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Abstract
The common cerebral small vessel disease (CSVD) neuroimaging features visible on conventional structural magnetic resonance
imaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain
atrophy. The CSVD neuroimaging features have shared and distinct clinical consequences, and the automatic quantification
methods for these features are increasingly used in research and clinical settings. This review article explores the recent progress in
CSVD neuroimaging feature quantification and provides an overview of the clinical consequences of these CSVD features as well as
the possibilities of using these features as endpoints in clinical trials. The added value of CSVD neuroimaging quantification is also
discussed for researches focused on the mechanism of CSVD and the prognosis in subjects with CSVD.
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Introduction

Cerebral small vessel disease (CSVD) is a disorder of
cerebral microvessels that causes abnormalities visible on
brain imaging. Neuroimaging features of CSVD include
recent small subcortical infarct (RSSI), white matter (WM)
hyperintensity, lacune, perivascular space (PVS), cerebral
microbleed (CMB), and brain atrophy, according to the
standards for reporting vascular changes on neuroimaging
(STRIVE).[1] CSVD is a major contributor to vascular or
mixed dementia and it causes at least 20% of all strokes
worldwide.[1] CSVDs are also risk factors for a wide range
of other neurological or psychiatric disorders. In this
regard, increasing efforts have been made to automatically
quantify the magnetic resonance imaging (MRI) manifes-
tations of CSVD (samples of segmentation or detection are
shown in Figure 1) for a better efficiency and reproduc-
ibility in research or clinical settings, and/or to associate
these MRI features with possible clinical consequences for
a better understanding of CSVD. In this review, we
provided an overview of the progress in automatic
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quantification for neuroimaging features of CSVD and
the clinical consequences of different MRI features of
CSVD. In addition, we discussed the impact of neuroim-
aging quantification techniques on CSVD research and the
need of well-established automatic quantification tools of
CSVD imaging features for use in clinical practice. Of note,
this review focused on the CSVD imaging features that are
visible on conventional structural MRI as detailed in
STRIVE criteria. Although, some CSVD features from
advanced MRI modalities[2] (eg, diffusion tensor imaging)
have been validated for their robustness for clinical
studies[3,4] or even as secondary outcomes in clinical
trials[5] (eg, peak width of skeletonized mean diffusivity
that could sensitively capture CSVD progression), they
would not be discussed in the following sections.
Automatic Quantification of MRI Features of CSVD

RSSI

Clinically evident RSSI, also known as lacunar stroke,
refers to recent infarction (occurring in the previous few
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Figure 1: MRI manifestations of CSVD and the corresponding samples from segmentation or detection. The red masks indicate the segmentation results of the CSVD imaging features and
the yellow rectangle points to the location of the CSVD feature for detection; the colored masks are obtained from the brain tissue and anatomical structure segmentation to measure the brain
atrophy. The MRI sequences that help to visualize the CSVD imaging features are labeled at the bottom. CMB: Cerebral microbleed; CSVD: Cerebral small vessel disease; DWI: Diffusion-
weighted imaging; MRI: Magnetic resonance imaging; RSSI: Recent small subcortical infarct; WMH: White matter hyperintensity; PVS: Perivascular space; FLAIR: Fluid-attenuated inversion
recovery.
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weeks) in the territory of one perforating artery, which
causes about 25% of ischemic strokes.[1] RSSIs can be
identified on MRI diffusion-weighted imaging (DWI)
sequence as hyperintense lesions of up to 20 mm in
diameter on axial sections. The quantification of RSSIs
is generally based on visual check (for presence) or
manual delineation (for volumetric evaluation) in clinical
studies. The related automated quantification methods
usually take acute ischemic lesions (including large
acute infarcts) as a global category and do not limit to
RSSIs for algorithm development. In fact, the accurate
automatic segmentation of acute lesions on DWI is very
challenging, due to the very low image resolution of DWI
(as used in clinical practice), the presence of various
mimics and high noise level in DWI scans, and the large
variations in lesion size and location.[6] The early
automated segmentation methods[7] for acute lesions
on DWI generally utilized low-level features (eg, intensity
and edge information) which are not robust enough to
account for the large variations in lesion patterns. In
contrast, the increasingly used deep learning methods in
recent studies can extract high-level features of lesion
patterns and have achieved better performance than the
traditional methods. For example, with a large dataset of
242 acute ischemic stroke patients, Zhang et al[6] applied
a deep convolutional neural networks (CNN) that
extracts 3D contextual information and automatically
learns discriminative features. This method achieved a
Dice similarity coefficient (DSC, indicating spatial
agreement of automatic segmentation results with the
ground truth) of 79.13% and lesion-wise precision of
92.67%. Of note, the testing sample of this study
contained about one-third of RSSIs among the acute
infarcts, and thus thismethod should be applicable for the
segmentation of RSSIs.
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White matter hyperintensity (WMH)

