	with	
results	shown	later.		
	
Next	we	cluster	these	aligned	curves	into	smaller,	homogeneous	groups.	This	clustering	is	
important	 in	 that	 it	 helps	 recognize	 spatial	 heterogeneity	 of	 growth	 rates	 across	
geographical	regions.	For	the	purpose	of	clustering,	we	use	a	simple	metric	to	compare	any	
two	curves.	For	any	two	aligned	rate	curves,	ℎ!		and	ℎ# ,	we	simply	compute	the	norm	||ℎ! −
ℎ# ∘ γ ∗ ||,	where	the	bars	denote	the	L2	norm	of	the	difference	function	and	γ ∗	is	the	time	
warping	that	aligns	ℎ# 	 to	ℎ! .	To	perform	clustering	of	rate	curves	 into	smaller	groups,	we	
apply	the	dendrogram	function	in	Matlab	using	the	"ward"	linkage.	The	number	of	clusters	
is	decided	empirically	based	on	the	display	of	overall	clustering	results.	We	elaborate	on	this	
further	later	on	in	the	results	section.	
 

Averaging of Growth Curves within Clusters 
 

Once	we	have	 clustered	 regions	 into	different	 clusters,	we	 seek	 to	derive	an	appropriate	
average	or	a	representative	curve	for	each	cluster.	As	earlier,	a	simple	arithmetic	averaging	
of	curves	is	not	always	the	best	option.	Instead,	we	use	the	alignment	process	once	again	to	
align	curves	within	each	cluster.	Once	the	curves	are	aligned,	we	compute	averages	of	these	
aligned	curves	to	reach	the	cluster	average.	These	cluster	averages	are	better	indicators	of	



the	trends	in	pandemic	evolution,	as	compared	to	the	overall	averages	that	are	often	shown	
in	current	statistical	summaries.		
	
Publicly Available Code  
	
The	general	procedure	for	shape	analysis	of	curves	is	freely	available	in	an	R	code	package	
fda	srvf	[23].	The	specific	tools	presented	in	this	paper	have	been	developed	using	Matlab	
and	can	be	found	in	the	github	repository	EpiCurvesShapeAnalysis.	
	
Data 
 
We	 analyze	 daily	 series	 of	 reported	 COVID-19	 cases	 at	 two	 different	 levels	 of	 spatial	
aggregation:	States	within	the	USA	and	countries	in	Europe.	
	
For	the	USA	analysis,	we	retrieved	daily	cumulative	case	count	data	from	the	COVID	Tracking	
Project,	a	volunteer	organization	dedicated	to	collecting	and	publishing	data	on	the	spread	
of	COVID-19	in	the	United	States	[22].	Data	from	multiple	sources,	such	as	state	or	district	
health	departments,	and	trusted	news	reports,	are	compiled	and	assessed	for	data	quality	to	
report	the	best	available	data	for	each	state.	Here	we	use	reported	daily	state-	and	national-
level	cumulative	case	counts	from	February	27th,	2020	to	October	1st,	2020.	
	
For	 the	 country-level	 analysis	 in	 Europe,	 we	 retrieved	 the	 data	 from	 World	 Health	
Organization:	Coronavirus	disease	(COVID-2019)	situation	reports	on	October	1st,	2020	[26].	
	
	
Results 
 

The	following	sections	describe	the	results	of	our	analyses	using	state-level	data	for	the	
USA	and	country-level	data	for	Europe.	
	

State Level Analysis for the USA 
	

The	 normalized	 incidence	 rate	 curves	 for	 US	 States,	 for	 the	 time	 period	 2/27/2020	 to	
10/1/2020,	are	shown	in	the	top-right	panel	of	(Figure	3).	The	results	for	clustering	these	
51	curves	are	shown	in	(Figure	4).	It	shows	that	there	are	four	predominant	clusters,	which	
we	consider	for	further	analyses.	We	could	also	choose	five	clusters	instead,	but	the	results	
do	not	change	significantly.	The	listing	of	states	according	to	this	clustering	is	as	follows.	

