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Simple Summary: The activity of brain-derived neurotrophic factor (BDF) in the central nervous
system has been well-studied, but its physiological role in other organs has not been clearly defined.
This review summarizes the current findings on the functionality of BDNF in various peripheral
tissues and discusses several unresolved questions in the field.

Abstract: Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central
nervous system. In addition to its well-known activities in promoting neuronal survival, neu-
ron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by
modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues,
including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources
of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of
BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and
the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral
tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly
through the regulation of mitochondrial dynamics in the various tissues. This article reviews the au-
tocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved
questions about BDNF’s function.
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1. Introduction

Together with nerve growth factor (NGF), Neurotrophin-3 (NT-3), and Neurotrophin-4
(NT-4), brain-derived neurotrophic factor (BDNF) is a member of the structurally related
neurotrophin family that plays crucial roles in neurological activities, such as neurogenesis
during the tissue development, differentiation and survival of neurons, regulation of synap-
tic plasticity for memory formation, and guidance of tissue–neuron interaction. Mature
BDNF (designated as mBDNF in this review) exists as a dimer of two non-covalently linked
peptides, which is formed after the intracellular endopeptidase cleavage of pro-BDNF in
the endoplasmic reticulum or via the membrane-bound protease like matrix metallopro-
teases extracellularly (Figure 1) [1]. In addition to serving as the precursor for mBDNF
synthesis, pro-BDNF might work as a functional protein via interacting with the p75 neu-
rotrophin receptor (p75NTR)-sortilin complex [2]. In contrast, mBDNF exerts biological
functions via binding to the single transmembrane receptor tyrosine kinase, tropomyosin
receptor kinase B (TrkB). The binding of mBDNF to TrkB initiates three major signaling
cascades: phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated
protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK), and phospholipase C
γ (PLCγ)/cAMP response element-binding protein (CREB) pathways, which upregulate
the transcription of pro-survival genes in the brain [3]. The Ca2+ influx that follows PLCγ

activation also increases the activity of the N-methyl-D-aspartate (NMDA) receptor [3],
which contributes to synaptic maturation and memory formation [4]. Because neuronal
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BDNF plays an important role in long-term potentiation, synaptic plasticity, and neurogene-
sis, reduced BDNF expression is associated with neuronal diseases such as bipolar disorder,
Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease [5]. The neurotrophic
functions of BDNF have been extensively described, and readers who are interested in this
topic are referred to other excellent reviews [6–8].
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Figure 1. Synthesis of pro-BDNF and mature BDNF (mBDNF). BDNF mRNA is translated in the
endoplasmic reticulum to form pre-pro-BDNF, which is subsequently cleaved to form pro-BDNF.
After being transported into the Golgi apparatus, the pro-BDNF is further converted into mBDNF by
furin-like protein convertases. Alternatively, pro-BDNF is exported as a functional hormone or is
further processed by the tissue type plasminogen activator (tPA) or matrix metalloproteinase (MMP)
to form mBDNF extracellularly.

Studies in Bdnf and Ntrk2 (the TrkB gene) knockout mice revealed that mBDNF par-
ticipates in the regulation of body weight through controlling food intake [9,10]. In the
fed state, high serum glucose and leptin levels activate the neurons that express cocaine-
and amphetamine-regulated transcript/pro-opiomelanocortin (POMC) in the arcuate nu-
cleus in the hypothalamus to prevent over-eating [11,12]. The anorexigenic activities of
POMC-positive neurons depend on the production of α-melanocyte stimulating hormone
(α-MSH) as the neurotransmitter, which activates melanocortin 4 receptor activity of other
feeding-control neurons in multiple brain regions, such as the ventromedial hypothala-
mus (VMH) [13]. Xu et al. have reported that Bdnf is an α-MSH-responsive gene in the
neuron of the VMH and ablation of Bdnf or TrkB in these neurons causes hyperphagia and
excessive weight gain in mice [10,14]. Corroborating these findings, mutation of BDNF or
NTRK2 in human beings leads to the development of obesity and other related metabolic
disorders [15,16]. Interestingly, subcutaneous infusion of mBDNF effectively mitigated
glucose homeostasis in obese db/db mice after pair-feeding, suggesting that mBDNF is able
to manage systemic metabolism independently of its anorexigenic functions [17]. Although
it has been proposed that subcutaneously administrated mBDNF regulates the integral
metabolism via the neuronal output to various tissues, mBDNF might also act directly
on peripheral tissues to orchestrate their metabolic functions. Indeed, mBDNF and TrkB
proteins can be found in key organs for metabolic controls, including the liver, pancreas,
skeletal muscles (SkM), and white adipose tissues (WAT), but their authentic functions in
these peripheral tissues are still ambiguous [18,19]. With the help of genetic engineering
that confines the overexpression or ablation of Bdnf or Ntrk2 in a single tissue, it is now clear
that BDNF is involved in numerous tissue-specific and systemic metabolic activities. This
review will outline the actions of tissue-specific BDNF in local and systemic metabolism
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regulation and discuss several key issues to fully elucidate the functional spectrum of
peripheral tissue-derived BDNF.

