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Freezing of Gait (FoG) is a movement disorder that mostly appears in the late stages of
Parkinson’s Disease (PD). It causes incapability of walking, despite the PD patient’s
intention, resulting in loss of coordination that increases the risk of falls and injuries and
severely affects the PD patient’s quality of life. Stress, emotional stimulus, and multitasking
have been encountered to be associated with the appearance of FoG episodes, while the
patient’s functionality and self-confidence are constantly deteriorating. This study
suggests a non-invasive method for detecting FoG episodes, by analyzing inertial
measurement unit (IMU) data. Specifically, accelerometer and gyroscope data from 11
PD subjects, as captured from a single wrist-worn IMU sensor during continuous walking,
are processed via Deep Learning for window-based detection of the FoG events. The
proposed approach, namely DeepFoG, was evaluated in a Leave-One-Subject-Out
(LOSO) cross-validation (CV) and 10-fold CV fashion schemes against its ability to
correctly estimate the existence or not of a FoG episode at each data window.
Experimental results have shown that DeepFoG performs satisfactorily, as it achieves
83%/88% and 86%/90% sensitivity/specificity, for LOSO CV and 10-fold CV schemes,
respectively. The promising performance of the proposed DeepFoG reveals the potentiality
of single-arm IMU-based real-time FoG detection that could guide effective interventions
via stimuli, such as rhythmic auditory stimulation (RAS) and hand vibration. In this way,
DeepFoG may scaffold the elimination of risk of falls in PD patients, sustaining their quality
of life in everyday living activities.

Keywords: Parkinson’s disease, freezing of gait, deepFoG, smartwatch, deep learning, rhythmic auditory stimulation

1 INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurological disorder related to multiple motor symptoms
which affect patients’ movement and stability. One of the most common and most disturbing
symptoms is Freezing of Gait (FoG) (Giladi et al., 2001). FoG is characterized by the inability to walk
through narrow corridors or to take short and fast steps. This results in difficulty in initiating gait or
turning while walking, despite the intention of the patient (Nutt et al., 2011; Heremans et al., 2013).
Although FoG episodes usually make their presence in the late stages of PD or other Parkinsonian
syndromes, in cases where the motor symptoms are already intense, FoG episodes may also occur in
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early stages (Hall et al., 2015). The latter is due to the lack of
timely medication. The pathological hallmark of FoG points to
disturbances in the frontal cortical regions, the basal ganglia, and
the midbrain locomotor region which are the most probable
origins (Nutt et al., 2011). FoG has been associated with
cerebellum functionality (Fasano et al., 2017) and has been
often described as a derangement of the cognitive dynamics
(Pozzi et al., 2019). Moreover, occurrence of FoG has been
interdependent on the emotional condition of the PD patient,
anxiety and/or stress levels (Witt et al., 2019). Despite the
increasing research interest in finding the exact causes and
characteristics of FoG events, the biological and neurological
nature of FoG has not been fully decoded. Importantly, deep
understanding of FoG is significantly impeded by the fact that the
profile of FoG may differ substantially amongst patients.

Manifestation of FoG episodes harshly downgrades PD
patients’ Quality-of-Life (QoL) and affects their mental
condition and self-esteem. Concretely, PD patients are
restricted from performing essential functions, such as walking
initiation and direction change. Furthermore, they experience
mood alterations which gradually lead to serious mental health
issues. Together with emotional swings, the greater risk of living
with FoG is the sudden and instantaneous akinesia, which raises
the possibility of falls and injuries (Bloem et al., 2004). This
problem is intensified in the case of the elderly PD patients, and
especially those who are unattended, wherein their bones are
more vulnerable, and hence the chances of FoG occurrences are
much higher.

The confrontation of FoG events is an essential necessity that
concerns the medical society. Multiple solutions have been
proposed to eliminate the FoG symptoms. Medication
treatment, including use of levodopa (Fietzek et al., 2013) or
monoamine oxidase B inhibitor, rasagiline (Coria and Cozar-
Santiago, 2008), is commonly provided to deal with the severity of
the motor symptoms and, in particular, FoG episodes. Although
several potential drug treatments have been suggested (Zhang
et al., 2016), pharmaceutical intake frequently fails to alleviate the
symptoms, while, in some cases, its effect lasts only during the
drug-ON period. Moreover, medicationmay very often cause side
effects (Hauser, 2009) which lead to further inconveniences to
patients. Finally, the estimated expenses of medication are rather
high and can become a significant financial burden. Invasive
solution of Deep brain stimulation has also been introduced in
the event of medication failure or in the extreme condition of total
inability to walk (Huang et al., 2018). Nevertheless, the
neurological surgery is rarely recommended due to the high
risk of dangerous or fatal side effects caused by the direct
cerebral intervention.