WMHs are identifiable on fluid-attenuated inversion
recovery (FLAIR) and T2-weighted (T2w) MRI as
hyperintense lesions. The most widely used visual rating
method ofWMH is Fazekas’ scale, whereWMH is divided
into periventricular WMH (PWMH) and deep WMH
(DWMH) regarding the location, and each region is given
a grade depending on the size and confluence of lesions.[8]

The automatic quantification methods of WMH can be
classified into unsupervised and supervised methods. The
unsupervised methods generally utilize the intensity
features for clustering and do not need additional training,
while the supervised methods may extract higher level
information and rely on sufficient data of manual
delineations as the ground truth for training. In general,
the DSC of unsupervised methods was up to 0.899,[9] and
for the supervised methods the DSC was up to 0.80.[10] In
fact, the performances of different WMH segmentation
methods are generally not fully comparable, due to the
difference of subject characteristics and lesion load across
studies. For example, the methods that achieved DSC of
>0.80 were generally evaluated in stroke patients[11] or
patients with vascular dementia,[9] where the patients tend
to have larger lesion burden of WMH. Also, researchers
found that the DSC of WMH segmentation increases with
the lesion load, and a recent study reported the average
DSC values of 0.51, 0.70, and 0.84 for low, medium, and
high lesion load of WMH with the same segmentation
method.[12] In this regard, independent evaluations for
different level of lesion load should be encouraged for a
better generalizability of the segmentation performance.
Additionally, worldwide challenges provide fair oppor-
tunities for comparison of state-of-the-art WMH segmen-
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tation methods. In the WMH segmentation challenge at
MICCAI 2017, a large dataset of WMH ground truth was
provided, and all the top ten participants applied deep
learning methods[13] that have shown great potential in
automated quantification of medical imaging. The winner
of this challenge[10] used CNNs with ensemble models and
achieved a DSC of 0.80. This method also showed good
inter-scanner robustness and high efficiency (only 8 s
needed per scan with a GPU of 12 GB RAM memory
during testing), which are both important for practical
applications.
Lacunes

Lacunes display as round or ovoid subcortical fluid-filled
cavities in MRI with diameters of approximately 3 to
15mm. Lacunes present as hypointensities in T1-weighted
(T1w) and FLAIR images and hyperintensities in T2w
images (approximate to the intensity of cerebrospinal fluid
[CSF]).[1] Only a very few studies proposed automatic
methods for lacune detection, and they generally used
intensity-based algorithms. For example, Uchiyama
et al[14] applied intensity-based region growing for
candidate screening and used rule-based schemes and a
support vector machine for the false-positive elimination,
resulting in a sensitivity (SE) of 96.8% with 0.76 false
positive (FP) per slice. In addition, Wang et al[15] applied a
multi-stage segmentation scheme for WMH, cortical
infarct, and lacunes, and achieved a SE of 83.3% with
0.06 FP per subject and a specificity of 96.6% for lacune
detection.With the largest benchmark dataset available for
lacune detection, Ghafoorian et al[16] proposed a two-stage
method using deep CNN with information from both
FLAIR and T1w images, and achieved a SE of 97.4% with
0.13 FP per slice.
CMBs

CMBs can be identified as small (up to 10 mm) areas of
signal void on MRI sequences such as T2∗-weighted
gradient-recalled echo (GRE) or susceptibility-weighted
images (SWI), and the SWI was reported to have better
reliability and SE for CMB detection than T2∗GRE.[17] In
clinical routine, the annotation of CMBs is usually based
on a visual inspection and manual localization.[18]

However, there exist various types of CMB mimics (eg,
flow voids, calcifications and cavernous malformations,
iron deposition in the basal ganglia, and signal void due to
poor flow compensation or cusp artifacts caused by
failures in coil combination) which would resemble the
appearance of CMBs in SWI scans. The manual inspection
could suffer from limited reproducibility among different
raters and could be time-consuming, laborious, and prone
to errors, particularly for patients with large numbers of
CMBs.