2. BDNF in Liver

The liver is a vital organ for maintaining metabolic homeostasis. During the fast-
ing state, high glucagon and low insulin levels increase hepatic glucose production to
stabilize the blood glucose concentration [20]. On the other hand, excessive glucose in
dietary sources is converted into triacylglycerides (TAG) via de novo lipogenesis in the
liver, which is delivered to other tissues via very-low-density lipoproteins. Disruption
of these regulatory processes leads to the development of metabolic diseases, including
hyperlipidemia, hyperglycemia, and hepatic steatosis [21]. Although regulation of hepatic
metabolism depends mainly on the signal from the pancreas via the production of insulin
and glucagon, subcutaneous injection of mBDNF also potentiates insulin-induced PI3K
activity in the liver [22]. However, it is not clear if mBDNF directly activates its receptor
in hepatocytes to potentiate insulin sensitivity, because Ntrk2 expression in hepatocytes is
very low [23]. Moreover, the observation that intracerebroventricular infusion of mBDNF
suppresses hepatic glucose production, possibly acting via the vagus nerve, further ques-
tions the direct action of mBDNF on hepatocytes [24]. When Bdnf was overexpressed in
the mouse liver with non-alcoholic steatohepatitis by AAV-mediated gene delivery, how-
ever, the animals displayed lower hepatic damage, reduced inflammatory gene expression,
and improved fibrosis and steatosis, indicating that the hepatocyte-synthesized BDNF
has a local protective function to the liver against metabolic challenges [25]. Studies in
cultured mouse hepatocyte cell lines AML12 provided further proof that mBDNF is a
direct stimulator of fatty acid oxidation (FAO) and glycogenesis but a suppressor of the
hepatic fatty acid (FA) synthesis and gluconeogenesis [26]. Furthermore, BDNF deficiency
in the heterozygous Bdnf knockout mice (BDNF+/−) sensitizes their hepatocytes to ER
stress-induced cell death, which is a common consequence seen in the obese tissues [27].
Hence, the FA-induced Bdnf expression in the livers of mice after high fat diet (HFD)
feeding might prevent the ectopic lipid accumulation and the related adverse metabolic
consequences [26,28]. Mechanistically, mBDNF destabilizes the TrkB isoform, TrkB.T1, in
hepatocytes to protect the cells from lipotoxicity [25]. Generated by alternative splicing of
the Ntrk2 gene, TrkB.T1 is a truncated isoform of the full-length TrkB (Trkb.FL) without
the kinase and C-terminal domains [29]. Because TrkB.T1 expression was increased in
the mouse liver after HFD feeding, which potentiated the TNFα-induced cell damage
and inflammatory response through a ligand-independent mechanism, the high mBDNF
production in the HFD-fed mice prevents further damage by reducing the cellular content
of TrkB.T1 [25]. Nevertheless, an opposing view on BDNF’s protective action on the liver
has also been proposed. For instance, higher hepatic content of mBDNF is detected in pa-
tients with major depressive disorder, schizophrenia, and bipolar disorder, and the authors
proposed that hepatic mBDNF might contribute to the high incidence of liver disease in
these psychiatric diseases [30]. In support of this notion, hepatocyte-specific Bdnf knockout
mice displayed reduced liver damage, alleviated hepatic steatosis, and augmented FAO in
the liver when the knockout animals were fed with HFD, suggesting Bdnf expression might
not be beneficial to the liver metabolism [31]. It remains to be determined why opposite
functions are observed in mice after HFD feeding, and more functional characterization of
liver-specific Bdnf knockout mice is definitely needed to clarify the metabolic role of BDNF
in the liver (Figure 2).
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3. BDNF in Adipose Tissue