Alternative studies propose improvement of FoG episodes’
characteristics through cognitive exercises (Walton et al., 2018).
However, given that the PD patients vary in their cultural,
educational, and cognitive characteristics, tailored and
personalized cognitive exercise should be considered. Exercises
and training with rhythmic cue have indicated that FoG episodes
can be countered when patients synchronize their movement
with external stimulus (Allen et al., 2010). Rhythmic Auditory
Stimulation (RAS) constitutes a solution that may be acceptable

for the majority of PD patients. RAS offers improvement in gait
(Dalla Bella et al., 2017) via synchronization of the patient’s steps
with an external acoustic cuing that helps to overcome the failure
of walking initiation. In addition, it has been observed that PD
patients are less likely to encounter FoG episodes when they walk
in coordination with stimulus (Thaut et al., 1996; Lim et al., 2005;
Hausdorff et al., 2007). Currently, such solutions require the
physical presence of physicians and medical staff. However,
application of RAS outside medical sites would allow for
restoring patients’ independence, while would limit the
required Healthcare resources. This would be a significant step
forward towards the effective facilitation of the increasing
number of PD patients (Dorsey et al., 2007). At large,
detection of the FoG events is crucial to be performed timely,
and, therefore, a real-time RAS process could be valuable for
eliminating FoG per se and its related risks.

In this view, multiple research groups have investigated Fog
detection using methods which rely on sensor placement in
different parts of the patient’s body. Essentially, these methods
can be divided into two categories based on whether a sensor is
placed on the upper limb of the patient or not. Jovanov et al.
(2009); Niazmand et al. (2011); Bachlin et al. (2009) have
suggested the use of multiple devices attached on the lower
and middle body to capture FoG events, using accelerometer
and gyroscope sensors. Mazilu et al. (2015a) proposed a gait-
assist system with sensors worn on both ankles to detect FoG
events from four Fast Fourier Transformation (FFT) features by
using Machine Learning. Overall, the majority of prior work
utilizes measuring devices which are allocated on the ankles, the
hips or the waist of the patient (Table 1).

Contrary to the aforementioned works, other studies (Ziv et al.
(1999); Vercruysse et al. (2012)) have reported a significant
correlation between FoG episodes and upper limb motions. In
this respect, various methods have been introduced for detecting
FoG episodes from sensors placed on the upper limbs.
Specifically, Cole et al. (2011) exploited accelerometer sensors
attached on the arm, the shank, and the thigh, along with
Electromyography sensors (EMG) to compute to detect
instances of FoG episodes using Dynamic Neural Networks.
Their method achieved 83% sensitivity and 97% specificity. In
another study, Tripoliti et al. (2013) have associated FoG events
with wrist movement. Despite of the satisfactory accuracy (82%/
90% sensitivity/specificity), their method required the use of five
additional sensors (worn in ankles, waist, and chest), leading to
inconvenience and thus low user acceptance.

Installation of devices in multiple body parts is rather doubtful
due to the inconvenience caused by the volume, weight, difficulty
in placement of the hardware and/or discomfort in movement.
Exclusive association between FoG and wrist movement has been
proposed by Mazilu et al. (2015b) who introduced a Machine
Learning model to distinguish FoG episodes from other events
during walking (i.e., turns, stops, obstacle avoidance). They used
time and frequency features from accelerometer and gyroscope
data using sensors attached at both wrists. Their classification
pipeline achieved 90%/83% sensitivity/specificity.