Alternatively, automatic detection methods can help
alleviate the workload of neuroradiologists and improve
the reliability and efficiency to identify CMB. In the early
stage, automatic CMBs detection methods generally
utilized morphological features based on shape, size,
and intensity information, with the help of spherical
descriptors, such as radial symmetry transform. Among
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these methods, Van den Heuvel et al[19] achieved the best
performance with SE of 89% and FP per true CMB (FP/
CMB) of 0.29. With the development of deep learning
techniques, supervised CMB detection methods with CNN
generally achieved better performance, as more powerful
high-level features can be extracted by CNN for CMB
detection. In a study with the largest benchmark dataset
available for CMB detection on SWI, Dou et al[20] applied
3D CNN and achieved a SE of 93.16%, precision of
44.31%, and FP/CMB of 1.17. When using 7T SWI
instead of 1.5T/3T SWI[21] or using phase image in
addition to SWI,[22] slightly better SE (94.7%, 95.8%) and
FP/CMB (0.37, 0.39) and much higher precision (71.9%,
70.9%) can be achieved. However, the poor accessibility of
7T MRI device and the availability of phase image should
also be considered for application in clinical practice. Of
note, the CMB detection per subject can be accomplished
within 1min with the CNN methods, thanks to the
increasing computational power of GPU,[20] where the
datasets for evaluation contain patients with large diversity
in pathology and lesion burden (eg, stroke patients and
normal elderly subjects).
PVS

PVS, also known as Virchow-Robin spaces, are fluid-filled
spaces that follow the typical course of cerebral penetrat-
ing vessels and have a similar signal intensity with CSF on
all MRI sequences (eg, hyperintense on T2w images). PVS
are difficult for manual delineation due to their small size
(with a diameter of <3mm generally) and different
appearance (linear or round) depending on the viewing
plane.[1] Although PVS are commonly microscopic and not
visible on conventionalMRI, enlarged PVS (EPVS) become
increasingly apparent as the patient age increases and are
associated with other imaging manifestations of CSVD,
such as WMHs and lacunes.[1,23,24] The most widely used
visual rating scale of EPVS is Wardlaw scale[25] as rated on
T2w image, which provides independent ratings for EPVS
in midbrain, basal ganglia, and centrum semiovale.

Compared with WMH and CMB, the development of
automatic quantification methods for EPVS falls much
behind, probably due to the lack of accurate manual
delineation masks of EPVS available for training. In this
regard, some researchers turned to automatic qualitative
rating of EPVS with visual rating of EPVS as the ground
truth for algorithm training and evaluation. For example,
Dubost et al[26] developed an automated rating method of
EPVS based on 3D regression fully CNN on 1.5T T2w
image and achieved an intraclass correlation coefficient
(ICC) of 0.75 to 0.88, which was even higher than the
inter-observer reliability from human raters. The only one
study that used manually delineated PVS masks as the
ground truth for learning was based on 7T MRI, where
Park et al[27] applied Haar-like features (for object
recognition) with random forest as the classifier and
achieved a SE of 69% and a DSC of 0.73 for cluster-based
segmentation accuracy. As 7T MRI has poor accessibility
and 1.5T/3T MRI has relatively poor resolution for
ground truth construction of EPVS, researchers proposed
intensity-based semi-automatic EPVS segmentation meth-
od or tried to fit the segmentation algorithmwith the visual
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rating result as the reference for training. Wuerfel et al[28]

applied a rater independent threshold-based semi-auto-
matic post-processing routine and achieved an ICC of
0.996 in EPVS counts for intra-rater reliability. Ballerini
et al[29] trained an ordered logit model to simulate the
relationship between the number of PVS and the visual
rating categories and achieved a Spearman correlation of
0.74 (P< 0.001) between the automated PVS count and
the visual rating result.
Brain atrophy

Brain atrophy can be assessed in particular lobes, selective
tissues, or specific brain regions. The available visual
rating scales of atrophy generally focuses on lobar regions,
such as Scheltens’ scale of medial temporal atrophy, the
frontal subscale of Pasquier’s Global Cortical Atrophy
scale, and Koedam’s scale of Posterior Atrophy. A few
studies attempted to implement these visual ratings
automatically for a better reproducibility and efficien-
cy.[30] More detailed assessment of regional brain atrophy
generally relies on segmentation of brain tissues and
specific structures, wheremanual delineation is more time-
consuming than visual rating of lobar regions. In this
regard, automatic segmentation methods have been
developed and increasingly used in research and even
clinical settings.

