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Abstract: Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic
information is transferred from parents to the new generation; this stage provides an opportunity
for sessile plants to settle in new territories. However, seed viability decreases over long-term
storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is
necessary to understand the causes of decreases in seed viability, not only where the aging process is
initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of
reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative
damage than other organelles. The mitochondrial antioxidant system is also less active than the
antioxidant systems of other organelles, thus such mitochondrial ‘defects’ can strongly affect various
cell processes, including seed aging, which we discuss in this paper.

Keywords: seeds storage; seed viability; reactive oxygen species; antioxidant system; regulation
redox state

1. Aging Seeds

Seed aging, which decreases seed viability during storage, is a major problem for successful plant
growth and productivity and leads to seed deterioration. In agricultural production, aged seeds cause
commercial and genetic losses. The seed aging process is dependent primarily upon the moisture
content of seeds, the oxygen level and the temperature at which seeds are stored [1–4] but is also
associated with various metabolic and biophysical seed conditions [3,5]. Although the mechanisms
of seed aging are still under intensive study, reactive oxygen species (ROS) are considered the main
factor contributing to seed aging [6]. According to the free radical theory of aging, the generation and
quantity of ROS are crucial for the progression of seed aging and other aging-associated disorders [7].
During the storage of seeds, the accumulation of ROS leads to the damage of lipids, DNA and proteins
and consequently contributes to decreased germination and the loss of seed vigor [6,8–13]. It is claimed
that for the effective conservation of genetic resources, it is necessary to identify the factors influencing
aging of seeds that differ in sensitivity to drying and long-term storage. Based on their properties, seeds
are divided into three categories: Orthodox (tolerating drying to a moisture content <7% and storage
at −10 ◦C), recalcitrant (sensitive to drying to a moisture content <27% and conventional storage
conditions), and intermediate (loosing viability relatively quickly, compared to orthodox seeds) [14,15].
These seed categories can also display various aging process timings or mechanisms.
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2. Mitochondrial Activity in Aging Seeds

Mitochondria are the most important source of energy for cell growth and metabolism. In addition,
mitochondria are the major sites for the production of reactive oxygen species (mtROS), and thus,
are involved in the maintenance of ROS homeostasis [16–19]. ROS such as superoxide, hydrogen
peroxide, and hydroxyl radicals, which oxidize cellular constituents, compromise organellar membrane
integrity [20] and the main cell components [21,22]. The superoxide anion (O2

−) is the precursor of
most ROS and a mediator in oxidative chain reactions. Furthermore, O2

− can dismute to produce
hydrogen peroxide (H2O2) and may react with other radicals, including NO. The product of this
reaction, peroxynitrite (ONOO−), is also a very powerful oxidant [23]. Hydrogen peroxide can freely
migrate across cell membranes and can generate highly aggressive HO· [6,24]. mtROS are generated,
in particular, in the context of respiratory electron transport activity. The main mtROS production
sites are complex I and complex II of the mitochondrial electron transport chain (ETC). ETC-mediated
ROS generation is primarily due to the presence of ubisemiquinone radicals, which can transfer a
single electron to oxygen, giving rise to the production of superoxides [25]. In plants, alternative
oxidase (AOX) plays a key role during stress by lowering ROS production from the ETC by preventing
excessive reduction of the mitochondrial ubiquinone pool [20].

However, the relationship between the AOX pathway and ROS accumulation in the mitochondria
of aged seeds has not yet been thoroughly studied [26]. In mitochondria, there are proteins that cause
ROS generation: Glycerolphosphate dehydrogenase [27], multi-subunit pyruvate dehydrogenase
complex and a structurally similar membrane-bound enzyme complex of alfa-ketoglutarate
dehydrogenase (alfa-KGDH) [28]. Researchers have reported that succinate dehydrogenase (SDH) also
contributes to mtROS production [26,29]. Aconitase, an enzyme in the mitochondrial matrix, is able
to transform hydrogen peroxide into hydroxyl radicals during a Fenton reaction in the presence of
iron and sulfur [30]. ROS are generated not only in the mitochondria but also by NADPH oxidase in
the conversion of NADPH to NADP+ [23]. ROS are produced during germination in multiple species,
where they have been proposed as a signal for release from seed dormancy [20].