Consequently, exploiting the increasing rise of smartwatch
sensors, the present study investigates the feasibility of a single
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wrist-based inertial measurement unit (IMU) FoG classification,
namely, DeepFoG, for facilitating the real-time detection of FoG
episodes. The initial hypothesis is that data collected only from
one wrist should provide sufficient information for effectively
predicting FoG events. We proposed a non-invasive user-centric
solution that can be easily applied in everyday life. Given that FoG
is a complex activity task and the research knowledge on this
domain is still being explored, manual feature engineering would
be rather complicated, and thus application of Deep Learning
could be suitable for single-wrist detection (Wang et al., 2019).
DeepFoG is based on the training of a Deep Learning model that
automatically detects FoG events and differentiates them from
stops and walking with turns. The ecological validity of DeepFoG
aims towards achieving higher user acceptance, while providing
comparative detection performance when compared to the
prior art.

2 MATERIALS AND METHODS

A Deep Learning approach is being proposed for the detection of
FoG events from stops and turns during gait. Our proposed
framework is based on linear and angular acceleration data from
one wrist that are used as input to a Convolutional Neural
Network (CNN). The CNN is trained and evaluated using the
CuPiD dataset (Mazilu et al., 2012). These data are fed to the
CNN classifier to detect FoG episodes (Class 1) from Walking-
with-Turns (Class 2) and Stops (Class 3) in a sliding window
manner. Firstly, sensitivity and specificity scores from the CNN
implementation are calculated and compared with the respective
ones from traditional Machine Learning classifiers. Subsequently,
the best-performing model is compared to the state-of-the-art
methods. The performance of the models is evaluated in two
schemes, namely, a 10-Fold Cross-Validation (CV) (10-CV) and
a Leave-One-Subject-Out (LOSO) Cross-Validation (LOSO-CV).

2.1 Description of the Database
The CuPiD IMU dataset (Bachlin et al., 2009) contains 3-axis
accelerometer and gyroscope data from inertial sensors attached
on patient wrists (Mazilu et al., 2013), sampled at 128 Hz.
Measurements from 18 patients are included with begin and
end timestamps of FoGs, Stops, and Walking-with-Turns.

Subjects in the CuPiD IMU dataset have an age range from 49 to
89 years old (mean: 68.9 years, standard deviation: 10.2 years) and
have been diagnosed with PD from 2 to 18 years (mean: 8.8 years,
standard deviation: 4.6 years). Each patient performed a walking
session with 180° and 360° turns, in wide or narrow trails with
obstacles that stimulate FoG events in a controlled environment.
During the session, subjects were being asked to perform tasks and
walk through crowded hospital rooms. In total, 184 FoG episodes are
labeled from clinicians in 11 out of 18 patients, referred as S1–S11.
The data of the seven subjects that did not display any episodes during
the protocol are not included in the analysis. Time periods in which
patients stood and discussed with clinicians or voluntarily stopped are
also included in the dataset and are labeled as “Stop.” Labeled FoG
events in the dataset can occur from 0.11 s up to 98.8 s (mean: 9.12 s,
standard deviation: 15.35 s). Most episodes are short, with 50.8% of
them lasting less than 3 s and 64.7% less than 5 s. FoG duration range
is an important factor for detecting the events, as it plays an important
role in defining the interval of the window and the slide-step.

An excerpt from the accelerometer and gyroscope data
acquired from the S2 is depicted in Figure 1. In the latter, the
occurrence of a FoG event (denoted with gray area) is evident
near the 35s, exhibiting a distinguishable pattern during the
walking activity, simultaneously appearing in both types of
IMU data at 35s.

2.2 Preprocessing
Data three-dimensional (3D) IMU measurements are extracted for
every PD patient from the CuPiD dataset. In particular, for each PD
patient, the corresponding N-sample accelerometer and gyroscope

TABLE 1 | Comparison of the proposed single-wrist approach FoG detection with other studies exploiting one or more sensors to capture movement.

