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Patients infected with SARS-CoV-2 at various severities have different clinical 

manifestations and treatments. Mild or moderate patients usually recover 

with conventional medical treatment, but severe patients require prompt 

professional treatment. Thus, stratifying infected patients for targeted 

treatment is meaningful. A computational workflow was designed in this 

study to identify key blood methylation features and rules that can distinguish 

the severity of SARS-CoV-2 infection. First, the methylation features in the 

expression profile were deeply analyzed by a Monte Carlo feature selection 

method. A feature list was generated. Next, this ranked feature list was fed into 

the incremental feature selection method to determine the optimal features for 

different classification algorithms, thereby further building optimal classifiers. 

These selected key features were analyzed by functional enrichment to detect 

their biofunctional information. Furthermore, a set of rules were set up by a 

white-box algorithm, decision tree, to uncover different methylation patterns 

on various severity of SARS-CoV-2 infection. Some genes (PARP9, MX1, 

IRF7), corresponding to essential methylation sites, and rules were validated 

by published academic literature. Overall, this study contributes to revealing 

potential expression features and provides a reference for patient stratification. 

The physicians can prioritize and allocate health and medical resources for 

COVID-19 patients based on their predicted severe clinical outcomes.
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Introduction

Since its outbreak in late 2019, COVID-19, which is caused by 
SARS-CoV-2, has resulted in more than 5 million deaths. SARS-
CoV-2 binds to the spike (S) protein primarily through its 
functional receptor ACE2, an 805-amino acid type 
I transmembrane protein, allowing the virus to attach to the host 
cell membrane. This process results in alteration of the 
extracellular domain of ACE2 and internalization of the 
transmembrane domain, leading to further fusion of the viral 
particle with the host cell (Schulte-Schrepping et al., 2020). The 
SARS-CoV-2 infection progresses to different severities, including 
discharge from the emergency department, hospitalization, 
transfer to the ICU, and death, due to a variety of factors, such as 
age, gender, and other underlying diseases (Konigsberg et  al., 
2021). Therefore, rapidly determining the severity of the patient 
and taking corresponding treatment measures for timely and 
effective diagnosis and treatment is crucial.

Viruses can escape the immune clearance of the body through 
a variety of ways, among which epigenetic modification is an 
important way for respiratory viruses to resist the immune 
response of the body. DNA methylation, mainly of CpG islands, is 
a crucial reversible epigenetic regulation process (Fan et al., 2017; 
Benhamida et al., 2020). The regulation of the activity of a variety 
of DNA/RNA viruses, including HIV, HBV, and HPV, is related to 
changes in DNA methylation (Castro De Moura et  al., 2021). 
Studies have shown that MERS-CoV and H5N1 influenza virus 
infection leads to methylation of antigen-presenting gene 
promoters in infected cells, which eliminates the expression of 
related genes, thereby antagonizing antigen presentation, resulting 
in impaired T-lymphocyte function during acute infection and 
aggravating the degree of virus infection in the body (Hatta et al., 
2010; Menachery et al., 2018). Similarly, as a respiratory virus, 
SARS-CoV infection also results in DNA methylation in host cells 
(Menachery et al., 2018). Among them, the hypermethylation of 
the IFN pathway and inflammation-related genes is an important 
feature of severe COVID-19 (Corley et al., 2021). The study of 
ACE2 revealed that the DNA in the CpG island of the ACE2 
promoter in lung epithelial cells is hypomethylated, indicating its 
high expression in the lung. Moreover, its methylation status was 
significantly correlated with age and gender, explaining the effect 
of age and gender on the severity of COVID-19 (Kianmehr et al., 
2021). In addition, ACE2 mRNA is highly expressed in various 
diseases, especially cancer, which may be an important reason for 
the severe COVID-19 caused by the underlying disease in 
SARS-CoV infection (Sen et al., 2021). RNA modification, namely 
N 6-methylation of adenosine (m6A), also plays an important role 
in evading the innate immune recognition of exogenous RNA of 
the host, affecting virus structure and replication (Eberle et al., 
2021). The study of human metapneumovirus showed that 
m6A-binding protein can label viral RNA as the RNA of the host 
after binding to m6A, thereby evading the antiviral response of the 
host (Durbin et al., 2016; Chen et al., 2019). In addition, some 
studies have found that the N region of the SARS-CoV-2 virus 

genome is rich in m6A modification and is regulated by the host 
cell methyltransferase METTL3. The reduced expression level of 
METTL3 will lead to a decrease in the level of SARS-CoV-2 m6A 
and correspondingly increased expression of inflammatory genes 
(Li S. et al., 2021). This process is more pronounced in severely 
infected patients than that in moderately infected patients. These 
findings suggest the possibility of using methylation to characterize 
disease states, and numerous studies have demonstrated the 
feasibility of this approach.