Automatic brain segmentation can be classified as tissue
segmentation (ie, WM, gray matter [GM], and CSF) and
anatomical structure segmentation (eg, supratentorial struc-
tures such as hippocampus, and infratentorial structures
such as cerebellum or brainstem). The tissue segmentation
methods can be subdivided into region-based, thresholding-
based, clustering-based, and feature extraction and classifi-
cation-based methods.[31] Statistical parametric mapping
(SPM,a clustering-based softwarepackage) is oneof themost
commonly employed methods for automatic brain tissue
segmentation, and itwas reported toachieveanaveragevoxel
classification accuracy of 0.84 for GM and 0.87 forWM.[31]

Classification-based methods, especially those with deep
learning, generally performed the best for brain tissue
segmentation, according to the worldwide challenges, such
as MRBrainS13 andMRBrainS18. For example, the winner
of MRBrainS13 used 3D deep learning (voxnet1) and
achieved averageDSCvaluesof 0.86, 0.89, and0.84 forGM,
WM, and CSF, respectively.[32]

Regarding the anatomical structure segmentation, the
methods include atlas-based (based on the accurate
alignment of atlas priors), learning-based (based on an
annotated training set), and algorithmic methods (relies on
intensity information to a greater extent, eg, region-based
and deformable methods). Different methods may have
certain pros and cons for the segmentation of specific
structures. For example, atlas-based approaches achieve
good results when segmenting the hippocampus (DSC:
0.75–0.90), thalamus (DSC: 0.88–0.92), and lateral
ventricle (DSC: 0.83–0.93), while deformable methods
perform better for caudate (DSC: 0.84–0.91) and putamen
(DSC: 0.86–0.89) in literature.[33] The increasingly used of
deep learning-based segmentation methods seem to
perform even better with an average DSC of 0.85 to
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0.90 across all deep GM structures,[34] but comprehensive
fair comparisons between these different methods are still
lacking. In addition, the computational cost should never
be ignored, as a combination of accuracy and efficiency for
brain segmentation tools should be favorable for clinical
use (eg, AccuBrain

®

outperforms FreeSurfer in both
efficiency and accuracy in a study for hippocampus
segmentation[35]). Also, the volume of some lesion features
of CSVD (eg, lacune) in specific structures should not be
excluded for brain structure segmentation,[36] and multi-
atlas-based methods may perform better than algorithmic
methods in this case.[37]

To sum up, as visual rating or manual delineation of the
CSVD MRI features are time-consuming and subject to
poor reproducibility, automatic quantification methods
have been developed and increasingly used in research or
clinical settings. The metrics of quantification performance
for these CSVD features are different, which depend on the
purpose of quantification (eg, detection or segmentation)
and aspect of measurement (eg, spatial agreement or
volumetric agreement). The deep learning methods have
been increasingly used for the quantification of CSVD
imaging features and generally present a better perfor-
mance compared with the traditional methods. Nonethe-
less, worldwide challenges for fair comparisons of the
quantification methods and lesion-burden-specific report
of the performance are encouraged for generalizable
applications in clinical studies. The general objective of
quantification and the representative performance of the
automatic methods for these CSVD imaging features were
listed Table 1.
Clinical Relevance of MRI Features of CSVD

Clinical consequences

RSSI

RSSIs are symptomatic in most cases and they may not
always evolve into lacunes but remain as mainly non-
cavitated WMHs or even disappear after several weeks
or months.[38] In 20% to 30% of patients with RSSIs,
deterioration of neurological deficits occurs in hours or
even days following the stroke onset.[39] The neurological
dysfunctions after RSSIs may involve motor function or
cognitive impairment, and the degree and domain of
dysfunction largely depend on lesion location.[40] In
patients with symptomatic RSSIs, the initial mortality
and early stroke recurrence is low, and the recovery of
deficits is generally good in the first few weeks after
onset.[41]
WMH

Although the definitions of the boundary between PWMH
and DWMH are generally not consistent, previous studies
have consistently reported that PWMH and DWMH have
different functional, microstructural, and clinical corre-
lates.[42] WMHs are reported to be associated with
impairment in global cognition and multiple cognitive
domains (eg, executive functions and speed of mental
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Table 1: Purpose of quantification and representative results of automatic quantification of CSVD imaging features.