WAT is the chief energy reservoir of mammals that catabolizes the stored TAG via
lipolysis to fuel other peripheral tissues during energy scarcity. Since the discovery of
leptin and its activities in the central nervous system (CNS) to control the systemic en-
ergy metabolism, however, the functionality of WAT has been changed from a simple
and inert energy depot to an organ that actively shapes whole-body metabolism. It is
now widely accepted that WAT is a metabolic tissue for lipid storage, adipokines secre-
tion, and insulin sensitivity maintenance [32]. A significant amount of BDNF could be
detected in WAT [19,33], whose expression was induced by streptozotocin injection [34]
or HFD feeding [35]. Because WAT is a heterogeneous tissue that contains multiple cell
types, including mature adipocytes, hematopoietic lineage of immune cells, preadipocytes,
vascular endothelial cells, and pericytes [36], the elevated Bdnf expression in WAT might
not necessarily occur in adipocytes. Studies in various cell type-specific Bdnf knockout
mice have revealed a complex response of BDNF in WAT. Firstly, Bdnf expression in WAT
was not abolished in adipocyte-specific knockout mice, suggesting most Bdnf expression
occurs in the cells of the heterogeneous stromal vascular fraction (SVF) of WAT [35]. In
another study performed in the myeloid lineage-specific Bdnf knockout mice, only a mild
reduction of BDNF in the SVF was found, which excludes the possibility that adipose
immune cells are the primary source of BDNF production in the tissue [37]. Presumably,
the adipose progenitor cells might be the major cell types of BDNF synthesis in WAT.
Indeed, human preadipocytes have a high expression of Bdnf, which is significantly re-
duced during adipogenesis [33]. Because inhibiting Bdnf expression in pre-adipocytes
led to a mild reduction in adipocyte differentiation, it is suggested that BDNF is only
critical to the commitment of progenitor cells to form adipogenic cell lineage but not the
maturation of preadipocytes [33]. However, later studies showed that treatment of 3T3-L1
preadipocyte with 7,8-dihydroxyflavone (7,8-DHF), a bioavailable non-peptidyl BDNF
mimetic [38], reduced adipocyte differentiation via inhibiting the expression of key adi-
pogenic transcription factors such as CCAAT/enhancer binding protein α and peroxisome
proliferator-activated receptor γ [39,40], suggesting BDNF is an inhibitory factor to the
formation of new adipocytes.

Recently, it was proposed that the BDNF production in progenitor cells of WAT is
detrimental to the tissue’s metabolic health during aging. Using the inducible adipocyte
progenitor-specific Bdnf knockout (BDNFPdgfra KO) mice, Song et al. demonstrated that
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abolishing the production of BDNF in adipocyte progenitor cells prevents the aging-induced
inflammation and glucose intolerance [41]. Because in vitro assays showed that pro-BDNF
promoted adipocyte apoptosis and reduced the cellular mitochondria content, the authors
concluded that an excessive pro-BDNF production in the adipose progenitor cells of aged
animals triggered the death of adipocytes, causing the infiltration of immune cells and
deterioration of the metabolic fitness. Nevertheless, the study did not include an assessment
of the production and functional activity of mBDNF in the aged WAT, and it remains
unknown if the elevated pro-BDNF production is an isoform-specific event or an overall
increase of BDNF transcription that enhances the mBDNF synthesis as well.

Although the above studies suggest that mature adipocytes might not produce mBDNF,
they do respond to both pro-BDNF and mBDNF stimulations as a significant amount of
TrkB and p75NTR could be found in WAT [35,42]. Moreover, more mitochondrial fis-
sion and browning were detected in the differentiated 3T3-L1 adipocytes after BDNF
stimulation [43]. It is possible that the non-adipose cells in WAT produce BDNF paracrine
to modulate the metabolic activities of their adjacent adipocytes. While there are no
direct studies on BDNF’s metabolic modulation in adipocytes, the TrkB-BDNF signal-
ing in the adipocyte is important to food intake regulation as adipocyte-specific TrkB
knockout (Adipoq-TrkB CKO) mice fed a high-fat/high-sucrose (HFHS) diet displayed
hypophagia [35], indicating that the TrkB in adipocyte is responsible for generating a stim-
ulatory afferent input to the CNS for initiating feeding behavior. Because Ntrk2 expression
in WAT is diminished in diet-induced obese mice [35], the TrkB in WAT might repre-
sent an adiposity signal that suppresses further food intake when the animals consume
energy-dense food.