Additionally, mitochondria are a source of reactive nitrogen species derived from nitric oxide
(NO·). NO· is generated enzymatically by a family of nitric oxide synthases (NOS). These enzymes
synthesize NO· using L-arginine as a substrate and NADPH as an electron source in the presence
of Ca2+ ions and reduced thiols [21]. Mitochondrial electron transport can also produce NO [31,32].
NO has a short half-life but can react with thiols or/and the catalytic metal center of proteins, which
results in the covalent modification of cysteine residues, termed S-nitrosylation. This modification also
regulates many cellular processes in seeds/germination [31–34].

3. Oxidative Damage in Aging Seed Mitochondria

ROS-related mitochondrial dysfunction plays a vital role in seed deterioration, but the detailed
mechanism of this role remains largely unknown. Most studies are based on the seeds of herbaceous
plants (Table 1), and seeds of one tree species. The past ten years brings much more knowledge in this
topic than could have been expected.

Table 1. The role of reactive oxygen species in dysfunction mitochondrion seeds.

Organism (Species) Processes References

Pea (Pisum sativum L.) Germination after Aspergillus ruber infection, aging [35]
Rye (Secale cereal L.) Embryogenesis, germination [36]

Soybean [Glycine max (L.) Merr] Aging [37]
Pea (Pisum sativum) Germination [25]

Soybean [Glycine max (L.) Merr] Germination, imbibition [38]
Pea (Pisum sativum cv. Jizhuang) Germination [39]

Soybean [G.max (L.) Merr] Aging [40]
Elm (Ulmus pumila L.) Aging [41]
Oat (Avena sativa L.) Aging [42]
Rice (Oryza sativa L.) Aging [7]
Rice (Oryza sativa L.) Aging [43]

Elm (Ulmus pumila L.) Aging [44]
Oat (Avena sativa L.) Aging [26]
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The accumulation of ROS causes oxidative damage and dysfunction and membrane system
disorders, as well as the oxidative damage of mitochondrial proteins, DNA and lipids [45]. Oxidative
damage of mitochondrial proteins include damage to subunits of the pyruvate decarboxylase complex,
subunits of ATP synthase, and enzymes of the tricarboxylic acid (TCA) cycle [46]. ROS cause direct
oxidation of amino acids, oxidation of Cys residues, which form disulphide bonds, oxidation of Met
residues, which forms Met sulphoxide, and oxidation of arginine, lysine, proline, histidine, serine and
threonine residues, which creates carbonyl groups in side chains [23,47]. The activity of mitochondrial
proteins is regulated at the post-translational level, among others, e.g., S-nitrosylation [48,49]. During
oxidative stress, the activity of mitochondrial proteins is lowered by the binding of lipid peroxidation
products [50], carbonyl group formation [51] and the oxidation of tryptophan residues [52]. In elm
seeds (Ulmus L.) 48 mitochondrial proteins changed during aging and found that these changes were
associated with the tricarboxylic acid cycle (TCA) and mitochondrial ETC [44]. During oat seed aging,
Moa et al. [26] also showed that proteins in the TCA cycle were down-regulated, and several enzymes
related to mitochondrial ETC were up-regulated. Other authors [53] showed that the most recognized
source of mtDNA mutagenesis are ROS, that are produced by the ETC. In addition, H2O2 induced
strand breaks and abasic sites in mtDNA. The damage of main cell components by ROS leads to
mitochondrial dysfunction through Bax induction and cytochrome c release [23].