	
• Cluster	1:	Iowa,	Montana,	North	Dakota,	South	Dakota,	Wisconsin,	Wyoming.	

	
• Cluster	2:	Alabama,	Alaska,	Arkansas,	Delaware,	Idaho,	Illinois,	Indiana,	Kentucky,	M

aine,	Maryland,	Michigan,	Missouri,	Nebraska,	New	Hampshire,	New	Mexico,	North	C
arolina,	Ohio,	Oklahoma,	Oregon,	Pennsylvania,	Rhode	Island,	Utah.	



	
• Cluster	3:	Connecticut,	Massachusetts,	New	Jersey,	New	York,	Vermont.	

	
• Cluster	4:	Arizona,	California,	Colorado,	District	of	Columbia,	Florida,	Georgia,	Hawa

ii,	Kansas,	Louisiana,	Minnesota,	Mississippi,	Nevada,	South	Carolina,	Tennessee,	Tex
as,	Virginia,	Washington,	West	Virginia.	
	
 

 
Figure 4: Clustering of US states according to their normalized growth rate curves for the COVID-19 pan
demic. The left side of the figure shows a dendrogram plot -- a hierarchical clustering of states – obtained 
using the Dendrogram function in Matlab. The resulting four groups are shown in different colors in the d
endrogram plot. The right side of the figure shows a color coding of these states according to their clusters
. States drawn in the same color belong to the same cluster.  	

 
The	 incidence	rate	curves	 for	 these	clustered	states	are	shown	 in	(Figure	5),	both	before	
(top)	and	after	(bottom)	normalization.	Since	curves	for	different	states	have	quite	different	
scales,	it	is	not	easy	to	discern	overall	shape	patterns,	even	within	the	same	cluster	in	the	top	
row.	After	 rescaling	 the	 curves	 to	 the	 same	 scale,	 the	 general	 trends	 in	 the	 growth	 rates	
become	clearer.		

 



 
Figure 5: Incidence rate curves for 51 US states clustered in four groups. Top row shows the incidence 
rates (daily positives) at their original scales while the bottom row shows the normalized curves. 
 
Although	the	shapes	of	curves	within	a	cluster	are	quite	similar,	the	averaging	of	these	curves	
still	 can	 lose	structure.	As	mentioned	earlier,	one	needs	 to	align	 the	peaks	and	valleys	of	
curves	before	averaging.	To	further	extract	typical	trends,	we	use	re-align	rate	curves	within	
each	cluster.	(Figure	6)	shows	these	aligned	rate	curves	in	each	cluster.	It	is	much	easier	to	
infer	pandemic	trends	in	the	aligned	and	scaled	data.		
	
 
 

 
Figure 6: Aligned incidence rate curves for 51 US states clustered in four groups. Top row shows the curves 
at their original scales while the bottom row shows the normalized curves. For example, for states in Cluster 
3, the rate fist goes up sharply, then comes down sharply and stays low. For states in Cluster 1, the rate is 



low at first but starts increasing rapidly as time progresses; these are the states with most concern at this 
time stage. States in Cluster 2 are characterized by multiple high-level peaks and the trend continues to 
show high incidence rates. For states in Cluster 3, the first peak is relatively small, but the second peak is 
quite high. The trends here suggest a smaller third peak towards the end of the observation period. 
 

	(Figure	7)	shows	the	average	rate	curves	for	each	cluster.	We	obtain	these	curves	by	aligning	
and	averaging	rate	curves	in	each	cluster	separately.	It	can	be	seen	clearly	that	the	pandemic	
growth	patterns	are	very	distinct	in	the	four	clusters.	Furthermore,	the	overall	mean	shown	
in	the	rightmost	plot	seems	to	have	lost	a	 lot	of	structure	due	to	gross	aggregation,	when	
compared	to	these	cluster	means.	This	overall	mean	corresponds	to	the	methods	currently	
used	to	summarize	epidemic	curves	using	simple	arithmetic	averaging.		
 