This study conducted a computational investigation on the 
blood methylation profile on severity of SARS-CoV-2 infection. 
Several advanced machine learning methods were adopted. First, 
the profile was analyzed by the Monte Carlo feature selection 
(MCFS) method (Dramiński et  al., 2007) to analyze the 
importance of methylation features. One feature list was produced, 
which was further analyzed by incremental feature selection (IFS) 
(Liu and Setiono, 1998) method. Four classification algorithms 
were adopted in the IFS method to discover their optimal features, 
and build the optimal classifiers and classification rules. For the 
essential methylation features, their corresponding genes were 
picked up for gene ontology (GO) and KEGG enrichment analysis. 
Some results, including essential methylation sites, classification 
rules, and enrichment analysis results, were extensively discussed 
and can be validated by existing literature. The results reported in 
this study are helpful for the stratification of clinical patients and 
provide an effective reference for clinical diagnosis and treatment.

Materials and methods

Methylation dataset

The blood DNA methylation dataset investigated in this study 
was obtained from the Gene Expression Omnibus (GEO) database 
with the accession ID of GSE167202 (Konigsberg et al., 2021). This 
dataset comprised 164 SARS-CoV-2-positive samples, 296 SARS-
CoV-2-negative infection samples, and 65 other infection samples. 
In addition, the positive samples were classified into four 
categories based on severity score. The severity score is determined 
primarily by discharge from emergency, admission to inpatient 
care, progression to the ICU, and death. The above four categories, 
negative infection, and other infections were termed as six classes 
in this study. The methylation dataset was deeply analyzed by 
modeling a classification problem on the dataset. The sample size 
of each class is listed in Table 1. Each sample was represented by 
655,010 methylation features. This dataset would be analyzed in 
the following steps.

Monte Carlo feature selection

A large number of methylation features were used to represent 
each sample. However, only a few of them were highly related to 
the severity of SARS-CoV-2 infection. It was necessary to reveal 
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essential methylation features with advanced computer techniques. 
Here, MCFS method was employed (Dramiński et al., 2007).

MCFS is a tree-based feature selection method that is widely 
used in methylation profiling analysis as it is deemed to be good 
at dealing with datasets containing small number of samples and 
huge number of features. It randomly constructs several decision 
trees (DTs) from the original training dataset and uses these DTs 
to evaluate the importance of features. More specifically, s subsets 
with m features are randomly selected from the original training 
dataset. t trees for each subset are then constructed based on 
samples randomly sampled from the original dataset. The 
performance of each tree is evaluated on test samples that are not 
selected as training samples. Overall, s t×  DTs are built in this 
process. The overall position of a feature on the tree node partition 
is used to estimate a measurement, called relative importance (RI). 
A high RI score of a feature indicates the importance of a feature. 
The RI score is defined as follows:
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where IG ng τ( )( )  indicates the information gain of tree 
node ng τ( ) , no in ng. τ( )  and no in. τ  represent the number of 
samples in node ng τ( )  and tree τ , respectively, and wAcc  
indicates the weighted accuracy of the DT τ . In addition, u and v 
are the two parameters for RI calculation.

The MCFS program developed by Dramiński et al. was applied 
in this study, which can be downloaded at https://home.ipipan.
waw.pl/m.draminski/mcfs.html, to rank the methylation features. 
Default parameters were used, where u and v were set to 1. By 
applying the MCFS program on the methylation dataset, a ranked 
feature list was obtained.

Incremental feature selection

Based on the MCFS method, the methylation features were 
ranked in a list. However, the threshold was difficult to determine, 
that is, which features were selected for further analysis. In view of 
this, we further employed the IFS method (Liu and Setiono, 1998).