Lipid peroxidation in the mitochondrial membranes refers to the free radical peroxidation
of the polyunsaturated fatty acids of membrane lipids [54]. Malondialdehyde (MDA) and
4-hydroxy-2-nonenal (HNE) are products of lipid peroxidation and can interact with cells to reduce or
even eliminate their functions. MDA can react with DNA bases, resulting in gene mutations, and HNE
reacts mostly with proteins, leading to functional alterations [23]. Increases in mitochondrial MDA and
H2O2 contents in moist tissues damage the mitochondrial membrane structure and their function [55].

The accumulation of oxidative damage is the basis of Harman’s free radical theory of aging [56].
One of the main sources of ROS in the cell is oxidative phosphorylation within mitochondria, so the
free radical theory of aging may essentially be a mitochondrial theory of aging for plant seeds.

4. The Antioxidative System in Aging Seed Mitochondria

The balance between ROS generation and detoxification by antioxidants modulates the redox
reactions in plant cells. Respiration and various other metabolic processes, including responses
to oxidative stress, are co-controlled by the cellular redox state [57,58]. The plant mitochondrial
matrix contains ROS scavenging systems, including enzymatic and nonenzymatic antioxidative
systems [40], such as the manganese-superoxide dismutase (Mn-SOD) and ascorbate-glutathione
(ASA-GSH) cycles [42], catalase (CAT) and peroxiredoxin (including peroxiredoxin IIF) [59]. During the
aging of seeds, a decrease in the mitochondrial ASA-GSH cycle results in less reduced/oxidized forms
of ASA and GSH, which might lead to ROS accumulation, affecting mitochondrial dysfunction [40].
Xia et al. showed in aging soybean seed mitochondria, that SOD, ascorbate peroxidases (APX),
monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activities decreased with
prolonged aging.

Mao et al. [26] suggested that mitochondrial structure changes are responsible for decreases in
antioxidant enzyme activity in aged seeds. The authors observed decreases in the activities of GR,
dehydroascorbate reductase (DHAR) and MDHAR, which were accompanied by damage to the inner
mitochondrial membrane in seeds during aging [26,42]. The observed catalase (CAT) is believed to be
associated with the mechanism of seed aging [6,60], which actively removes H2O2 [61] and modulates
the associated signaling pathways [62,63]. CAT levels decrease in the mitochondria of Fagus sylvatica L.
seeds during their natural aging process. The decrease in the activity of this enzyme is accompanied
by an increase in the H2O2 level (Ratajczak et al., results not published).

The active adjustment of the redox state in the mitochondria is important for the normal course
of the combined metabolic processes of photosynthesis and respiration in green tissues. Ascorbate
(ASA) and glutathione (GSH) play an important role in regulating the redox state in the mitochondria.
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Moreover, they act together in the ASA–GSH cycle, which is a core component of the antioxidant
system in plant mitochondria, and have other functions that are important for the mitochondrion.
ASA also participates in redox regulation in the modulation of gene expression, in the regulation
of enzymatic activity, and in cell signaling [4,64–68]. Changes in mitochondrial ascorbate synthesis
may modulate communication between plastids and mitochondria [65,69]. Mitochondrial GSH levels
depend on the transport of glutathione into the mitochondria because GSH is mainly synthesized
in the cytosol and plastids [70]. There is little information about plant mitochondrial glutathione
transporters. The level of mitochondrial GSH is highly dependent on the activity of the enzyme
glutathione reductase (GR), which reduces GSH to its oxidized form glutathione (GSSG) [71]. GSH
deficiency in the mitochondria can cause mitochondrial damage, affecting changes in the synthesis
of thiol proteins and thus changes in redox regulation in mitochondrion cells. The potential E =
2GSH/GSSG redox state in mitochondria, which ranges from –340 to −300 mV, provides a unique
environment that affects the corresponding thiol modification of proteins in the mitochondria [69].