 

 
Figure 7: Average shapes of the growth rate curves, along with a one standard-deviation band around the 
mean, in each of the four clusters for the state-level USA analysis. The last panel shows all cluster averages 
together with the overall mean. For Cluster 1: the rate is low at first and then climbs rapidly; for Cluster 2, 
there are two waves with similar intensity; for Cluster 3, the rate climbs rapidly and then comes down 
rapidly; and, for Cluster 4 the rate shows two waves with the second wave being much larger and dominant. 
The rightmost panel of this figure shows all the cluster averages in the same plot, to help visualize their 
differences. 
 

 

 
Country-Level Analysis in Europe 
 
Now	we	present	clustering	and	shape	analysis	of	rate	curves	for	53	European	countries.	The	
pre-processed	incidence	rate	curves	were	shown	previously	in	the	bottom	row	of	(Figure	3).	
In	 this	 case	we	omit	 some	 intermediate	 results	 from	clustering	and	alignment	 steps,	 and	
directly	present	the	final	clustering	results.	A	dendrogram-based	hierarchical	clustering	of	
countries	is	presented	on	the	left	side	of	(Figure	8).	We	choose	to	divide	these	countries	into	
four	clusters,	as	shown	in	the	figure.		
	
The	cluster	membership	of	53	countries	is	listed	below:	
	



• Cluster	 1:	 Italy,	 Germany,	 Switzerland,	 Norway,	 Austria,	 Netherlands,	 Iceland,	
Andorra,	 Belgium,	 Estonia.	 Ireland.	 Latvia,	 San	 Marino,	 Cyprus,	 Turkey,	 Jersey,	
Tajikistan.	

	
• Cluster	2:	Croatia,	Azerbaijan,	Romania,	Bosnia	and	Herzegovina,	Luxembourg,	North	

Macedonia,	Serbia,	Gibraltar,	Malta,	Kazakhstan,	Uzbekistan,	Kosovo.	
	

• Cluster	3:	France,	Spain,	Israel,	Czechia,	Denmark,	Slovenia,	Slovakia.	
	

• Cluster	4:	United	Kingdom,	Sweden,	Georgia,	Greece,	Finland,	Russian	Federation,	
Portugal,	Belarus,	Hungary,	Armenia,	Lithuania,	Poland,	Ukraine,	Bulgaria,	Republic	
of	Moldova,	Albania,	Montenegro.	

	
	

 
Figure 8: Clustering of European countries according to their normalized growth rate curves. The left side 
shows their clustering using a dendrogram while the right side of the figure shows a color coding of the 
countries according to their cluster memberships. 

 

 
Once	the	curves	are	aligned	within	their	clusters,	it	is	easier	to	visualize	the	common	peaks	
and	valleys	(highs	and	lows)	in	each	group.	(Figure	9)	shows	the	average	normalized	growth	
curves	for	each	cluster.	We	obtain	these	curves	by	aligning	and	averaging	normalized	curves	
in	each	cluster	individually.	The	growth	patterns	are	very	distinct	in	the	four	clusters.	Similar	
to	the	USA	results,	the	individual	cluster	means	are	quite	different	from	the	overall	mean	
shown	in	the	rightmost	panel.	Once	again,	this	demonstrates	the	superiority	of	using	shape-



based	clustering	and	cluster	means	as	representations	of	epidemic	curves,	rather	than	using	
overall	means.		
 

Figure 9: Average shapes of the growth rate curves in each of the four clusters in Europe. The last panel 
shows all averages together with the overall mean. For cluster 1, the rate climbs rapidly, comes down all 
the way to the normal levels and then starts showing the second wave. For cluster 2, the rate shows multiple 
waves and the rates coming down after the second wave. In cluster 3, the one with the most concern, the 
second wave shows an exponential rise in the incidence rates. In case of cluster 4, the incidence rate is still 
climbing rapidly during the second wave. The rightmost panel shows all the cluster averages in the same 
plot. 