Sensors Sensors placement Realtime Results

Without sensor in upper limb
Bachlin et al. (2009) 3 Ankle, thigh and lower back Yes 73.1% sensitivity

81.6% specificity
Jovanov et al. (2009) 2 Both sensors on belt or knee or ankle or shoe Yes unknown
Niazmand et al. (2011) 5 Shank and belt No 88.3% sensitivity

85.3% specificity
Mazilu et al. (2015a) 2 Ankles Yes 97% hit rate
Palmerini et al. (2017) 3 Shins, lower back Yes 83% sensitivity

67% specificity
Camps et al. (2018) 1 Waist Yes 92.6% sensitivity

88.7% specificity
With sensor in upper limb
Cole et al. (2011) 3 Shank, thigh and arm No 83% sensitivity

97% specificity
Tripoliti et al. (2013) 6 Wrists, ankles, waist and chest No 81.9% sensitivity

98.7% specificity
Mazilu et al. (2015b) 2 Both wrists Yes 90% sensitivity

83% specificity
DeepFoG 1 Wrist Yes 83% sensitivity

88% specificity
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data (sampled at fs � 128 Hz), i.e., ({ax: [ax[1], ax[2],. . ., ax[N]]T},
{ay: [ay[1], ay[2],. . ., ay[N]]T}, {az: [az[1], az[2] . . ., az[N]]T}) and
({gx: [gx[1], gx[2],. . ., gx[N]]T}, {gy: [gy[1], gy[2],. . ., gy[N]]T}, {gz:
[gz[1], gz[2] . . ., gz[N]]T}) respectively, were constructed. The data
are processed and formatted as a N × 6 matrix for every PD patient,
i.e., Sj � [ax,ay,az,gx,gy,gz], j � 1, . . . , 11 (PD patients).

Further, a three-second (Wl�3 s) sliding window with 0.25 s
overlap is being selected for processing the Sj data. The duration
of the window and the overlap have been chosen as a trade-off
between the duration of FoG events and the time resolution
needed to detect a differentiation in wrist movement (Mazilu
et al., 2015a). Every element of Sj is being normalized with the
maximum value per vector across all PD patients and rounded to
4 decimal digits for smaller bit storage.

2.3 Segmentation and Training Set
Construction
The resulted Sj matrix is being reshaped to K ×Wl × 6, where K �
N−Wl
Sl

+ 1 is the number of segments created. These segments were
used to construct the training set for the CNN, labeled as “FoG”
whether the FoG episode exists inside a window and whether a FoG
event starts and ends inside this window. This was adopted so as to
capture even short FoG events (≤Wl/2). In the case where a FoG
event is not completely integrated inside a window, the segment is
being labeled as “FoG” only when the duration of the FoG is ≥Wl/2.
Figure 2 illustrates the training set construction process.

2.4 Hyperparameter Tuning and Training of
the CNN
Different CNN architectures are assessed by searching the best set of
hyperparameters. The hyperparameters that were optimized include
the depth of the network{2,3,4,5}, different kernel sizes [3–12], and
number of filters [10–100]. The resulting CNN architecture, as
depicted in Figure 3, consists of a two-layer one-dimensional
(1D) convolution that processes the matrix Sj with 100 and 40

filters, respectively, and a kernel size of 10, followed by a fully
connected layer with an output of three nodes (i.e., “FoG,” “Stop,”
“Walking-with-turns”). The first convolutional layer is being
followed by a max-pooling layer, keeping the maximum value
out for every three weights, in order to reduce the complexity
and avoid over-fitting. For the second pooling layer, instead of
the maximum, the average-pooling is used and the value of two
weights is being taken. In this respect, only one weight remains per
feature detector and the over-fitting is further prevented (Cook,
2017). Before the dense layer, a 50% dropout is applied to make the
model intolerant to small abnormalities of the data (Srivastava et al.,
2014). The CNN network is optimized to minimize the categorical
cross entropy loss using the ADAM optimizer (Kingma and Ba,
2014). To mitigate overfitting, the model was trained for optimal
epochs values. For selecting the optimal value for epochs, the train
and validation losses were calculated for each of the CNN models.
Loss values were monitored by Early stopping call back function.
When there was an increment observed in loss values, training came
to halt and the respective value of epoch indicated the optimal
selection.

2.5 Evaluation Scheme
To evaluate the performance of the proposed model, two
approaches are investigated. Considering that the model
detects a FoG episode whenever a single window is being
classified, sensitivity and specificity of the FoG class are
calculated in a 10-CV and LOSO CV manner, so as to test
the ability of the network to detect FoG events on unseen data.
In the case of 10-CV, the dataset is shuffled and then split into
10 groups. One group acts as the test dataset, while the rest is
being used for training. This procedure is repeated 10 times
for each group and the average metrics are calculated to
describe the results of the evaluation method. The adopted
LOSO CV scheme follows the same procedure as the 10-CV
with the difference being that the dataset is not randomly split,
but every group holds the data of a single patient, with the
groups being 11 each for S1–S11, accordingly.