ROS that are produced in the mitochondrial matrix are detoxified by thiol-based peroxidase
systems, such as peroxiredoxin (Prx) [72]. Prx family members have an important role in regulating
and maintaining the redox balance in seed cells [73,74]. Plant mitochondria contain an atypical type
II Prx (Prx IIF) [25,59,75]. Prx IIF is a peroxidase that accepts electrons from a broad range of donors
and functions principally in the reduction H2O2, which catalyzes the detoxification of ROS in the
following order of efficiency: H2O2v > tertiary butyl hydroperoxide (-BOOH) > cumene hydroperoxide
(CuCOOH) [75,76].

We found that the level of the protein Prx IIF decreased in the mitochondria of beech (Fagus
sylvatica L.) seeds during the natural aging process (Ratajczak, results not published). We also
observed differences in Prx IIF transcript and protein levels, as well as in the level of post-translational
modification between Norway maple (Acer platanoides L.) seeds (orthodox seeds) and sycamore
(A. pseudoplatanus L.) seeds (recalcitrant seeds) during desiccation [77]. It has been proposed that the
redox homeostasis of mitochondria in seeds is a necessary feature to maintain high seed viability.

Another possible regulator of the redox state in plant mitochondria is the thioredoxin (Trx)
system [78]. The Trx system consists of o-typ Trx (Trx-o) and NADPH-thioredoxin reductase
(Figure 1) [79,80]. Thioredoxins (Trx), a regulatory disulfide protein, is a substrate for enzymes
that catalyze reactions [78] and regulatory reactions that alter the activity or other functional properties
of interaction target proteins [81]. The reduced form of Trx interacts with a variety of target proteins
and performs regulatory functions [82].

Members of the Trx system in higher plants are divided into groups: m, f, x, y, o and h [83,84].
Trx o is localized in the mitochondria, and Trx h is typically cytosolic but has also been identified in
other cellular compartments, including the mitochondrion [84]. Trx participates in the regulation of 12
mitochondrial processes, ranging from energetics and metabolism reactions to protein synthesis, stress
responses and communication with other organelles [79,85]. It has been proposed that Trx functions
not only to regulate biochemical processes under optimal conditions but also to restore the function of
activities after oxidative stress (adaptation to stress). Sanz-Barrio et al. [86] showed that Trx acts in
plant mitochondria as a molecular chaperone. The role of Trx in the regulation of the redox state in
tree seeds, which is characterized by a different sensitivity to water loss, is not yet fully understood.
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Figure 1. Dysfunctional mitochondria and aging of seeds. Due to continuous reactive oxygen species
(ROS) production in mitochondria, the level of ROS increases during seed storage (1). The nitrogen
oxide (NO) influence on alternative oxidase (AOX) (2), which cause ROS generation (2). Calcium
ions change membrane potentials and are also influenced by AOX (2) on the increase of ROS level in
mitochondria. The ascorbate-glutathione cycle (3) does not effectively remove ROS (3), which causes
oxidative damage to mtDNA (4) and protein synthesis (5) and leads to changes in signaling and the
redox status in the mitochondria (6). Increasing ROS levels (7) in the mitochondria cause oxidative
damage to the membranes (7), which affects the inhibition of oxidative phosphorylation (8). All of
these events cause a decrease in seed viability and show the basis of aspects of seed aging. Solid arrows
shows the process that happened in ageing seeds, the doted arrows explain in which processes ROS
participate, detailing processes of ageing and decrease of germination and viability of seed.

5. Is Mitochondrial Dysfunction the Cause of Seed Aging?

The functions of mitochondria in cell signaling events and inter-organelle communication and
aging are already well known, especially in animal cells [87,88]. The role of mitochondria in the
plant seed aging processes has not yet been well described. It is important to determine whether
mitochondrial dysfunction imitates seed aging and whether mitochondrial dysfunction is the result
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of seed aging during storage. It is believed that the dysfunction of mitochondria, coupled with plant
seed aging, is as is presented in Figure 1.

