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A major challenge in human genetics is of the analysis of the interplay between genetic and epigenetic
factors in a multifactorial disease like cancer. Here, a novel methodology is proposed to investigate
genome-wide regulatory mechanisms in cancer, as studied with the example of follicular Lymphoma
(FL). In a first phase, a new machine-learning method is designed to identify Differentially Methylated
Regions (DMRs) by computing six attributes. In a second phase, an integrative data analysis method is
developed to study regulatory mutations in FL, by considering differential methylation information
together with DNA sequence variation, differential gene expression, 3D organization of genome (e.g.,
topologically associated domains), and enriched biological pathways. Resulting mutation block-gene
pairs are further ranked to find out the significant ones. By this approach, BCL2 and BCL6 were identified
as top-ranking FL-related genes with several mutation blocks and DMRs acting on their regulatory
regions. Two additional genes, CDCA4 and CTSO, were also found in top rank with significant DNA
sequence variation and differential methylation in neighboring areas, pointing towards their potential
use as biomarkers for FL. This work combines both genomic and epigenomic information to investigate
genome-wide gene regulatory mechanisms in cancer and contribute to devising novel treatment
strategies.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Carcinogenesis involves epigenomic, genomic, transcriptomic
and proteomic changes. The integration of these changes is impor-
tant for gaining a better insight into cancer molecular biology and
may lead to improved diagnosis and finding novel strategies for
cure. Epigenetic alterations such as DNA methylation and chro-
matin modifications are interlinked [1]. DNA hypomethylation or
loss of DNA methylation on CpG dinucleotides was the first epige-
netic anomaly to be recognized in cancer cells [2]. DNA methyla-
tion represses gene expression. Hypomethylation of DNA by
contrast, can induce expression of genes, including oncogenes. Fur-
ther, it can result in activation of transposable elements and loss of
genomic imprinting. Hypermethylation of DNA is also a common
feature of cancer. DNA hypermethylation is often seen at promoter
regions of tumor suppressor genes, inducing their epigenetic
silencing. Key gatekeeper genes like cyclin-dependent kinase inhi-
bitor 2A(CDKN2A) and BRCA1, for example, are silenced in this way
[3,4].

Gene expression profiles of tumor cells have been useful in clas-
sification, prognostication and prediction of multiple types of can-
cers such as breast, colorectal and lung cancer etc. [5–7]. It has
been demonstrated in multiple studies that differential expression
of certain gene sets is linked to cancer progression [8]. This has led
to development of gene signatures to predict prognosis of cancer
[9]. Gene expression profiling can not only predict clinical outcome
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but also be used to select optimal personalized therapy. Nonethe-
less, expression profiles of cancer can be highly variable limiting
the use of expression profiling in clinical practice. [10]. Incorpora-
tion of DNA sequence variations like Single Nucleotide Variations
(SNVs) is therefore warranted, as they are typically present in can-
cer and are stably detected [11]. Multiple cancer genetic studies
have reported SNVs that can contribute to cell transformation as
gain-of-function or loss-of-function, for example by activating an
oncogene or reducing the expression of a tumor suppressor [12].
However, it remains difficult to associate any SNV functionally to
a gene, and consequently to cancer because of the regulatory com-
plexity of higher order genomes. Due to presence of long-distance
regulatory elements, physical proximity of any SNV to an oncogene
or tumor suppressor gene is not sufficient evidence for it to be
labeled as cancer driver SNV [13]. Chromatin architecture also
comes into play here. The majority of the long-range chromatin
interactions happen within and are limited by Topologically Asso-
ciated Domains (TAD) boundaries. Coupling SNVs with the genes
present in a similar TAD can give us an indication about the func-
tional relevance of a SNV, and thereby its contribution as a cancer
driver mutation [14,15].