The IFS method is always used to determine the optimal 
number of features in a ranked feature list combined with one 

supervised classification algorithm, such as random forest (RF). 
More specifically, IFS first generates a series of feature subsets 
based on a step size. For example, the first and second subsets, 
respectively, comprise the top 5 and 10 features when the step size 
is five. Next, on each feature subset, the samples represented by 
features in such subset are learned by the given classification 
algorithm, thereby building a classifier. Its performance is 
evaluated by the 10-fold cross-validation (Kohavi, 1995). After the 
evaluation metrics of all classifiers are obtained, the classifier with 
the highest performance is easy to find. Such classifier is called the 
optimal classifier. The corresponding feature subset is picked up 
and features in this subset are termed as the optimal features for 
the used classification algorithm.

Synthetic minority oversampling 
technique

As shown in Table 1, the sample sizes under six classes were 
quite different. The largest class contained samples about 17 times 
as many as those in the smallest class. This may lead to biased 
performance of the established classifiers. Therefore, the synthetic 
minority oversampling technique (SMOTE) algorithm (Chawla 
et al., 2002; Ding et al., 2022; Zhou et al., 2022), an oversampling 
method, was applied to solve the problem. The core idea of 
SMOTE is to generate new samples to each minor class for 
enlarging its size. For each minor class, SMOTE randomly selects 
one sample, say x, from this class and finds its k-nearest neighbor 
samples in the same class. One sample, say y, is randomly selected 
from these k-nearest neighbor samples. One new sample is 
synthesized by the linear combination of x and y. As such new 
sample is highly related to x and y, it belongs to the same class with 
a high probability. Thus, it is put into the minor class. Such 
procedures execute several times until the size of the minor class 
is equal to that of the major class.

In this study, the SMOTE program from the imblearn 
package1 was used to process the methylation data for solving the 
imbalanced problem when constructing classifiers in the 
IFS method.

Classification algorithm

As the execution of IFS method needs one classification 
algorithm, four classic classification algorithms were attempted in 
this study to fully assess each constructed feature subset. They 
were k-nearest neighbor (kNN; Cover and Hart, 1967), RF 
(Breiman, 2001), support vector machine (SVM; Cortes and 
Vapnik, 1995), and DT (Safavian and Landgrebe, 1991). Their 
brief descriptions were as follows.

1 https://imbalanced-learn.org/stable/

TABLE 1 Sample size of each class for the methylation profile.

Class name Sample size

Negative infection 296

Other infection 65

Discharged from emergency department 34

Admitted to inpatient care 84

Progressed to ICU 35

Death 11
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k-Nearest neighbor
k-Nearest neighbor is one of the most classic classification 

algorithms. It determines the class of a sample based on measuring 
the distance between samples. Given a training dataset, for a new 
test sample, the k neighbors closest to such sample are found in 
the training dataset. By counting the classes of its k neighbors, the 
class of the test sample can be determined. Generally, the class that 
occurs most for its k neighbors is assigned to the test sample.

Random forest
RF is an ensemble algorithm that contains several DTs. Each 

DT is constructed by randomly selecting samples from the 
original dataset and features from all features. RF provides the 
final prediction result using the voting strategy on predictions 
yielded by DTs. RF is generally much more powerful than its 
component DT, and few parameters are involved in this algorithm.

Support vector machine,
SVM is an excellent classification algorithm in machine 

learning. The original SVM can only tackle binary classification. 
It separates samples into two classes by constructing a hyperplane, 
which can separate samples into two classes with the maximum 
interval. However, such hyperplane does not always exist or is not 
easy to find out. SVM maps samples into a high-dimensional 
space using one kernel function. In the new space, the hyperplane 
can be easily constructed. For a test sample, it is also mapped into 
the high-dimensional space. Its class is determined by the side it 
lies. The “one-versus-rest” or “one-versus-one” can be adopted to 
generalize the original SVM so that it can tackle multi-class 
classification problems.

Decision tree
Different from the above algorithms, which are deemed as 

black-box algorithms, DT can make the classification procedures 
interpretable. By learning the distributions of samples under each 
feature, a tree-like structure is built by DT. In this structure, each 
internal node indicates a decision on an attribute, outputting a 
judgment result, and each leaf node denotes a classification 
outcome. Besides, DT can also be represented by a set of rules. 
Each rule is obtained by a path from the root node to one leaf 
node in the tree. In terms of these rules, the class of a test sample 
can be determined. This operation also makes the classification 
procedures completely open, giving more chances for us to 
understand the procedures. In this case, more meaningful and 
hidden information in the dataset can be mined.