Purpose of quantification Computational costx

CSVD feature Segmentation Detection
Representative performance
of automatic quantification‡ Time Hardware

RSSI
∗ p

DSC= 0.79[6] 0.095 s per scan GPU of 12 GB RAM
WMH

p
DSC= 0.80[10] 8 s per scan GPU of 12 GB RAM

Lacune
p

SE= 97.4%, FP= 0.13 per slice[16] NA NA
CMB

p
SE= 95.8%, FP= 0.39 per CMB[21] 2 min per scan GPU of 12 GB RAM

EPVS
p p

DSC= 0.73[27]; r= 0.74[29] NA NA
Brain atrophy†

p
DSC= 0.85–0.90 NA NA

∗
The presented method did not limit to the segmentation of RSSIs but also applied to other acute ischemic lesions. †Quantification of brain atrophy refers
to brain segmentation of different structures and scales, and thus only a general range of DSC is provided. ‡The representative performance not
necessarily corresponds to the best performance, as a fair comparison of the studies is not possible due to the difference in patient characteristics or lesion
burden. xThe computational cost corresponds to the study that is listed for representative performance of automatic quantification, and the time
displayed here only refers to the time needed for testing (training not considered). CSVD: Cerebral small vessel disease; RSSI: Recent small subcortical
infarct; WMH: White matter hyperintensity; CMB: Cerebral microbleed; EPVS: Enlarged perivascular space; DSC: Dice similarity coefficient; SE:
Sensitivity; FP: False positive; r: Spearman correlation coefficient; NA: Not available.
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processing) in the population-based or memory clinic
cohorts,[43] and there are some strategic locations (eg,
anterior thalamic radiation and forceps minor) or specific
shape descriptors (eg, shape irregularity) that trigger
stronger associations than total WMH volume with the
cognitive deficits.[44,45] WMHs also contribute to brain
atrophy patterns in regions related to Alzheimer disease
dementia, therefore, the strategies to prevent the develop-
ment of WMHs may help to decrease the incidence of
dementia or delay the onset of dementia.[46] In stroke
patients, the lesion burden and locations of pre-existing
WMHs are also independently related to post-stroke
cognitive decline on top of infarcts.[47,48] Also, the WMH
volume is associated with stroke recurrence after adjusting
for clinical risk factors, and the association is stronger for
hemorrhagic stroke than ischemic stroke.[49] In addition,
WMHs may independently contribute to some other
symptoms, such as post-stroke depression (PSD),[50]

incident parkinsonism,[51] and sleep disorder.[52]
CMBs

In the community-based elderly cohort, the presence of
lobar CMBs are associated with changes in cognitive
function (especially in visuospatial executive functions),[53]

and participants with any CMB had 1.74 times higher risk
of dementia, whereas those with deep andmixed CMB had
a threefold increased risk of dementia with a mean follow-
up of 6.7 years.[54] Mixed (deep and lobar) or a higher load
of CMBs (≥3), with some specificity for location, was
associated with accelerated cognitive decline with a mean
follow-up of 5.2 years in a population-based elderly
cohort.[55] Also, the number of deep CMBs was associated
with attention/executive dysfunction in non-dementia
patients with CSVD.[56] Regarding the patients with
stroke or transient ischemic attack (TIA), a high CMB
number is weakly associated with executive dysfunction
and the CMBs (especially in the deep regions) are
associated with the dysfunction in attention domain.[57,58]