Follicular lymphoma (FL) is a recurring lymphoma for which
chromosomal translocation was identified [16]. However, this
translocation alone is not sufficient to cause FL. Recurrent muta-
tions have also been reported in FL in multiple developmental, sig-
naling pathway and chromatin regulator genes [17]. In addition,
epigenetic alterations have been observed in FL [18]. DNA methy-
lation of tumor suppressor genes have been reported in FL [19].
DNA hypermethylation may also cause transcriptional repression
of functionally important genes in FL [20].A gene-expression profil-
ing study predicted the risk of progression of patients with follicu-
lar lymphoma using a 23-gene score [21]. Of note, the most
previous research conducted in FL does not comprehensively
address all genetic changes as explained earlier. For instance, an
integrated data analysis pipeline [22] was developed previously
to identify putative functional regulatory mutations in FL by con-
sidering both the gene expression profiles and the clustered distri-
bution of SNVs. However, it was only able to predict regulatory
mutations near the promoter region of genes. To have a compre-
hensive picture of oncogenesis of FL, we are motivated to design
a new integrated data analysis method that takes into account
epigenomic (e.g., DNA methylation), genomic (e.g., chromatin
architecture- TAD), and transcriptomic (e.g., gene expression)
information together with the distribution of genome wide SNVs
in patients. In this way, our method makes it possible to predict
functional regulatory mutations that affect gene regulation
through a long-distance. This will be a great leap forward for the
investigation of non-coding mutations in cancer or disease, by uti-
lizing genome wide sequence technology in clinical studies.

Publicly available biological data sets allow comprehensive
analysis of data. However, efficient statistical and bioinformatic
methods for such integrative analysis are lacking. A few tools like
sTRAP and is-rSNP predict functional non-coding variants by
hypothesizing that non-coding variants can affect gene expression
by altering protein-DNA binding [23,24]. Another method searched
for SNP combinations for disease on the basis of the energy distri-
bution difference considering an individual’s genotype data as a
point with a unit of energy [25]. CADD and FunSeq2 can integrate
some data types like predicted transcription factor binding sites,
measured ChIP-Seq peaks of TFs, chromatin state marks, conserva-
tion scores and protein–protein interactions [26,27]. Another study
integrates DNA methylation, gene expression and somatic muta-
tions to infer tissue-of-origin of a tumor [28]. In short, there are
multiple integrative studies conducted on cancer, but none inte-
grates all the genetic and epigentic changes (i.e. DNA methylation,
gene expression, DNA sequence variation and Topologically associ-
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ated domains) in cancer.[29–32]. Moreover, there is less focus on
using differential methylation for functional annotation of SNVs.
Previous studies have reported a correlation between the regional
methylation level and the rate of mutation at CpG sites in genomic
regions [33]. Especially in the presence of allele-specific methyla-
tion, mutations in the driver genes can be inherently connected
with the aberrant DNA methylation landscape in cancer [34–36].
This points towards the potential use of differential methylation
to gauge the functional relevance of a SNV.

Although many studies have highlighted the link of the DNA
methylation and SNVs, there is no method to our knowledge which
employs DNA methylation data to identify disease-related SNVs.
While some methods for differential methylation detection are
already available, it is important to have a score or rank explaining
the magnitude of the differential methylation. In particular, if we
want to profit from differentially methylated regions (DMRs) in
an integrative study. To overcome this limitation, we have first
devised a new method for significant differential methylation
detection, which was used to analyze DMRs in FL through parallel
computation of six attributes (Fig. 1). Some of the computed attri-
butes are used to identify high confidence DMRS (hcDMRs).
HcDMRs then serve as a standard to rank the remaining methy-
lated regions. The resulting model reports a set of DMRs with
respective scores depicting the significance of a particular DMR.