 
Discussion 
	

This	 paper	 develops	 an	 approach	 for	 clustering	 and	 analyzing	 shapes	 of	 incidence	 rate	
curves	of	the	COVID-19	pandemic,	with	a	focus	on	highlighting	the	spatial	heterogeneity	that	
exists	at	finer	spatial	scales.	Specifically,	we	have	applied	this	methodology	to	characterize	
the	dynamics	of	the	pandemic	at	two	different	scales	of	spatial	aggregation:	Across	states	
within	 the	USA	and	across	nations	within	Europe.	The	main	 findings	of	 this	paper	are	as	
follows.	The	shapes	of	incidence	rate	curves	are	different	across	the	spatial	units,	but	they	
often	 cluster	 into	 a	 small	 number	 of	 dominant	 groups	 with	 characteristic	 patterns.	 The	
resulting	broad	classifications	of	the	shapes	(e.g.,	rapidly	rising	and	then	rapidly	lowering,	
or	low	at	first	and	then	rapidly	rising,	or	multiple	dominant	peaks,	or	multiple	peaks	with	
different	intensities)	are	clearly	visible	and	very	meaningful.	Nearby	states,	e.g.	New	York,	
Connecticut,	 and	 Massachusetts,	 are	 often	 found	 to	 follow	 similar	 dynamics.	 Computing	
average	 growth	 rates	 within	 the	 clusters	 is	 more	 appropriate	 than	 taking	 raw	 averages	
across	 all	 spatial	 areas	 comprising	 the	 population,	 particularly	 when	 the	 epidemic	 is	
comprised	of	asynchronous	outbreaks.	
	

Our	 state-level	 analysis	 indicate	 that	during	 this	period	Connecticut,	Massachusetts,	New	
Jersey,	New	York,	and	Vermont	are	the	only	states	that	appear	to	be	bringing	the	COVID-19	
epidemic	under	control	at	this	stage	(Cluster	3).	The	other	three	characteristic	patterns	that	
emerge	from	our	analysis	paint	a	grim	picture	of	the	COVID-19	epidemic	in	the	USA	at	a	time	
when	most	of	the	states	have	reopened	their	economies	at	least	in	some	way.	Similarly,	our	
country-level	analysis	of	the	epidemic	in	Europe	reveals	that	pandemic	rates	have	started	
rising	rapidly	and	very	few	countries	appear	to	have	the	epidemic	under	control	at	this	stage.	
While	many	of	these	countries	had	low	rates	during	the	later	summer	months,	the	counts	are	



growing	 in	 almost	 all	 countries.	 Countries	 in	 Cluster	 2	 are	 characterized	 by	 a	 small	
downward	trend	at	the	moment	and	appear	to	be	in	process	of	controlling	their	epidemics.	
In	contrast,	the	epidemic	is	following	an	alarming	increasing	trend	in	France,	Spain,	Israel,	
Czechia,	Denmark,	Slovenia,	and	Slovakia.	Several	other	countries	(Cluster	3	and	Cluster	4)	
show	a	slow	but	steady	increase	in	the	incidence	rates.		
	
These	results	are	for	the	period	02/27/20	–	10/01/20	and,	of	course,	the	results	can	change	
as	the	data	evolves	over	time.	While	these	results	are	applicable	to	the	time	period	ending	at	
10/01/20,	the	results	will	change	as	new	data	arrives.	The	changes	in	clustering	and	cluster	
membership	of	states	and	countries,	as	data	changes	over	time,	can	be	an	interesting	future	
study	under	this	framework.	
	
An	important	use	of	this	discovery	of	dominant	patterns	is	in	prediction	of	future	courses	of	
pandemics	 for	 different	 regions.	 For	 instance,	 one	 can	 try	 to	 predict	 the	 shape	 of	 future	
pandemic	curve	for	a	state,	by	predicting	which	cluster	is	it	going	to	belong	too.	Since	there	
are	only	a	handful	of	dominant	patterns,	this	task	becomes	easier	with	our	analysis.		
	