Macrophages and their monocyte precursors comprise the highest fraction of immune
cells in adipose tissues [44]. During obesity development, the number of pro-inflammatory
M1 adipose tissue macrophages (ATM), but not the resolving M2 ATM, is significantly
increased in WAT, contributing to a chronic state of tissue inflammation [45]. These
macrophages express bioactive BDNFs (both mature and pro-BDNF) and TrkB [46–49].
Several studies have demonstrated that mBDNF stimulation promoted the activation
of M1 to M2 macrophage transformation, suppressed inflammatory cytokine secretion,
and triggered the migration of macrophages towards the damage site [50–53]. Since the
hypertrophic adipocytes in obese animals produce tumor necrosis factor α (TNFα) and
interleukin 6 (IL-6), which are stimulators of BDNF synthesis in monocytes [54,55], it is
tempting to hypothesize that BDNF production in ATM is a protective mechanism to
promote the formation of M2 macrophages in response to the HFD feeding. In line with this
hypothesis, myeloid-specific Bdnf knockout mice, which have no Bdnf expression in their
monocytes, mature macrophages, and granulocytes, displayed lower energy expenditure
and exacerbated adiposity when they were fed with HFD [37]. Because the authors have
not examined the concentration of type 1 cytokines that cause metabolic dysfunctions
in the HFD-fed KO mice, whether the immune cells-derived BDNF contributes to the
inflammatory responses that are commonly seen in WAT of obese animals remains unan-
swered. Instead, Blaszkiewicz et al. showed that the myeloid-derived BDNF is essential for
maintaining sympathetic innervation in WAT [37], which resembles the axon guidance role
of BDNF in the CNS [56]. In contrast to the stimulatory activities of mBDNF, pro-BDNF
has an inhibitory effect on macrophage activation and migration, but the metabolic out-
comes of enhanced pro-BDNF production on ATM’s behavior have not been explored [49].
Instead, the studies on the pro-BDNF receptor, p75NTR, in adipocytes provide hints on
the metabolic functions of pro-BDNF in adipose tissue. When the p75NTR gene (Ngfr) was
ablated in adipocytes, lipolysis and membrane translocation of glucose transporter (GLUT4)
were enhanced [42,57]. Hence, the adipocyte-specific Ngfr knockout mice are resistant to
HFD-induced adiposity, hepatic steatosis, and insulin resistance. These protective effects
were not observed in the skeletal muscle Ngfr knockout mice, suggesting that WAT is the
primary site of metabolic action for p75NTR [42]. On the other hand, Ngfr overexpression
in cultured adipocytes attenuated lipolysis and lipid oxidation by suppressing the activity
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of protein kinase A. Hence, the elevated Ngfr expression exclusively in WAT of HFD-fed
mice provides an additional mechanism to account for the dysregulated lipid metabolism
in the tissue [58] (Figure 3).
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and pro-BDNF are mainly synthesized by the progenitor cells and macrophages, which act on the
mature adipocyte to modulate its metabolism. The BDNFs might also act as an autocrine to modulate
the differentiation of pre-adipocytes and the transformation of macrophages.

In short, BDNF in WAT is mostly synthesized by the non-adipose cells to modulate
the cellular activity of mature adipocytes.

4. BDNF in Skeletal Muscle

Bdnf mRNA can be detected in the soleus, tibialis anterior (TA), extensor digitorum
longus (EDL), gastrocnemius, and diagram muscles [59–61]. Within the soleus muscle,
both slow- and fast-type myofibers express Bdnf [62], but type II glycolytic myofibers
contain higher expression of Bdnf than type I oxidative myofibers [63]. In humans and rats,
increased BDNF expression and protein content in Skm are observed following a single run-
ning session or regular treadmill trainings [64,65]. Because electrical stimulation is a potent
inducer of BDNF secretion in cultured muscle, it is believed that the myofiber contrac-
tion is the primary driving factor of BDNF production during exercise, but the functional
significance of elevated mBDNF content in Skm after exercise remains obscure [66–68].
In pioneer studies to determine the mBDNF’s function in cultured muscle cells, it has
been shown that mBDNF was able to stimulate FAO via AMP-activated protein kinase
(AMPK) activation [60,66]. A similar observation of AMPK-induced FAO was found in
C2C12 after TrkB stimulation by 7,8-DHF [69]. Our recent report further demonstrated that
BDNF activated AMPK in the muscle cells via triggering an intracellular Ca2+ surge, which
acted through the calmodulin K kinase 2 (CamKK2) to induce AMPK phosphorylation [28].
AMPK is an imperative metabolic sensor that balances the energy metabolism, whose activ-
ity is provoked under an energy-deficient state. In the cells that are experiencing energy
deficit, AMPK activation inhibits the anabolic process in order to reduce ATP consumption
and promotes the catabolic process, which generates ATP [70]. Hence, it is suggested that
BDNF in muscle is mainly responsible for the elevation of FAO to meet the energy demand
of Skm during exercise by provoking the activity of AMPK [71]. However, studies in trans-
genic mice that express a kinase-dead AMPKα2 in Skm [72] or in inducible muscle-specific
Prkaa1 and Prkaa2 (AMPK α1 and α2 subunit genes) double-knockout mice demonstrated
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that the contraction-induced FAO was not impaired in their muscle [73], suggesting AMPK
activation is dispensable for FAO during exercise. Instead, O’Neill et al. reported that
AMPK in Skm is needed for the glucose uptake stimulated by contraction [74]. The role of
BDNF in muscle performance during exercise is also unascertained as contradictory results
have been reported in studies using muscle-specific Bdnf knockout (MBKO) mice. While
we found that the total daily locomotion, exercise endurance, and muscle strength were
weakened in mice without BDNF in their muscle, Delezie et al. observed that MBKO mice
had greater resistance to contraction-induced fatigue, although they also found the mice
displayed lower daily locomotion [60,63]. Hence, the relationship between BDNF-AMPK
signaling and exercise-provoked muscle responses needs further verification.