Acknowledging the role of differential methylation and chro-
matin architecture at the epigenetic level and DNA sequence vari-
ations like SNVs and gene expression profiles in cancer, we
broaden the scope of our study by using a newly developed inte-
grative data analysis method to investigate regulatory mutations
in FL at a genome wide level. First, genomic blocks having a high
SNV concentration were identified (we will address them as muta-
tion blocks), and mapped to the DMRs and differentially expressed
genes (DEG) that are present in the same TAD. Then, the frequency
of occurrence of mutation blocks and its annotation to the genomic
elements, differential expression level of the associated genes and
the related DMR score are used as features to identify significant
mutation block-gene pairs in FL. From the analysis, a final set of
genes associated to mutation blocks is obtained which is further
evaluated by a robustness analysis, based on an independent
source (e.g., chromatin state segmentations) that was not used in
the prediction. Mutation block-gene associations related to FL that
passed robustness analysis with high statistical and biological sup-
port, are reported in this study. These set of mutation block-genes
can be seen as cancer drivers. Similarly, the set of hcDMRs can have
a strong potential of being used as biomarkers for diagnosis, prog-
nosis, prediction and potential treatment of FL. Our study presents
a robust method for DMR detection and integrative genomic anal-
ysis of regulatory mutations that can be applied to any malignancy.
2. Material and methods

2.1. Diverse high throughput sequencing data for follicular lymphoma
patients

Genome-wide sequencing data of 14 tumor-normal paired FL
patients was obtained from a previous study [37], by getting access
to controlled data kept on ICGC. Samples were downloaded from
European Genome-phenome Archive [38] (https://www.ebi.ac.uk/
ega/) under accession numbers EGAD00001000645 and
EGAD00001000355. RNA-Seq data of four control samples (Germi-
nal center B-cell - GCB) from healthy people was downloaded from
GEO database under accession number GSE4598265 [39]. DNA
methylation data of whole-genome bisulfite sequencing (WGBS)
for 8 FL patients and 4 GCB control samples was acquired from
an earlier work [40]. For data sets not available specifically for
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Fig. 1. Work flow for ranking differentially methylated regions between two groups by a newmachine learning approach. This figure describes a newmachine learning
approach for predicting and ranking high quality differentially methylated regions (DMRs) with four steps: 1) search for methylated region (MR) in a genome-wide manner
based on predefined criterias, 2) parallel computation of six attributes in each MR, 3) four of the attributes (e.g., the percentage of differentially methylated CpG methylation
sites, the clustering accuracy of predicted sample group label based on 2-D t-SNE map, the percentage of the high and median methylation level changes, and the significance
of Euclidean distance difference between the intra-group and the inter-group) are used to identify highly confidence DMRs (hcDMRs), 4) fits a logistic regression model for all
available MRs by using hcDMRs as true targets. Probability value of each MR (from logistic regression model) is used to rank the DMRs per their significance.
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FL, we chose data sets closest possible to FL. Human common
Topologically Associating Domains (TAD) and boundaries informa-
tion was downloaded from supplementary Tables 1 and 4 of [41].
The common boundaries are from five human cell lines that repre-
sent three distinct embryonic germ layers (GM12878 and HMEC,
mesoderm; IMR90, endoderm; HUVEC and NHEK, ectoderm).
Those TAD boundaries were reported in the original study as sig-
nificantly (83–85% with pval h10�7) conserved between normal
and malignant cells and were thus used in this study. Human
enhancer annotations of 197 tissue/cell types were download from
EnhancerAtlas 2.0 [42]. Annotations from 5 out of 197 cell lines
(DOHH2, GC B cell, Namalwa, OCI-ly1 and OCI-Ly7) were later
grouped as FL-related cell lines [43]. Information of KEGG, BIO-
CARTA, and GO Biology Process pathways was retrieved from
DAVID functional annotation tool [44]. Here, all sequencing data
were aligned to hs37D5, a variant of GRCh37 human genome
assembly used by the 1000 Genomes project [45]. Genome-wide
mutations were called by using Strelka [46] and MuTect [47] with
the default parameters. An intersection of mutation calls from both
programs was used in the further data analysis for each patient
[48]. Frommutations called by these programs, we only considered
SNVs. For identifying the transcripts of all protein-coding genes,
we used gene annotation from the UCSC hg19 [49]. Annotation
to the reference genome were performed on four defined genomic
regions: the TSS/TES regions between �5kb and + 1kp to the TSS
(transcription start site)/TES (transcription end site) of protein-
coding genes, and the gene body region between TSS and TES,
and the 50distance regions were calculated from 1 Mb to 5 kb
upstream of the TSS. These four defined regions are similar to the
previous publications [50,51] in differential methylation analysis
and identification of promoter-distal loops. Gene expression levels
are measured as reads per kilobase of transcript per million
mapped reads (RPKM) of RNA-Seq experiments and were com-
puted by applying the featureCounts [52] and our in-house Python
code on aligned BAM files. In this study, the genetic (SNVs), epige-
netic (DNA methylation), and transcriptomic (gene expression)
data are from the same FL patient cohort [40]. A brief description
of these FL samples and the procedures for obtaining them are pro-
vided in supplementary Stable 1. The tumor cell content in the cry-
opreserved sample material was at least 60% in all cases [40]. More
information of these FL samples and the basic characterization
including histopathological panel review and immunohistochemi-
cal and FISH analyses can be seen in the previous publication [37].
2.2. Segmentation of human genome in functional regions based on
chromatin features