The effects of mitochondrial damage in seeds during storage, which finally leads to seed aging
and the reduction of seed viability, are summarized in Figure 1. (1) Mitochondria are the sites of
continuous ROS generation. (3) During the storage of seeds, the ROS level increases, mainly in the
mitochondria, and the excess of ROS may not be effectively removed due to the low activity of the
mitochondrial antioxidant system (i.e., the ASA-GSH cycle) compared to the antioxidant systems
of other cell organelles. The ROS-induced impairment of mitochondria leads to increased oxidant
production and oxidative damage. A high level of ROS in the mitochondria causes oxidative damage
to the membranes, which affects the inhibition of oxidative phosphorylation. (4) ROS also cause
oxidative damage to mtDNA. mtDNA is constantly exposed to oxidative injury, mainly due to the
location of mtDNA in the inner mitochondrial membrane, which exposes it to the influence of ROS
and makes mtDNA more exposed than nuclear DNA to oxidative damage [89]. Most studies on aging
concern human cells, while research on the mtDNA in plant seeds is uncommon. However, damage
to plant seed mtDNA is a very important problem for genome reserve conservation because a lack
of genome integrity affects seed viability [90]. The stability of mtDNA depends on the production
of mitochondrial ROS (mtROS), which are generated during normal electron flux via mitochondrial
electron transport [89,91]. mtDNA is not protected by the protein membrane, and histones are not
associated with mtDNA it, which makes mtDNA more sensitive to increases in ROS levels [92].
In aging seeds, as was shown in Figure 2, the accumulated mtROS (1) induces damage to the mtDNA
(4) and adversely affects the synthesis of mitochondrial proteins (5), including proteins regulating the
mitochondrion redox state, e.g., peroxyredoxins (Prxs) and thioredoxins (Trxs). The accumulation of
mtROS thus influences changes in signaling and the redox status in the mitochondria (6). (7) A high
level of ROS in the mitochondria causes oxidative damage to membranes, which affects the inhibition
of oxidative phosphorylation (8). The sum of all adverse reactions (1–8) causes a decrease in seed
viability (Figure 1).

Figure 2. Schema of regulation redox state in the mitochondria. O2
•−: Superoxide; HO2

·: Hydroperoxyl
radical; SOD: Superoxide dismutase (E.C. 1.15.1.1); GR: Glutathione reductase (EC 1.6.4.2); GSH:
reduced form glutathione; GSSG: oxidized form glutathione; GPX: glutathione peroxidases (EC 1.11.1.9);
Prx: peroxiredoxin; Trx: Thioredoxin; TrxR: NADPH-thioredoxin reductase (EC 1.8.1.9). Solid arrows
mean that process occurred in mitochondria, dotted arrows mean that molecules could be exported
outside the mitochondria.
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The cellular ROS levels and redox status of mitochondria regulate mitochondrial and nuclear
gene expression, which are pivotal to seed aging [7,76]. Generally, changes in the mitochondrial redox
state will affect not only mitochondrial activity but also cellular processes, such as photosynthesis,
stress defenses and the activation of programmed cell death [76].

One potential regulator of mitochondrial activity during aging is the second messenger Ca2+.
By stimulating Ca2+-dependent dehydrogenases of the tricarboxylic acid (TCA) cycle, Ca2+ boosts
the activity of the mitochondrial respiration chain and, consequently, the mitochondrial adenosine
triphosphate (ATP) production via oxidative phosphorylation. By stimulating the mitochondrial
respiration chain, matrix Ca2+ also maintains the stability of the mitochondrial membrane potential,
which is temporarily dissipated by entering Ca2+. However, in the case of overwhelming mitochondrial
Ca2+ accumulation, the permeability of the inner mitochondrial membrane increases drastically,
resulting in the dissipation of the mitochondrial membrane potential, the shutdown of mitochondrial
respiration and finally, the initiation of cell death signaling pathways [93]. Wang and coauthors [94]
indicated that the Ca2+ flux could be part of the AOX retrograde response.