FAO in muscle is also increased during fasting [75]. While glucose uptake, glycolysis,
and pyruvate oxidation are favored in the postprandial period when glucose consump-
tion is high, FAO is suppressed in Skm, WAT, and liver to ensure that tissue exposure
to hyperglycemia is minimized. On the other hand, the inhibited FAO is unlocked by
the action of AMPK via phosphorylating acetyl Co-A carboxylase (ACC) directly, making
FA the primary energy source during fasting [76,77]. This “fuel selection (or metabolic
flexibility)” is a pivotal response to spare glucose for organs, such as the brain, that utilize
glucose as their sole energy source [78,79]. At the molecular level, metabolic flexibility
relies on the configuration of signaling pathways that manage nutrient sensing, uptake,
transport, storage, and utilization. In cultured C2C12 myotubes, BDNF secretion was
provoked by the biochemical factors of fasting, including glucose depletion, amino acid
restriction, and β-hydroxybutyrate (βHB) stimulation [28,60,80,81]. We and others have
also shown that Bdnf expression in Skm is increased during fasting, suggesting mBDNF
might be involved in regulating metabolism to move through the fed-fast cycle [60,81].
Giacco et al. further demonstrated that fasting-induced Bdnf expression is associated with
elevated phosphorylation of cAMP-responsive element-binding protein (CREB), TrkB, and
AMPK in the skeletal muscle [81]. Despite the elevated Bdnf expression in Skm, the activity
of Akt, a major downstream effector of BDNF-TrkB signaling in neurons [82], is downregu-
lated during fasting [81]. Possibly, BDNF might provoke tissue-specific cascades or other
fasting-induced responses overwhelm the stimulatory effect of BDNF in muscle during
fasting, which requires further exploration. In any case, MBKO mice could not handle the
increased FA influx to Skm during fasting because of the impaired FAO ability, leading to
the ectopic accumulation of lipids. Eventually, the animals develop lipotoxicity-induced
insulin resistance [60]. On the other hand, excessive energy supply such as HFD feeding
suppresses Bdnf expression in the Skm, leading to insufficient AMPK phosphorylation,
exaggerated accumulation of lipids, and severe diet-induced insulin resistance [28]. These
findings suggest that the BDNF-AMPK cascade in Skm is a homeostatic signaling to cope
with nutrient availability.

In addition to lipid metabolism, AMPK is crucial to mitochondrial remodeling and
homeostasis via controlling the mitochondrial biogenesis, regulating the shape of the
mitochondrial network, and clearing the defective mitochondria [83].

Mitochondrial biogenesis occurs when a cell experiences a high energy demand. The
increase of mitochondrial content requires the transcription of genes encoded in the nuclear
and mitochondrial genomes. Gain- or loss-of-function studies show that AMPK activity
positively correlates with the mitochondrial number in Skm [84,85]. Mechanistically, AMPK
promotes mitochondrial biogenesis via modulating the activity of peroxisome proliferator-
activated receptor γ co-activator 1 α (PGC-1α), which is an inducer of transcriptional
coactivation of TRF-1 (Nuclear Respiratory Factor 1) and TFAM (Transcription Factor A,
Mitochondrial) [86]. Through direct phosphorylation and expression control, AMPK pro-
motes the activity of PGC-1α to increase the number of mitochondria in Skm [87]. Several
studies have shown that BDNF or 7,8-DHF stimulation increased the mitochondrial con-
tent and cellular respiration in Skm via the AMPK-PGC-1α pathway in mice [28,60,88,89].
Consequently, BDNF administration or 7,8-DHF consumption effectively reduces the body
weight gain of mice under HFD feeding and ameliorates the locomotion after myocardial
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infarction [88,89]. Stimulation of mitochondrial biogenesis is possibly a universal func-
tion of BDNF, as this activity could also be detected during neuronal dendritogenesis [90].
Nevertheless, ERK and CREB, but not AMPK, are responsible for BDNF-promoted PGC-
1α and mitochondrial biogenesis in neurons [90]. Because BDNF is able to induce CREB
phosphorylation, it is possible that the BDNF-elevated PGC-1α in myotubes is also CREB-
dependent [60]. It is also interesting to find that AMPK-PGC-1α signaling and mitochon-
drial content were only reduced in the MBKO mice during fasting but not in the fed status,
which reinforces the physiological role of BDNF as a stress-induced myokine to cope with
the energy demand [60]. Presumably, the drop of extracellular glucose and the increase of
βHB content in muscle [81] during fasting promote the BDNF production in muscle fibers,
which activates AMPK-PGC-1α pathways to facilitate mitochondrial biogenesis and the
glycolysis-to-FAO shift.