Above classification algorithms have wide applications in 
many fields. They are always important candidates for building 
classifiers in tackling various biological and medical problems 
(Zhou et al., 2020a,b, 2022; Chen et al., 2021, 2022; Onesime et al., 
2021; Zhang Y. et al., 2021; Ding et al., 2022; Li et al., 2022; Ran 
et al., 2022; Tang and Chen, 2022; Wang and Chen, 2022; Wu and 
Chen, 2022; Yang and Chen, 2022). These algorithms were 
implemented in this study through the scikit-learn (Pedregosa 
et al., 2011) program in Python and run with default parameters.

Performance measurement

The prediction performance of each classifier was mainly 
evaluated with the weighted F1. Its calculation is based on the F1 
score on each class. The F1 score for one class can be computed by
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where TP, FP, and FN represent true-positive, false-positive, and 
false-negative for the class, respectively. The weighted F1 is defined 
as the weighed mean of F1 scores on all classes. The direct mean of 
F1 scores on all classes was also provided, which was called macro F1.

To fully evaluate the performance of classifiers in the IFS 
method, we also adopted overall accuracy (ACC) and Matthews 
correlation coefficients (MCC; Matthews, 1975; Gorodkin, 2004). 
ACC is defined as the ratio of correctly predicted samples and all 
samples, which is the most accepted measurement. However, it is 
not perfect when the class sizes are of great differences. In view of 
this, MCC was proposed, which is deemed as a balanced 
measurement. For computing MCC, two binary matrices X and Y 
should be constructed first, where X stands for the true class of 
each sample and Y represents the predicted class of each sample. 
Then, MCC can be computed by

 

MCC
X,Y

X,X Y,Y
=
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(5)

Enrichment analysis

According to the IFS results, the essential methylation features 
for severity of SARS-CoV-2 infection can be  obtained. Their 
corresponding genes can be picked up for further analysis. GO 
and KEGG enrichment analysis is a common method for 
uncovering biological meanings behind a set of genes. Here, it was 
applied to discover the biofunctional information of the genes 
corresponding to essential methylation features. Such analysis was 
performed by using the R package clusterProfiler 4.0 (Wu et al., 
2021) with a threshold of 0.05.

Results

This study conducted a deep computational investigation on 
the blood methylation profile with six severity types from the 
GEO database. The entire procedures are illustrated in Figure 1. 
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The MCFS method was first used to rank methylation features 
based on their importance, and a ranked feature list was generated. 
This list was then fed into the IFS method with different 
classification algorithms to determine the optimal features for 
each classification algorithm and construct optimal classifiers. 
Classification rules generated by the optimal DT classifier were 
used to analyze the expression pattern of key methylation features.

Results of methylation feature ranking by 
the MCFS method

Initially, the MCFS method was used to rank 655,010 
methylation features contained in blood the methylation profile. 
Each feature was assigned a RI score. A ranked feature list in 
descending order based on RI scores was generated. As some 
features were assigned RI scores of 0, they were removed. Thus, 
the final list contained 654,081 features with RI scores larger than 
0, which is provided in Supplementary Table S1. The top  10 
features alone with their RI score are plotted in Figure 2.

Identification of the optimal number of 
methylation features with IFS

The IFS method was applied to determine the optimal features 
in the ranked feature list for each classification algorithm. To save 

time, we only considered top 2000 features in the list because of 
the huge number of features. The step size is set to five in the IFS 
method, thereby generating 400 feature subsets. The sample 
dataset comprising these feature subsets was learned by each of 
four classification algorithms, namely DT, kNN, RF, and 
SVM. Lots of classifiers were built, which were evaluated by 
10-fold cross-validation. The evaluation metrics for each classifier 
are provided in Supplementary Table S2. To clearly display the 
performance of classifiers under different feature subsets, an IFS 
curve is plotted for each classification algorithm, which is provided 
in Figure 3. For SVM, the highest weighted F1 was 0.921 when 
top 1,025 features were adopted. These features constituted the 
optimal features for SVM and an optimal SVM classifier was built 
based on these features. As for kNN and RF, their highest weighted 
F1 values were 0.790 and 0.895, respectively. Their optimal 
features were top 10 and 35 features in the list. Furthermore, the 
optimal kNN and RF classifiers were set up with their optimal 
features, respectively. For DT, its highest weighted F1 was 0.780, 
which was obtained by using top  590 features. Such features 
comprised the optimal features for DT and the optimal DT 
classifier was built using these optimal features. According to the 
weighted F1 values of above optimal classifiers, the optimal SVM 
classifier was best, followed by the optimal RF and kNN classifiers, 
whereas the optimal DT classifier provided the lowest 
performance. Table 2 further lists other overall measurements for 
four optimal classifiers. It can be  observed that on each 
measurement, the optimal SVM classifier always provided the 