Xin et al. showed that aging severely affects the rate of NADH and succinate-dependent O2

consumption and the respiration control rate, suggesting that aged seeds possess a lower capacity
than control seeds for the electron transport chain. Aging directly reduces the efficiency of electron
transport chains, thereby reducing ATP production, so aged seeds cannot provide sufficient ATP for
germination. Upon stress exposure in mitochondria, an energy deficit signal occurs, which leads to
global changes in organellar and nuclear gene expression [20].

6. Mitochondrial Structure in the Process of Seed Aging

The presence of two membranes—the outer membrane (OM) and inner membrane (IM)—with
very different compositions and conformations, suggests that the membranes have diverse
contributions to mitochondrial function and physiology. Mitochondria modulate their functions
and status and allow complex quality control. Recent discoveries have shown a correlation between
the modulation of mitochondrial shape and network and the energetic state of the cell. Oxidative
stress causes mitochondrial elongation, protecting mitochondria from degradation and promoting
mitochondrial ATP production [95]. Xia et al. suggested there are relationships between antioxidative
systems and and mitochondrial ultrastructure in aging seeds. The authors of this study used
transmission electron microscopy to observe that mitochondrial ultrastructure was damaged in
aging and the degree of damage was related to the level of seed moisture. Increasing the moisture
content from 4% to 16% in the seeds at 0, 16 and 40 days caused the cristae to no longer be visible.
Others authors [44], by using fluorescence microscopy, showed that the mitochondrial distribution
and morphology changes gradually with seed aging in Ulmus pumila L. These authors noticed that
mitochondrial aggregation in the early aging stage is related to mitochondrial endogenous ROS
production. Yin and co-authors indicated that the integrity was highly inhibited in rice embryos aged
seven days, in comparison to rice embryos aged 0 and 4 days, and the oldest embryos possessed
numerous mature mitochondria with typical structures of well-developed cristae.

Using electron microscopy, Noctor et al. [96] showed that mitochondria, which have elaborate
cristae in young and mature Arabidopsis rosette tissues, only lose their internal structure with swollen
cristae at the final programed cell death (PCD) stage of senescence, when most cellular proteins and
other reserves have been degraded and exported. Electron cryotomography of mitochondria isolated
from aging Podospora anserina revealed a sequence of events, namely, the progressive vesiculation of
the mitochondrial inner membrane, the collapse of the cristae, disassembly of ATP synthase dimers,
and formation of large contact sites between the inner and outer mitochondrial membranes [97].

It is likely that changes in the structure of mitochondria caused by ROS generation and
mitochondrial dysfunctions trigger different responses that regulate mitochondrial and nuclear gene
expression, which are pivotal to seed aging.
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7. Conclusions

We believe that a thorough analysis of seed mitochondria in various tissues will bring us closer
to understanding the causes of the seed aging process. It is important to perform these analyses on
seeds that have different sensitivities to water loss, storage conditions and long-term storage, i.e., in
orthodox, recalcitrant and intermediate seeds. We suggest that more damage to mitochondria will
occur in the embryonic axes than in the cotyledons of seeds.

The mitochondria are very important cellular organelles, whose main purpose is to generate
energy in the process of cellular respiration—in the form of ATP—during the process of cellular
respiration. In mitochondria, seed aging increases the level of ROS, which causes numerous organelle
dysfunctions. This contributes to increases in the level of oxidative damage to the main cellular
components, decreases in enzyme activities due to the oxidation of the functional groups, and
increases membrane lipid peroxidation. During the aging of seeds, ROS initiates gene expression,
which is responsible for programmed cell death. In addition, physiological and biochemical changes
affect changes in the structures of mitochondria, which determines the action of these organelles.
Mitochondria are well-suited for sensing functional imbalances. Their respiratory machinery, which
is based on redox chemistry, can react sensitively to changing conditions. At the final stage of
mitochondrial aging, the disruption of this arrangement results in the ability of mitochondria to
produce ATP. In effect, aging cells with an increasing proportion of dysfunctional mitochondria are
less fit than non-aging cells and eventually die. Understanding the mechanisms of seed aging will lead
to new methods for seed conservation and longevity.
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