FIGURE 1 | Exemplary data streams from triaxial gyroscope (A) and accelerometer (B) IMU recordings. The gray area indicates the FoG events.
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3 RESULTS

Figure 4 aggregates the metrics for the performance assessment
of the two evaluation schemes, i.e., 10-CV and LOSO-CV. The

comparisons between the CNN and the traditional classifiers are
also presented below in Table 2. The specificity and sensitivity
were reported to be equal to 88 and 83%, for LOSO-CV, and 90
and 86%, for 10-CV, respectively. Results for patient-specific

FIGURE 2 | Sliding window and labeling procedure. Yellow areas are the walking with turn recordings; the red areas depict the stop event; and the gray ones depict
the FoG event.

FIGURE 3 | The proposed CNN architecture where the triaxial accelerometer and gyroscope streams are processed via a two-layer 1D convolution layer with six
channels outputting the predictions regarding the probable outcomes.
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sensitivity/specificity are presented in Figure 4. From the latter, it
is observed that some patients’ FoGs present different trends in
accelerometer and gyroscope data; hence, CNN performs poorly
in recognizing them (61% sensitivity, S8 in Figure 4).

3.1 Performance of the Traditional
Classifiers
To validate the assumption that a Deep Learning approach could
result in better performance than traditional Machine Learning
classifiers in detecting whether a window is FoG or not, this study
compares the proposed CNN’s performance in training/testing
with the performance of the Decision Trees and Extreme
Boosting (XGboost) classification algorithms, incorporating the
feature set proposed by Mazilu et al. (2015b) but coming from the
single-wrist data. A higher performance is noticed from the CNN
architecture (see sensitivity/specificity pairs in Table 2), hence, it
is more suitable to be utilized for single-wrist detection.

3.2 Comparison of CNN With
State-of-The-Art
Comparison between the DeepFoG performance and previously
published approaches (with and without sensors mounted to the
wrists of the patients) is presented in Table 1. Direct comparison
is more relevant to the methods using sensors in the upper limb
(Cole et al., 2011; Tripoliti et al., 2013; Mazilu et al., 2015b). It was
demonstrated that DeepFoG has comparable classification
performance with the related works in the literature which,
however, use multiple sensors. The work by Camps et al. is of
importance. The authors were the first to introduce a Deep
Learning method for detecting FoG episodes in PD patients
(Camps et al., 2018). In their approach, they used data
collected by a waist-placed IMU (21 PD patients). Their
proposed methodology achieved sensitivity/specificity equal to
92.6/88.7%. This study set a promising example for the use of

Deep Learning in the accurate sensor-based detection of FoG
episodes. Nonetheless, the use of a waist-placed sensor is likely to
impose limitations related to the motion artifacts and
inconvenience to the user. It is to be stressed that the
comparison of our proposed method with the prior art cannot
be direct and absolute, due to the different nature of the required
inputs. Concretely, prior works rely on either multiple joint
sensors or a single waist-placed sensor.

4 DISCUSSION

Digital Health is an emerging field that could assist PD
management via the realization of accessible tools towards
detection and monitoring of the disease. Moreover, FoG
episodes are strongly associated with the increased risk of fall
and frailty of PD patients. Ultimately, the output of the trained
DeepFoG, proposed in the current study, can then inform a
timely application of RAS, combined with a hand vibration
stimulus, to facilitate the PD patient to overcome the FoG
event. The use of a smartwatch and the distinction between
FoG events and the different natural movements of the user
enables the transferability of the solution to a real-life
environment. The latter reinforces the added value of the
results towards capturing PD FoG episodes and provides
objective information to the doctor regarding the frequency of
the FoG event occurrence, towards objective monitoring of the
PD patient. Moreover, the unobtrusive character of DeepFoG
data acquisition contributes to the achievement of long-term
adherence to the proposed solution, and enables the regulation of
the medication towards reducing PD related risks.