FIGURE 1

Workflow of this study. First, the Monte Carlo feature selection (MCFS) method was used to rank methylation signatures based on their 
importance, and a ranked feature list was generated. This list was then fed into the incremental feature selection (IFS) method with different 
classification algorithms to determine the optimal features for each classification algorithm. Optimal classifiers were set up. Classification rules 
generated by the optimal decision tree (DT) classifier were used to analyze the methylation expression pattern. The genes corresponding to 
essential methylation sites were subjected to functional enrichment analysis.
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FIGURE 3

IFS curves to show the performance of different classification algorithms under different feature subsets. The highest weighted F1 for each 
classification algorithm was marked on the corresponding IFS curve. The SVM yielded the highest weighted F1 of 0.921 when top 1,025 features 
were used.

FIGURE 2

Bar chart to show top 10 key methylation features and their relative importance scores.
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highest performance, and the optimal RF classifier yielded slightly 
lower performance than the optimal SVM classifier. The 
performance of the other two optimal classifiers was much lower. 
The optimal DT classifier was a little inferior to the optimal kNN 
classifier. As for the performance of the above four optimal 
classifiers on six classes, it is illustrated in Figure 4. Clearly, the 
optimal SVM classifier generated the highest performance on all 
classes. On most classes, the optimal RF classifier occupied the 
second places. The optimal kNN and DT classifiers gave an almost 

equal performance. These results conformed to the overall 
performance of four optimal classifiers mentioned above.

With the above arguments, the optimal SVM classifier was 
best. It can be an efficient tool to determine the severity of SARS-
CoV-2 infection. The optimal RF classifier was inferior to the 
optimal SVM classifier. However, its efficiency was much higher 
than that of the optimal SVM classifier as much less features were 
used. This classifier can be used to conduct large-scale tests.

Classification rules generated by the 
optimal DT classifier

Although the optimal DT classifier provided lower 
performance than the other three optimal classifiers, it can provide 
much more explicable information than other classifiers. As the 
optimal DT classifier adopted top 590 features in the list, a DT 
classifier trained with all samples comprising these features was 
built. Classification rules were extracted from the tree, resulting in 
77 rules. These rules are provided in Supplementary Table S3. The 
number of rules for each class is displayed in Figure 5. The rules 

TABLE 2 Overall performance of the optimal classifiers.

Classification 
algorithm

Number 
of 

features
ACC MCC Macro 

F1
Weighted 

F1

k-nearest neighbor 10 0.784 0.730 0.793 0.790

Random forest 35 0.893 0.842 0.873 0.895

Support vector 

machine

1,025 0.920 0.881 0.926 0.921

Decision tree 590 0.771 0.686 0.749 0.780

FIGURE 4

Performance of four optimal classifiers on six classes. The optimal SVM classifier produced best performance on all classes.

FIGURE 5

Distribution of classification rules on six classes.
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FIGURE 6

Top five GO terms enriched by the genes converted by the 
top 1,025 methylation features.

for “negative infection” were most, whereas those for “Death” were 
least. In section “Analysis of rules for different classes”, some rules 
would be discussed.

Results of functional enrichment  
analysis

As the optimal SVM classifier gave the best performance. 
This meant that features used in this classifier, that is the 
optimal features for SVM, were essential for determining the 
severity of SARS-CoV-2 infection. The corresponding genes 
of these features were picked up and the GO and KEGG 
enrichment analyses were performed on these genes, 
uncovering the biological meaning behind these genes. The 
detailed results are listed in Supplementary Table S4. 
Figures 6, 7 reveal that these genes were mainly enriched in 
biological processes, such as T-cell activation, regulation of 
neurotransmitter levels, and type I interferon signaling and 
KEGG pathways (e.g., Rap1 signaling pathway, Yersinia 
infection, and T-cell receptor signaling pathway). The role of 
these biological functions in SARS-CoV-2 infection will 
be verified in the section “Functional analysis based on GO 
and KEGG pathway”.