Defective AMPK signaling in the MBKO muscle not only decreases the synthesis of
new mitochondria but also hinders the clearance of the faulty mitochondria. In energy-
deficient events, such as exercise and fasting, a large amount of reactive oxygen species
(ROS) is generated by the electron transport chain (ETC) complex I and III, which imposes
significant damage to the mitochondrial proteins [91]. Interestingly, increased glucose
and FA intake in obesity also elevates ROS production, contributing to mitochondrial dys-
function [92]. Mitochondrial fragmentation (mitofission) is facilitated in these conditions
to segregate the damaged organelle portion for selective degradation by mitophagy [93].
AMPK is an upstream regulator of the process, as ablating Prkaa1 and Prkaa2 expression
results in suppressed mitofission in a variety of cell types [94,95]. While activated AMPK
triggers mitofission through phosphorylating the mitochondrial fission factor (MFF) di-
rectly, which is the pre-requisite for dynamin-related protein 1 (DRP1) recruitment to
induce mitochondrial division [94], it also phosphorylates Unc-5 like activating kinase 1
(ULK1) to promote phagophore formation for non-selective autophagy [96]. The activated
ULK1 then induces rapid phosphorylation on the ubiquitin ligase Parkin to prepare its
mitochondrial retention [97]. Moreover, AMPK phosphorylates and promotes the accu-
mulation of PTEN-induced kinase 1 (PINK1), a critical inducer of mitophagy [98], at the
mitochondrial membrane surface. PINK1 at the mitochondrial membrane phosphorylates
the ubiquitin ligase Parkin, which is a critical post-translational modification for the mi-
tochondrial localization and ligase activity of Parkin towards mitochondrial membrane
proteins such as voltage-dependent anion channel (VDAC) [99]. Adaptors, including p62,
optineurin (OPTN), and nuclear dot protein 52 kDa (NDP52), then recognize the polyu-
biquitinated mitochondrial proteins and bridge them with the LC3 on phagophore for
autophagosome formation [100]. When AMPK is inhibited genetically or pharmacologi-
cally, the mitofission and removal of stressed mitochondrial are hampered [101,102]. As
an upstream activator of AMPK, stimulation of C2C12 myotubes with mBDNF promotes
mitophagy in an AMPK-dependent manner [28]. Interestingly, Skm-derived mBDNF is
dispensable for basal mitochondrial dynamics, but is critical to mitophagy initiation when
the cells are under metabolic stress, such as the palmitic acid challenge [28]. Hence, the
clearance of damaged mitochondria is diminished in the muscle of MBKO mice, leading to
the accumulation of dysfunctional mitochondria for efficient FAO, severe insulin resistance,
and obesity [28]. It is noteworthy that BDNF- or 7,8-DHF-regulated mitophagy could
also be detected in cultured cardiomyocytes, adipocytes, retinal ganglion, and vascular
endothelial cells, but whether AMPK in these cells is involved in the process remains to be
determined [43,103–105]

In addition to muscle [88,106], BDNF has a significant role in regulating the mito-
chondrial respiration in other tissues. For instance, mBDNF or 7,8-DHF augments the
mitochondrial respiration in neuron preparation [107], injured cortical neurons, exfoliated
deciduous stem cells-differentiated dopaminergic neurons [108], retinal ganglion cells [105],
neuroblastoma [109], cultured cardiomyocytes [110], and placenta trophoblasts [111]. The
detailed mechanism of how BDNF modulates mitochondrial respiration remains largely un-
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known, but the localization of TrkB.FL and TrkB.T1 on mitochondrial membranes provides
a possibility that BDNF might act directly on the organelle to regulate its activity [112].