Chromatin modifications are important epigenic makers in gen-
ome, which can be used to characterize functional regions (e.g.,
enhancer and TSS et al). We obtained predicted segmentation of
human genome based on chromatin features from an earlier pub-
lication [53]. This segmentation of human genome is based on
the predictions from two machine-learning methods (ChromHMM
[54] and Segway [55]), by using multiple chromatin marks (e.g.,
H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K27me3,
H3K36me3, and H3K20me) known to be involved in enhancer,
repression, or promoter regions across six human cell-lines (e.g.,
GM12878, H1 hESC, HeLa-S3, HepG2, HUVEC, and K562). In addi-
tion to chromatin marks, other genomic marks such as Pol2, CTCF,
and nucleosome density were also considered. The final combined
segmentation from the two predictions uses only seven chromatin
states to segment the human genome in functional regions (e.g.,
TSS – predicted promoter region including TSS; PF – predicted pro-
moter flanking region; E – predicted enhancer; WE – predicted
weak enhancer or open chromatin cis regulatory element; CTCF –
1729
CTCF enriched element; T – predicted transcribed region; R – pre-
dicted repressed or low activity region).

2.3. Identifying methylation regions

There are a few popular methods available for differential
methylation analysis, but with their own limitations. For example,
MethylKit predicts differential methylation at a single base pair
resolution, neglecting the confounding effects of any neighboring
methylated site [56]. This limitation is addressed by HMST-Seq-
Analyzer by predicting DMRs instead of differentially methylated
sites [51]. However, HMST-Seq-Analyzer can only make one-to-
one or one-to-many comparisons and cannot make group compar-
isons (many-to-many). Therefore, a new method for rigorous dif-
ferential methylation detection is developed. It takes into
account the confounding effect of neighboring methylated sites
and can perform group comparisons with multiple samples in each
group. As a foremost step, it tries to search for Methylated Regions
(MR) in the genome. The selection criteria for MRs are that there
should be a minimum number of CpG methylation sites in a MR
(default of minimum 5), and any two neighboring CpGs must not
be any further than a specified distance (by default 250 bp).
Gathering MRs from genome-wide data can produce hundreds
and thousands of MRs depending upon the type of sequencing
method used for methylation detection. A brute force attempt for
differential methylation analysis can be computationally exhaus-
tive at the genome-wide scale. Therefore, once all MRs passing
aforementioned filtering conditions are acquired from the
sequencing data, a parallel computational algorithm is used to
assess the significance of differential methylation between the
two groups in each MR. The total number of observed MRs is
equally divided on the available computer processers (e.g., 10 or
20 processes) and is ran in parallel, which significantly speeds up
the calculation. Lastly, a rigorous set of DMRs is reported with their
scores which can be used as input to any further integrative study.