Discussion

Most studies only distinguish COVID-19-positive and negative 
samples. In this study, based on blood methylation biomarkers, 
we can not only classify COVID-19 from negative controls and 
other infections, but also accurately predict the clinical outcome of 
COVID-positive patients in detail. In practice, the physicians can 
prioritize and allocate health and medical resources for COVID-19 
patients based on their predicted severe clinical outcomes. For the 
least severe patient, they can be discharged from hospital and avoid 
medical resource overstretch. For the second least severe patient, 
they can be hospitalized but without intensive health care. For the 
severe patient, intensive health care should be prepared. For the 
most severe patient who may die from COVID-19, life support 
system should be prepared.

A variety of machine learning methods were used to 
investigate the methylation profile on severity of SARS-CoV-2 
infection. Some essential methylation features that can 
characterize the severity of SARS-CoV-2 infection were identified. 
Furthermore, a set of rules were also set up, which can not only 
classify SARS-CoV-2 infection samples, but also depict the 
methylation patterns for different severity of SARS-CoV-2 
infection. These methylation features and rules would then 
be discussed below.

FIGURE 7

Top five KEGG pathways enriched by the genes converted by the 
top 1,025 methylation features.
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Analysis of essential features

Key methylation signatures that can be used to distinguish 
severity of SARS-CoV-2 infection were obtained by using a set of 
machine learning methods. The genes corresponding to the 
top-ranked methylation signatures, listed in Table 3, were analyzed 
to demonstrate the reliability of the results.

As a type I  IFN regulatory gene, high expressions of 
polyadenosine diphosphate ribose polymerase 9 (PARP9, 
cg22930808) accompanied by hypomethylation at relevant sites 
can enhance IFN signaling (Zhu et al., 2019), thereby playing a 
role in solid tumors, macrophage regulation, and antiviral 
immunity (Xing et al., 2021). PARP9 mediates the production of 
type I  interferon after binding to viral RNA by activating the 
PI3K/AKT3 signaling pathway, thereby protecting against viral 
infection (Zhang et al., 2015). In addition, PARP9 is involved in 
the activation of anti-inflammatory M2 macrophages. This 
condition showed that the SARS-CoV-2 Nsp3 protein is similar to 
PARP9 and can inhibit PARP9 through molecular mimicry, 
depleting M2 macrophages, and weakening interferon signaling, 
which then weakens the ability of the host to resist viral infection 
(Da Silva et al., 2020; Fehr et al., 2020). The reduction of PARP9 
combined with the reduction of NK and CD8+ cells leads to a 
weak viral response of the host, which may be  an important 
reason for the life-threatening severe infections in patients.

Similar to PARP9, as an important host interferon-stimulated 
gene in antiviral infection (Anderson et  al., 2021), MX1 
(cg25888371) is hypomethylated in CpG after viral infection (Luo 
et  al., 2021) and then participates in regulating the defense 
response of the host to infection. The study found that the 
expression of MX1 was significantly increased in COVID-19 
patients compared with non-COVID-19 patients and increased 
with the viral load (Bizzotto et  al., 2020). In addition, the 
methylation of CpG in MX1 is associated with the severity of HIV 
patients using cocaine in HIV infection studies (Shu et al., 2020), 
suggesting that MX1 methylation levels may be a reliable predictor 
of COVID-19 severity.

IRF7 (cg17114584), a member of the interferon regulatory 
factor (IRF) family, can regulate the response of type I IFN to viral 
infection. Phosphorylation of IRF7 upon pathogen stimulation 
followed by nuclear translocation induces the expression of IFN-α 
(Puthia et al., 2016). The methylation level of its promoter region 
affects the clinical manifestations of diseases (Konigsberg et al., 
2021). Studies have shown that the expression level of IRF7 is 

increased in patients with mild/moderate COVID-19 (Li N. et al., 
2021), while those with reduced IRF7 expression due to 
hypermethylation of the IRF7 promoter gene are likely to develop 
severe infection after SARS-CoV-2 infection (Liu and Hill, 2020).

Overall, the obtained genes showed differential expression of 
methylation in different infection groups, suggesting that the 
methylation status of different genes may be an important feature 
to distinguish different SARS-CoV2 infection severities.