It	is	worth	noting	that	the	methodology	employed	here	requires	little	human	intervention.	
The	only	quantity	that	may	be	specified	manually	is	the	number	of	clusters,	and	that	is	left	
as	a	choice	for	the	end	user	to	explore	in	sensitivity	analyses.	Hence,	the	clusters	of	spatial	
units	that	emerge	from	the	analysis	provides	an	objective	classification	system	of	epidemic	
patterns,	 which	 can	 be	 used	 to	 guide	 the	 implementation	 or	 relaxation	 of	 public	 health	
measures	as	the	epidemic	emergency	evolves	over	time.		
 
While	we	have	 focused	our	 analysis	 on	 the	 time	 series	 of	 confirmed	 cases	 across	 spatial	
areas,	our	analysis	could	be	extended	to	consider	the	trajectory	of	the	epidemic	in	terms	of	
the	number	of	reported	COVID-19	deaths	or	hospitalizations.		
	
Limitations of the Method 
	
One	limitation	of	our	analysis	stems	from	the	fact	that	testing	rates	have	generally	improved	
across	 spatial	 areas	during	 the	 course	 of	 the	pandemic,	which	 could	have	 influenced	 the	
shapes	of	the	epidemic	curves	especially	during	the	early	transmission	phase.	In	particular,	
the	process	of	ramping	up	testing	rates	took	several	weeks	 in	the	USA,	and	accumulating	
evidence	suggests	that	the	epidemic	in	the	USA	and	Europe	likely	started	much	earlier	than	
initially	thought.	On	the	methodological	side,	our	framework	assumes	that	the	full	data	is	
available	to	ascertain	shapes	of	incidence	curves.	For	regions,	where	the	pandemic	patterns	
are	not	yet	fully	evolved	and	shapes	are	not	yet	fully	formed	or	observed,	 it	 is	difficult	to	
compare	with	states	that	are	more	advanced	in	the	pandemic.	This	is	a	major	limitation	in	
the	sense	that	we	assume	that	all	the	regions	must	be	similarly	situated	in	terms	of	pandemic	
progression.			
	
Conclusion 
	



In	 conclusion,	 	we	 have	 employed	 a	 statistical	 framework	 to	 identify	 and	 classify	 spatial	
heterogeneity	of	the	COVID-19	pandemic	based	on	incidence	rate	curves	at	different	spatial-
temporal	scales.	By	focusing	on	the	shapes	of	incidence	curves,	this	framework	allows	us	to	
cluster	different	regions	(e.g.	 states	 in	a	country	or	countries	 in	a	continent)	 into	smaller	
groups	of	regions	that	follow	similar	patterns	and	provides	a	basis	for	the	implementation	
of	spatially	relevant	public	health	interventions.	Thus,	the	output	could	be	readily	used	by	
policy	makers	and	public	health	officials	to	identify	geographic	regions	of	particular	concern	
and	 facilitate	 the	allocation	of	 scarce	 resources.	For	 instance,	one	can	 focus	resources	on	
clusters	 that	 show	 a	 rising	 trends	 in	 the	 incidence	 rates,	 relative	 to	 the	 areas	 that	 are	
trending	downwards	in	incidence	rates.	Since	the	pandemic	data	and	consequently	shapes	
of	 pandemic	 curves	 change	 over	 time,	 this	 calls	 for	 regular	 updates	 in	 clustering	 and	
classifications	 of	 different	 states	 and	 countries.	 Moreover,	 the	 changes	 in	 cluster	
memberships	over	time	could	guide	health	officials	about	long	range	trends	and	phenomena.	
	
Another	potential	use	of	the	average	shapes	obtained	for	different	clusters	is	to	help	predict	
the	future	course	of	the	pandemic,	but	in	a	region-by-region	manner.		The	past	patterns	of	
pandemic	waves	may	be	useful	in	predicting	future	trends	when	combined	with	statistical	
prediction	methods.		
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