DeepFoG may not outperform the related State-of-the-Art
methods in both sensitivity and specificity metrics (Table 1).
However, high performance is achieved by using only a single
device (namely, smartwatch), when the others need at least two to
arrive at a similar sensitivity/specificity. FoG events can be
considered as rare events in the sensor streams during
walking, so DeepFoG’s high specificity enables the ecological
validity of the solutions. Moreover, the latency of DeepFoG to
infer the FoG event is near real-time (considering 0.25 s time-
window for each decision outcome); hence, even this
retrospective study allows envisioning the timely automatic-
RAS/hand vibration interventions. The DeepFoG can be
integrated in a fused scheme with more PD risk-related
variables, like heart rate variability features, age, or history of
falls and FoGs, via a fuzzy-logic based model (Iakovakis et al.,

FIGURE 4 | Resulted sensitivity and specificity scores per patient from
LOSOCV, along with the average scores derived by the LOSOCV and 10-CV,
based on single-window detection.

TABLE 2 | Single-wrist comparison of sensitivity/specificity pairs for different
analysis methodology. F: feature vector consisting of features of Mazilu et al.
(2015b).

10-CV LOSO CV

Specificity Sensitivity Specificity Sensitivity

F+Decision Tree 76% 71% 79% 63%
F+XGBoost 79% 81% 83% 70%
CNN (DeepFoG) 90% 86% 88% 83%

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 5373846

Bikias et al. IMU-Based Detection of FoG

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


2016), that could formulate an assisting feedback mechanism
tailored to the everyday living activities of high-risk PD patients.

From a Deep Learning perspective, the use of the LOSO
evaluation scheme informs us regarding the generalizability of
the CNNs to detect FoG events for new subjects. It can also be
observed that the 10-CV results were improved by 3 and 2%
in specificity and sensitivity, when compared to the LOSO
evaluation. Moreover, from the patient specific sensitivity/
specificity pairs depicted in Figure 4, it can be observed that
personalized cuing and FoG episodes could be detected via the
use of personalized training for tuning the networks parameters
to capture the patient-specific characteristics. The proposed
version of DeepFoG was designed to classify three classes,
“Walking with turns,” “Stop,”, and “FoG” achieving it with
high F-score 0.81; instead of distinguishing just “FoG” and
“Non FoG.” This makes DeepFoG insusceptible to false alarms
FoG events due to intentional stopping, enhancing in this way its
user friendliness and acceptability.

Despite the relatively high specificity and sensitivity
estimated metrics, the dataset used to train and evaluate the
CNN is quite limited (11 patients with FoG) and the FoG
episodes are few (184). Hence, generalization of the outcomes
should be performed with caution. Nevertheless, the
recordings were longitudinal during the day and the
detection results can be considered relevant and significant
to encourage the continuation of the research towards
evaluation of FoG detection-intervention using data from
wearable devices. Importantly, we recognize that the
optimal way to test a model’s generalization ability is by
externally testing the model using an entirely new dataset.
Given that such data are not currently available, we chose to
perform a preliminary validation of the proposed framework
before proceeding with a larger cohort. Provided that the
preliminary evaluation gives promising results, we envision
to continue with a larger population in our future research.
Furthermore, lower prediction outcomes in some patients may
raise questions about the various FoG patterns that exist in the
examined cases and, thus, different gait patterns and their
change along the PD severity need further investigation. Pilot
tests on PD patients should be initialized in order to evaluate
the quality and efficiency of the proposed system in home-
based daily circumstances. Research effort towards this
direction is already in progress.

5 CONCLUSION

The current study introduces a single-wrist-based FoG detection
scheme that incorporates IMU data from a commercial smartwatch
and CNN to facilitate a home-based falls prevention and FoG
management. Instantaneous risk estimation enables the reduction
of PD-related risks and can sustain the patient’s QoL. The Deep
Learning-based method of single-arm might achieve similar
accuracy as previously published methods, but with utilization of
fewer sensors. The main advantage offered by our proposed
methodology is its simplification and convenience attributed to
the use of a single smartwatch rather than its improved accuracy.
Nevertheless, our approach could be more preferable and easier
accepted by the patients compared to the State-of-the-Art for feature
extraction and classification methodology. Further evaluation of the
proposed methodology on a large PD cohort in high risk remains to
be conducted. Upon successful clinical validation, this work may
provide an objective method to inform the doctors regarding the
frequency of FoG events and it could test the effectiveness of the
timely RAS/hand vibration interventions.
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