In addition, first-episode mild ischemic stroke patients with
three or more mixed CMBs had four times higher risk of
developing post-stroke dementia in 2 years compared to
155
patients with no CMBs.[59] In a study with pooled analysis
of individual data from 20,322 patients with recent
ischemic stroke or TIA (cumulative follow-up of 35,225
patient-years, median 1.34 years), CMBs are associated
with a greater relative hazard for recurrent intracranial
hemorrhage (ICH) than for ischemic stroke; the relative
hazard ratio was positively associated with CMB burden
for ICH, while this effect was less marked for ischemic
stroke.[60] Of note, all these associations were independent
from CMB anatomical distribution, antithrombotic treat-
ment, ethnicity, age, and the presence of pre-existing
WMHs.
Lacunes

The cause of most lacunes is presumed to be small
subcortical infarcts, either symptomatic or silent.[1]

Regarding the symptomatic lacunes (more often called
lacunar infarcts), they generally refer to the chronic
phase of RSSI and their functional consequences were
generally not separated from those of silent lacunes in
literatures. In fact, silent lacunes might differ from
symptomatic infarcts onlywith respect to the lack of acute
stroke-like signs, and they do present as subtle deficits in
physical and cognitive function that commonly go
unnoticed. For example, the presence of silent infarcts
more than doubles the risk of subsequent stroke and
dementia[61] and is associated with poor executive
function (the association disappeared after additional
adjustment for WMHs).[62] The total number of lacunar
infarcts independently predicted incident vascular cogni-
tive impairment among CSVD patients in 3 to 5 years.[63]

Lacunar infarcts in the anteromedial thalamus are
associated with impaired processing speed in CSVD
patients.[64] Also, the locations of lacunar infarcts do
matter for the associations with PSD, and the cumulative
vascular burden resulting from chronic accumulation of
lacunar infarcts within the thalamus, basal ganglia,
and deep WM may be more important than single
infarcts in the prediction of PSD.[65] In addition, a
high number of lacunes is associated with incident
parkinsonism.[51]
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PVS

In a dementia-free population-based cohort, EPVS were
associated with decline in information processing speed
and more than quadrupled the risk of vascular dementia
during a 5-year follow-up.[23] In a cross-sectional study
also with dementia-free elderlies as the participants, the
association of EPVS counts with cognitive dysfunction
were not found;[66] however, another study that applied
automatic EPVS segmentation[29] found that the volume of
centrum semi-ovale EPVS (CSO-EPVS) was associated
with memory adjusting for age, sex, vascular risk factors,
childhood intelligence, and WMH.[67] The inconsistency
might result from the better SE of computational metrics
than visual rating in EPVS quantification.[24] Researchers
also reported the association preference of CSO-EPVSwith
Alzheimer’s disease and basal ganglia EPVS (BG-EPVS)
with subcortical vascular cognitive impairment, indicating
the potential of EPVS location to facilitate the differentia-
tion of these two types of cognitive impairment.[68]

Regarding the patients with stroke or TIA, BG-EPVS are
independently associated with cognitive impairment at
1 year after stroke or TIA, even after adjusting for clinical
confounders and other CSVD imaging features, such as
WMH, lacune, and brain atrophy.[69] In addition, EPVS
(either in centrum semi-ovale or basal ganglia) are
associated with lower health-related quality of life in
patients with mild to moderate acute ischemic stroke.[70]

The association of CSO-EPVS with PSD was also found at
3 months after mild to moderate acute ischemic stroke,
after adjusting for demographic, clinical, and imaging
characteristics (including the number or presence of acute
infarcts).[71] Moreover, a high number of BG-PVS was
associated with increased risk of recurrent stroke (ische-
mic) in patients with ischemic stroke or TIA and incident
stroke (ischemic or ICH) in community-dwelling individu-
als, while these associations were not reproduced for CS-
PVS[72,73] Furthermore, EPVS may also contribute to
cognitive decline in Parkinson’s disease (PD) patients (BG-
EPVS in particular)[74] and sleep disorders.[75]
Brain atrophy

Unlike the other CSVD image manifestations which are
discrete focal lesions, the generalized brain atrophy is
probably secondary to a diffuse process. The pathological
changes of brain atrophy are heterogeneous and not
necessarily indicative of neuronal loss.[1] Brain atrophy
occurs not only in many disorders but also in normal
ageing process, although the degree is different between
healthy ageing and incident neurological disorders. Brain
atrophy is associated with cognitive impairment and
dementia, and regional atrophy (eg, hippocampal atrophy)
has been used as a significant biomarker of neuro-
degeneration in early detection of Alzheimer disease.[76]