2.4. Parallel computation of six attributes in each methylated region

Six major attributes are computed and evaluated at the MR
level in order to identify Differentially Methylated Region (DMR):
1) Interpolated and smoothed data curves of original methylation
levels are computed for both tumor and control/normal groups,
and a 95% confidence interval from the group mean is graphically
illustrated. 2) Based on the smoothed methylation curves of all
samples, the first three principal component elements of PCA
(Principal Component Analysis - a linear dimensionality reduction
method) are calculated and visualized in a 3D plot (e.g., samples
are colored by their group label), from which the difference among
samples due to methylation variation in a MR is revealed. 3) As a
third attribute, a two sampled T-test is performed to evaluate the
significance of differential methylation at each CpG site, respec-
tively. The percentage of CpG methylation sites in a MR that
reaches a predefined significant level (e.g., T-test P value < 0.05)
is recorded. The higher the percentage the better the differentially
methylated region. 4) As a fourth attribute, T-distributed Stochas-
tic Neighbor Embedding (t-SNE, a non-linear dimensionality reduc-
tion method) is applied on the smoothed methylation profiles of
each MR, and the corresponding 2-D plot of samples is generated
(e.g., samples are colored by their group label). Subsequently, k-
means clustering is applied on this 2-D t-SNE map, to estimate
the clustering accuracy by comparing the predicted sample group
label against the true sample group label. The higher the clustering
accuracy the more significant the DMR. 5) The fifth attribute is cat-
egorizing the levels of differential methylation changes (or abso-
lute group mean difference - GMD) at each CpG site of a MR. As
a default, three levels are defined i.e., 0.07 < GMD<=0.1, 0.1 < GM
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D<=0.2, and GMD > 0.2 for low, median and high methylation
changes, respectively, between tumor and control group. The per-
centages of CpG sites in a MR with low, median, and high methy-
lation changes are recorded. The higher the percentage of high
methylation changes the more significant the DMR will be. 6)
Finally, Euclidean distances for samples within a group (e.g.,
intra-group in either tumor or normal group) and between groups
(e.g., inter-group such as between tumor and normal group) are
calculated based on the methylation profiles, respectively. A two
sampled T-test is used to evaluate the significance of the difference
between the intra-group distance and the inter-group distance
(e.g., Euclidean distances of samples within a tumor group vs.
Euclidean distance of samples between tumor and normal). The
corresponding P-values are recorded for each MR. The underlying
hypothesis for computing this attribute is that the intra-group dis-
tance is usually significantly different from inter-group distance
for a DMR. Thus, the more significant the difference of distance
(between the intra and the inter groups), the more significant the
DMR. Here, the first two attributes (attribute 1 and 2) are com-
puted for the purpose of visualization and giving an impression
of the distribution of data at a broader level. The rest of the four
attributes and the recorded summary statistics are directly used
as features for identifying high confidence DMRs (hcDMRs).

2.5. Predicting high confidence differentially methylated regions by a
two-levels approach

After completing the parallel computation of six major attri-
butes in all the identified MRs, a two-level filtering approach is
adopted to determine a set of hcDMRs. The first filter is applied
on the attribute 5 i.e., the percentage of high methylation changes
(e.g., mean group difference > 0.2) between two groups should be
greater than zero. Then a second level filter is applied, where a
putative hcDMR should meet at least one of the two conditions:
either the percentage of CpG sites in a MR that are significantly dif-
ferent between two groups (e.g., T-test P value < 0.05 in attribute
3) is greater than a threshold value (e.g., default > 0), or there
should be a significant difference of Euclidean distances between
the intra-group and the inter-group (T-test P value < 0.05 in attri-
bute 6). After the two levels filtering, a set of putative hcDMRs are
obtained. The strength of these DMRs is controlled by three key
parameters such as 1) the percentage of high methylation changes
(e.g., mean group changes > 0.2; default) between two group and 2)
the percentage of methylation sites show differential methylation
in a MR are greater than zero, and 3) a significant difference (P
value < 0.05 in default) of Euclidean distances between the intra-
group and the inter-group.