Analysis of rules for different classes

The decision rules (Supplementary Table S3) revealed the 
importance of IRF7 (cg17114584) in predicting the clinical outcome 
of SARS-CoV-2 infection. IRF7 is markedly hypermethylated in 
patients with poor clinical response (progressed to ICU or death) 
compared with patients with mild clinical response (discharged 
from the emergency department or admitted to inpatient care). This 
finding is consistent with a previous result, in which IRF7 can 
regulate the response of type I  IFN to viral infection and the 
expression level is negatively correlated with clinical manifestations. 
Recent studies show that methylation levels of IRF7 correlate with 
COVID-19 severity (Barturen et al., 2021), which is also consistent 
with the conclusions in the data source literature (Konigsberg 
et al., 2021).

The decision rule for distinguishing between other infections 
and non-COVID-19/COVID-19 infections indicated that FHL1 
(cg00012680) was highly methylated in patients with other 
infections. As a member of the FHL protein family, FHL1 is mainly 
expressed in the heart and skeletal muscles (Shathasivam et al., 
2010). As a tumor suppressor gene, FHL1 is downregulated in a 
variety of tumors (Wang et al., 2017). Studies have also shown that 
FHL1 is associated with viral infections (e.g., acting as a host factor 
to promote chikungunya virus infection; Meertens et al., 2019). 
Conversely, patients in the “death” cohort had low levels of FHL1 
methylation. A study has shown that in COVID-19 patients, FHL1 
is associated with the JAK–STAT pathway, which can indirectly 
activate STATs and induce various inflammatory responses (Bass 
et al., 2021). Another key criterion in distinguishing patients from 
other infections is the methylation level of TGFB3 (cg06958766), 
which is hypomethylated in COVID-19 patients (especially ICU 
and death patients). Existing studies have demonstrated that 
TGFB3 is a gene related to immune dysregulation in cardiovascular 
disease, and its expression is also dysregulated in COVID-19 (Lee 
et al., 2021). The association of the methylation level of TGFB3 
with the clinical outcome of COVID-19 infection has not been 
revealed, and such level is speculated to be possibly associated with 
poor clinical response to COVID-19.

The result also indicated that the methylation level of the 
interferon type I pathway-related gene RSAD2 (cg10549986) for 
COVID-19 patients was negatively correlated to the severity of 
COVID-19, and the expression of RSAD2 is reported to have 
reached the highest level in the early stage compared with the late 
stage of COVID-19 (Zhang C. et  al., 2021). This finding may 

TABLE 3 Essential methylation sites and their corresponding genes 
for distinguishing severity of SARS-CoV-2 infection.

Methylation sites Gene symbol Description

cg22930808 PARP9 Poly (ADP-Ribose) Polymerase 

Family Member 9

cg25888371 MX1 MX Dynamin Like GTPase 1

cg17114584 IRF7 Interferon Regulatory Factor 7
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be related to the decrease in IFN activity in patients with severe 
infections. In COVID-19 patients, RSAD2 can enhance antiviral 
and immunomodulatory functions after viral infection, and 
patients discharged from the emergency department in the 
current results had lower levels of RSAD2 methylation, possibly 
related to high RSAD2 expression levels and enhanced antiviral 
immunity (Zhu et al., 2020).

Functional analysis based on go and 
KEGG pathway

T-cell activation is the most significantly enriched pathway. 
Studies have shown that RNA m6A methylation is crucial for 
controlling the activation and differentiation of T lymphocytes 
(Qiu et al., 2021). m6A with T-cell activation function mainly 
mediates the activation and proliferation of T cells by increasing 
TGF-β and PI3K-AKT signaling necessary for T-cell 
differentiation and plays an anti-COVID-19 role (Li et al., 2017). 
Increased m6A regulator expression in COVID-19 patients results 
in the high expression of activated CD4 memory T cells (Yao et al., 
2021). As a crucial immune cell in SARS-CoV-2 infection, T cells 
have dual roles in patients with COVID-19. The expression level 
of T cells is increased in patients with mild infection; among 
which, CD8+ T cells highly express cytotoxic molecules, such as 
granzyme A, which play an antiviral immune effect (Liao et al., 
2020). Meanwhile, the expression levels of cytotoxic molecules 
and Tregs in severe patients are reduced (De Biasi et al., 2020; Toor 
et  al., 2021). Studies have shown the presence of a complete 
memory T-cell response in asymptomatic or mildly infected 
COVID-19 patients (Sekine et al., 2020) and detected SARS-CoV-
2-related T-cell responses in healthy blood samples, which may 
be due to seasonal coronavirus-induced T-cell responses and may 
further prevent serious infections (Braun et  al., 2020; Mateus 
et al., 2020).