In fact, global or regional brain atrophy is present in many
neurological disorders (eg, multiple sclerosis,[77] PD,[78]

and sleep disorder[79]) and psychiatric disorders (eg, post-
traumatic stress disorder[80]). Brain atrophy is also
associated with the presence of other types of CSVD
imaging features (eg, WMH,[46] CMB,[81] lacune,[82] and
EPVS[83]) and may have mediation effect on their
functional consequences.
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Possibility as endpoint in clinical trials

The most widely used CSVD MRI feature as one of the
endpoints in clinical trials related to CSVD progression is
WMH, followed by brain atrophy, and CMB or lacune.
EPVS has not been even suggested for use in clinical trials,
which may result from the lack of consistent findings in
clinical consequence or the poor progress of development
for robust quantification tools.[2] Among the CSVD
imaging features discussed in this review, RSSI is the only
lesion type of acute phase. The clinical trials that involve
RSSI generally target the patients for prevention of possible
recurrent stroke (ICH or ischemic stroke) and the outcome
rarely constrains to recurrent RSSI.[84]
WMHs

The WMH volume has been increasingly used to evaluate
subclinical cerebrovascular health,[85] and the progression
of WMHs has been applied as a surrogate biomarker or
outcome measure for the therapeutic or interventional
trials in CSVD.[86,87]
Brain atrophy

The association between brain atrophy and worsening of
cognitive function (eg, executive function[88]) has been
established, and brain volume (eg, medial temporal lobe
volume) has been used as a secondary outcome in a
nutrition-related clinical trial among CSVD subjects.[89]
CMBs

Longitudinal changes of CMBs (ie, progression of CMBs)
showed significant negative associations with executive
function and global cognitive function in a memory clinic
cohort, where the relations with cognitive performance
were mainly driven by lobar CMBs, especially those
located in temporal lobe.[90] The total number of new
CMBs can be used to facilitate the evaluation of
therapeutic efficacy for cerebral amyloid angiopathy
(CAA) in a clinical trial.[87,91]
Lacunes

Lacunes may also fulfil the prerequisites of a surrogate
marker (secondary surrogate endpoint in clinical trials),
but the incidence of lacunes over short observational
periods is small in the general population.[91] Despite of the
fact, a clinical trial that aims to investigate the effect of low-
dose statins to prevent the progression of CSVD in older
hypertensive patients has applied new-incident lacunes as
one of the endpoints.[87]

In summary, the CSVD imaging features have various
clinical consequences and different extent of application in
clinical trials as possible endpoints. Although automatic
quantification methods of the CSVD imaging features have
been developed, researchers still preferred visual rating or
manual delineation for some CSVD imaging features (eg,
lacune, CMB, and EPVS) in clinical studies. The
representative clinical applications of CSVD MRI features
were summarized in Table 2.
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Table 2: Clinically relevant metrics, consequences, and the frequency of using automatic quantification in clinical studies for different CSVD
imaging features.

Representative clinical consequences

CSVD
features

Clinically relevant
metrics In stroke-free subjects In stroke patients

∗

Clinical application
of automatic
quantification†

Used in
clinical
trials

RSSI Volume and location NA Motor dysfunction and
cognitive impairment

Rarely NA

WMH Volume, location,
and shape

Cognitive impairment
(dementia), PD, and
sleep disorder

Cognitive decline, stroke
recurrence, and
depression

Frequently Yes

CMB Number and location Cognitive impairment or
decline (dementia)

Cognitive impairment
(dementia), and stroke
recurrence

Rarely Yes

Lacune Number and location Stroke, cognitive
impairment
(dementia), and PD

Depression Rarely Yes

EPVS Volume, number,
width,
and location

Cognitive impairment or
decline (dementia),
stroke, PD, and sleep
disorder

Cognitive impairment,
depression, quality of
life, and stroke
recurrence

Sometimes NA

Brain atrophy Volume and location Cognitive impairment or
decline (dementia)