BDNF is also involved in muscle development (myogenesis) and regeneration. These
processes require a series of clonal expansion, differentiation, and fusion of muscle cells.
During myogenesis, the small multipotent satellite cells (SCs) will be activated and exit
the cell cycle to form myoblasts, which align spatially into chains and fuse into the multin-
ucleated myotubes. Muscle regeneration also requires the recruitment SCs to the site of
injury, where they are differentiated and fused to form multinucleated myotubes [113]. A
high expression of Bdnf was detected in cultured myoblasts, which was downregulated
during myogenic differentiation and fusion [61,114,115]. Reduced Bdnf expression can
also be detected in the developing muscle of mice [61]. Seidl et al. hypothesized that
the presence of myoblast-derived neurotrophin is essential to support the myogenic cell
migration. When these cells have reached their ultimate position, terminal differentiation is
initiated by the downregulation of neurotrophin synthesis. The cessation of neurotrophin
production from the mature muscle cells also provides a cue to proper innervation by
eliminating the unnecessary motoneuron synapse [114]. This hypothesis is supported by
the observation that chronic mBDNF stimulation decreased the synaptic maturation of the
neuromuscular junction (NMJ) in the Xenopus neuron-muscle co-culture [116]. However,
contradictory findings have also been reported that mBDNF promotes the structural and
functional maturation of neuromuscular synapses via TrkB.FL activation [117]. Garcia
et al. further proposed that a minimal synthesis of BDNF from neonatal muscle is indis-
pensable, as it serves as a retrograde modulator to upregulate neurotransmission in all
synaptic contacts, regardless of the level of axonal maturation [118]. In alignment with
this hypothesis, disrupting the activity of TrkB.FL or overexpressing the TrkB.T1 on the
postsynaptic muscle fiber resulted in the disassembly of acetylcholine receptor cluster at
the motor endplate [119]. Because the functional ability, apposition, and integrity of the
motor endplate were not altered in the MBKO mice [63], the BDNF that is necessary for
maintaining the postsynaptic functions might possibly come from the motor neuron or
other cell types, such as Schwann cells or satellite cells. Indeed, Bdnf expression was found
in “active (Pax7+/MyoD+)” SCs during early differentiation [120], and BDNF stimulation
induced a significant increase in myoblast proliferation [120]. Because BDNF content in
Skm increases after exercise-induced injury, it is believed that Bdnf expression is important
to myogenesis initiation during muscle regeneration [120,121]. Although Bdnf ablation in
SCs did not compromise their differentiation into the myogenic lineage in mice, the expres-
sion of differentiation markers of later steps of myotube differentiation was significantly
reduced, resulting in a delay in the early regeneration of Skm after cardiotoxin-induced
injury [122] (Figure 4).

Ultimately, BDNF in muscle is not only synthesized by myofibers, but other cells,
such as satellite cells and blood vessel endothelial cells, also play a significant role. In
addition to the autocrine/paracrine activities to regulate the metabolism of myofibers and
muscle regeneration, muscle-derived BDNF serves as a hormone to communicate with
other tissues such as the pancreas for maintaining systemic glucose and lipid homeostasis
(to be discussed in the next section).
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5. Unresolved Questions

In comparison with the studies performed in CNS, our understanding of BDNF’s
activity in peripheral tissues is still rudimentary. Studies on BDNF’s function and expres-
sion regulation in various non-CNS tissues are fragmented, and inconsistent results are
frequently reported, possibly due to the distinct and opposite functions of BDNF isoforms,
especially in gene knockout studies where both pro-BDNF and mBDNF are depleted. For
instance, ablating the Bdnf gene in the Skm mitigates the denervation-induced muscle
atrophy but overexpressing Bdnf also has an ameliorating effect on the defective muscle
function in neuromuscular disease [123,124]. Moreover, the lack of precise tools signifi-
cantly impedes the result interpretation and conclusion to be made. An obvious example is
the non-specificity of antibodies that recognize BDNF and TrkB. Because most commercially
available antibodies show a certain degree of cross-reactivity with other proteins, it is diffi-
cult to accurately determine the cell types that express BDNF and TrkB in tissue or serum.
This technical issue can be solved using the knock-in animals with a highly specific tag
fused to the BDNF protein or immunoprecipitation as demonstrated by Fulgenzi et al. [68].
Nevertheless, the pathological features in the muscle- or liver-specific Bdnf knockout
mice have proved that peripheral tissue-generated BDNF (either mBDNF or pro-BDNF) is
equally important to the CNS-derived BDNF in maintaining metabolic homeostasis. Thus,
enhancing the BDNF signaling has a beneficial effect on the overall metabolism, particularly
in preventing or treating metabolic and neurological disorders [69,88,125].