The current study also observed enrichment of pathways that 
regulate the level of neurotransmitters, suggesting the role of 
methylation of neurotransmitter-related genes in immunity to 
virus infection. Studies have shown that in addition to 
macrophages, viral infection also activates mast cells to release 
histamine, arachidonic acid, and other neurotransmitters, and 
histamine can strongly raise the level of IL-1, which, in turn, 
increases lung inflammation in SARS-CoV-2 infection (Conti 
et al., 2020). Furthermore, SARS-CoV2 infection will reduce the 
synthesis of dopamine and acetylcholine, resulting in the 
weakened immune function of the body (Blum et  al., 2020; 
Alexandris et al., 2021).

Type I interferon plays a crucial role in antiviral immunity, 
and studies have shown that hypermethylation of IFN-related 
genes is a unique methylation signature of severe COVID-19. 
Moreover, three of the significant enrichment pathways are related 
to type I interferon response, further confirming the important 
role of IFN-related methylation in determining the severity of 
COVID-19 and the reliability of the current study. In vivo, IFN can 

bind to IFN receptors in an autocrine and paracrine manner to 
activate the JAK/STAT signaling pathway, thus demonstrating 
antiviral effects (Liu et al., 2012). IFN activity was also lower in 
patients with severe infection than mild infection patients, and 
impaired IFN-α production is an important sign of severe 
infection (Hadjadj et  al., 2020), which may be  related to the 
hypermethylation of IFN-related genes and the inhibition of the 
expression of related genes. In addition, studies have shown that 
IFN expression is delayed in SARS-CoV-2 infection (Kim et al., 
2016). Such a delay leads to high levels of interferon expression in 
severely infected patients but does not reduce viral load; 
meanwhile, IFN pretreatment can significantly reduce viral 
infection levels, suggesting that drugs that can boost IFN 
production may be  an effective option for early treatment of 
SARS-CoV-2 (Park and Iwasaki, 2020).

The enrichment of cellular components of differentially 
methylated genes mainly focused on the virus infection process of 
cells, including cell junction and migration. Synapses mainly 
mediate information transmission between neurons; they can also 
transmit large particles and mediate virus particles into the central 
nervous system, thus reflecting the neuroinvasiveness of 
coronaviruses (Li et al., 2020). As the main site of cell adhesion, 
focal adhesions help viral particles enter cells, and its functional 
integrity is critical to the infection and spread of SARS-CoV-2 
(Sulzmaier et al., 2014).

This study also found enrichment of differentially methylated 
genes in the RAP1 pathway. RAP1 pathway plays an important 
role in processes, such as cell adhesion, junction, and polarity, and 
promotes tumor cell invasion and migration (Looi et al., 2020). 
Pulmonary vascular barrier integrity defection is a fatal factor in 
severe COVID-19 patients (Yamamoto et al., 2021). Meanwhile, 
studies have found that RAP1 can enhance endothelial cell–cell 
junctions mediated by VE-cadherin and regulate vascular 
permeability (Rho et al., 2017), suggesting that the RAP1 signaling 
pathway may serve as a potential therapeutic target for COVID-19.

The analysis of key features and related decision rules verified 
the effectiveness of methylation status in distinguishing different 
states of SARS-CoV-2 infection, which will provide a reference for 
studying the stratification of patients and help develop new 
treatment strategies.

Conclusion

A computational workflow containing several machine 
learning methods was designed to identify the blood methylation 
features and their expression rules, which can distinguish the 
severity of SARS-CoV-2 infection. First, the methylation features 
in the expression profile were analyzed by the MCFS algorithm, 
producing a ranked feature list. Next, this list was introduced into 
the IFS method to generate a series of feature subsets. Different 
classification algorithms were used to train samples comprising 
these feature subsets to build classifiers. After evaluating their 
performance, the optimal features were determined. The 

https://doi.org/10.3389/fmicb.2022.1007295
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2022.1007295

Frontiers in Microbiology 11 frontiersin.org

classification rules were extracted by the optimal DT classifier. The 
essential features were analyzed by functional enrichment to 
detect their biofunctional information. Some key features and 
rules are justified by recently published academic literature, which 
provides a reference for further related research.
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