NA Frequently Yes

∗
The displayed clinical consequences of a specific CSVD imaging feature (other than RSSI) in stroke patients indicate independent contribution to the
outcomes on top of stroke lesions. †The frequency of using automatic quantification for eachCSVD imaging feature in clinical studies is displayed. CSVD:
Cerebral small vessel disease; RSSI: Recent small subcortical infarct; WMH: White matter hyperintensity; CMB: Cerebral microbleed; EPVS: Enlarged
perivascular space; PD: Parkinson’s disease; NA: Not available.
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Better understanding of CSVD mechanism

With the development of neuroimaging techniques and the
related automatic lesion quantification approaches, better
understanding has been achieved about the relationships
between different CSVD imaging manifestations and the
underlying mechanisms of CSVD. For example, incident
lacunes preferentially localizes to the edge of WMHs,
suggesting that the mechanisms of lacunes and WMHs
are intimately connected and that the edge of WMHs may
serve as a predilection site for lacunes.[92] Thisfinding is also
in line with another study where both PWMHandDWMH
were predictors for edge-localized infarction (RSSI).[93] In
addition, one study with 7T MRI found a topographical
associationbetween a high degree of juxtacortical EPVS and
cortical CMBs, supporting a common underlying patho-
physiology (most likely CAA).[94] Furthermore, with the
novel shape descriptors (elongation and planarity) of
lacunes as automatically segmented with a seed-growing
algorithm, researchers found that themain axis andplane of
lacunes align with perforating arteries, which adds to
current concepts on the mechanisms of lacunes.[95]
Better prognosis in subjects with CSVD

With the development of automatic quantificationmethods,
more complex metrics of CSVD imaging features become
available, especially forEPVS that havemoremorphological
attributes (eg, length, width, sphericity, and orientation). A
157
recent study that applied multidimensional computational
metrics of EPVS found that these metrics increased the SE
to detect associations of EPVS with risk exposures and
neurological disease compared with simple count or visual
score of EPVS.[24] In addition, the combination of different
MRI manifestations of CSVD have been increasingly used
for the prediction of cognitive and functional decline, as the
different CSVD imaging features may have additive
contributions to prognosis. The most widely used manner
of “combination” is a total CSVD score, which generally
depicts the presence or severity of each CSVD imaging
feature based on visual rating and summarizes them as a
composite score. However, the location of the CSVD
neuroimaging features, which is also a key determinant of
cognitive impairment,[96] cannot be captured in such a
composite CSVD score. In a recent study that applied region
of interest-based volumetric measurements of CSVD
imaging features to predict post-stroke cognitive im-
pairment (PSCI), an accuracy of >80% was achieved for
the prediction of global cognition, where the burden of
WMHs, lacunes, EPVS and brain atrophy in strategic
regions jointly presented independent contribution to PSCI
on top of acute ischemic lesions.[97]

These findings indicate that automatic quantification of
volumetric and locational informationof theCSVD imaging
features may facilitate the prognosis in subjects with CSVD.
To this end, the harmonization of quantification methods
for CSVD imaging features should be essential to realize a
generalizable translation for the prognosis in clinical
practice.[2] In fact, there have been some automatic
quantification tools of CSVD with validations in accuracy,
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reproducibility, and efficiency, such as AccuBrain
®

that
currently supports automatic quantification of brain
atrophy[35,37] and WMH[98] and is promising for a more
comprehensive quantification of CSVD features.
Conclusions

The robustness and efficiency of automatic quantification
for CSVD imaging features have been greatly improved in
the recent decade, especially with the aid of deep learning
techniques. The CSVD imaging features are risk factors of
various neurological and psychiatric disorders, and the
automatic quantification of these features may better
facilitate the prognosis in patients with CSVD than visual
rating, as the automatic quantification provides more
detailed volumetric and locational information and is more
reproducible and efficient. In addition, the advanced
neuroimaging quantification techniques could extract
additional useful metrics of the CSVD imaging features
(eg, shape descriptors of WMH and lacune) to facilitate
researches especially in CSVD mechanism. Nonetheless,
there is still a large gap between the established automatic
quantification methods and the applications in clinical
studies or practice, which primarily results from the lack of
harmonization or the poor accessibility of these quantifi-
cation techniques for general clinical researchers. To this
end, well-validated and easy-to-use automatic tools that
support robust quantifications of multiple CSVD imaging
features should be favorable.
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