To better understand the functions of BDNF outside the CNS, a foremost important
question to be solved is the source that contributes to the change of circulating BDNF in
various physiological and pathological conditions [121,126–128]. Because the concentration
of BDNF in platelet-poor plasma is low, it is proposed that megakaryocyte/platelet is the
origin of BDNF in blood. However, the increased BDNF level in plasma after exercise
suggests that circulating BDNF can be originated from other tissues [129]. By comparing the
circulating BDNF concentrations between the radial artery and jugular vein, it is concluded
that the brain contributes ~70% of BDNF in blood during resting and exercise [130,131].
Nevertheless, there are arguments against the contribution of brain to the circulating BDNF
level because in conditions such as stroke and exercise, where the concentration of BDNF
in the brain is increased, there is no change in the blood BDNF content [132]. Although
Mathew et al. demonstrated that BDNF is an autocrine or paracrine in muscle to regulate
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the local tissue function because over-expressing Bdnf transiently in skeletal muscle did
not change the BDNF concentration in the blood [66], a study using the knock-in mice with
a V5 tag in the Bdnf locus showed that muscle-derived BDNF could be secreted into the
circulation [68]. Our findings that the amount of circulation BDNF is significantly reduced
in the MBKO mice during fasting support this notion [60]. Presumably, the electroporation-
mediated Bdnf overexpression in hindlimb muscle as performed by Mathew et al. might
not produce a sufficient amount of BDNF to be detected in the circulation. A recent report
further argues that the endothelial cells but not the myofibers are the major production site
of BDNF in Skm, which may account for the elevation of blood BDNF levels in response to
physical exercise [62]. It is also possible that the BDNF in blood is a combinatory secretion
from megakaryocytes, endothelial cells, lymphocytes, monocytes, and interstitial fluid
from different peripheral tissues, and CNS. In spite of these arguments on the source
of BDNF in muscle, the release of Skm-derived BDNF into circulation is undoubtful,
which implies that BDNF might function as a hormone to communicate with other tissues.
Indeed, Fulgenzi et al. have demonstrated that the BDNF from Skm is responsible for
inducing insulin secretion from the pancreatic β-cells, which might represent an inter-organ
communication for normalizing hyperglycemia following exercise [68,133]. It would be
interesting to investigate in future if BDNF production in other peripheral tissues, such as
the liver, would also serve as an endocrine to orchestrate the metabolism or functions in
different tissues.

It is also important to determine the dominant receptor of BDNF to exert its metabolic
functions in different tissues. The dogma that BDNF only relies on TrkB.FL to initiate the
biological activities has been changed since the discovery that TrkB.T1 could transduce
intracellular signals by provoking intracellular calcium ([Ca2+]i) release [134]. This finding
also overturns the idea that TkrkB.T1 only acts as a dominant-negative inhibitor of TrkB-T1
or limits the availability of BDNF for TrkB.FL binding [135,136]. However, the function of
TrkB.T1 in non-nervous tissues is less studied. In tissues where [Ca2+]i is crucial in their
cellular function, such as cardiomyocytes and the pancreatic β-cells, deleting TrkB.T1 abol-
ished the action of BDNF, which impedes heart contraction and insulin secretion [68,137].
Because TrkB.FL is hardly detectable in these tissues, the TrkB.T1 is assumed to be the
predominant receptor for BDNF to regulate calcium homeostasis. In contrast, TrkB.T1
seems to work as a negative inhibitor of TrkB.Fl in the Skm as depleting the TrkB.T1 gene
results in a greater Ca2+ flux between the cytoplasm and sarcoplasmic reticulum to increase
contractility [138]. The differential expression of TrkB.FL and TrkB.T1 as well as their func-
tional interaction in various tissues might represent an additional regulatory mechanism
for BDNF response in peripheral tissues. Hence, it would be necessary to consider the role
of TrkB.T1 in studying the BDNF’s function in the future.

Last but not least, peripheral tissues-produced mBDNF might act on the CNS to
modulate cognitive functions. When considering together that mBDNF is a well-recognized
myokine whose expression is increased after exercise, muscle-derived mBDNF is secreted
into the circulation [68]. Although Pardridge et al. demonstrated that BDNF in blood was
rapidly degraded and no mBDNF transcytosis through the blood–brain barrier (BBB) in rat
was observed [139], later studies showed that blood-borne mBDNF can enter the CNS by a
rapid, saturable transport system of the BBB [140,141], mBDNF concentration in blood is
reduced in psychiatric and neurological disorders [142], and physical exercise is an effective
means to alleviate the mental dysfunction in a lot of psychiatric diseases [143]. Thus, it
is tempting to hypothesize that peripheral mBDNF is a beneficial “exerkine” to improve
the mental health. The muscle BDNF–brain cross-talk has been partially validated, as
adeno-associated virus-mediated overexpression of pro-BDNF in skeletal muscle reduced
the dendritic length and density in the brain, leading to the development of depressive
behavior [144]. Thus, it would be interesting to study if muscle-derived mBDNF would
have a beneficial effect on psychological disorders.
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