2.6. Ranking differentially methylated regions through logistic
regression

Although hcDMRs are a solid set of DMRs, to improve the sen-
sitivity of the method and to sort DMRs based on their significance,
a ranking approach through logistic regression method is further
introduced. Here, hcDMRs are used as true target sites in logistic
regression to fit all the available MRs with pre-computed attri-
butes. The four attributes used as regressors are: 1) the percentage
of methylation sites in a MR that have passed significant level of
differential methylation (from attribute 3), 2) the clustering accu-
racy for predicting group labels in a MR based on a 2-D projected
t-SNE methylation profiles (from attribute 4), 3) the percentage
of group mean methylation changes in the high and median level
changes (from attribute 5) and 4) the log10 transformed P values
of the significance of difference in Euclidean distance between
the intra-group and the inter-group (from attribute 6). A probabil-
ity value is assigned to each MR after fitting the logistic regression
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model to all MRs by using the high confidence DMRs as true target.
These probability values can be used to sort and select the most
significant DMRs. For example, if a probability of logistic regression
model is P>=0.7, then around 90% of the hcDMRs from the initial
two-step filtering (e.g., the mean group changes > 0.2 and, either
the percentage of differentially methylated CpG sites is > 0 or there
is a significant difference in Euclidean distance between the intra-
group and the inter-group) will be included, endorsing that the ini-
tial two-steps filtration is powerful for identifying sturdy DMRs.
Unlike other popular methods for differential methylation analysis,
the length of DMRs predicted by the current method can range
from dozens of bp to hundred thousand bp which is similar to
actual behavior of DMRs. Moreover, only the distribution of methy-
lation sites is considered in defining a MR and the same trend of
methylation level changes in a MR is not forced. Therefore, three
types of DMRs (hyper, hypo, and mix) are reported in the predic-
tion. HyperDMRs indicate increase in methylation levels as com-
pared to control/normal samples. HypoDMRs have decreased
methylation levels as compared to control/normal samples. It can
be misleading to assume that methylated regions, showing differ-
ential methylation, will either show increase or decrease of the
methylation level. Some DMRs can show both increasing and
decreasing levels of methylation at different sites within the
region. The current method captures such a possibility as well
and reports them as mixed DMRs. All DMRs can also be manually
explored through the plots exported by our method. More informa-
tion about both the identification of hcDMRs and the ranking of
DMRs are shown in Fig. 1.

2.7. Integrating differential Methylation, differential gene expression
and topologically associated domain information in regulatory
mutation prediction

Based on the aforementioned new method for analyzing and
ranking DMRs between two groups of samples, it is possible to
integrate the differential methylation with differentially expressed
genes (DEG) data in predicting functional non-coding mutation in
disease. First, SNVs from whole-genome-sequencing (WGS) data
for the disease are identified by using Strelka and Mutect. An inter-
section of the SNVs predicted by the both programs was used for
further analysis to strengthen the evidence, as performed in a pre-
vious publication [57]. A region harboring multiple SNVs can have
more regulatory potential as compared to a single SNV. Hence,
genome-wide identification of mutation blocks in patient samples
is done by using BayesPI-BAR2 [58]. We first identify mutation
clusters and then group them into mutation blocks. Mutation clus-
ter will be a genomic region having a certain number of consecu-
tive SNVs present in any of the patient sample. Here, any regions
having at least one SNV in any of the patient samples were selected
and grouped into mutation clusters to keep low stringency. In case
of more than one SNVs the distance between adjacent SNVs should
be<30 bp to be included in the same cluster. The mutation clusters
were further grouped into mutation blocks. Mutation block will be
a group of mutation clusters, where any consecutively located clus-
ters are not>500 bp apart from each other. Then, these mutation
blocks were annotated to multiple genomic regions based on anno-
tated HG19 reference genome (i.e., Gene, TSS, TES, 50distance and
enhancers). In this study, only mutation blocks that were either
overlapping with a DMR or associated with a DEG (e.g., a mutation
block located in a the TSS, TES, 50distance region or gene body of
the DEG) in FL patients are considered. However, mutations can
impact the expression profiles of target genes from long range
interaction as well. To ensure the confidence in relevance of rela-
tionship between a mutation block and its long-distance target
gene (e.g., DEG), the search for mutation block-DEG pair in 50dis-
tance region is confined within the same topologically associated
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domains (TAD). The information of TAD that are common in five
cell lines, is obtained from a recent paper [41].

Usually, mutations or SNVs are more influential if present in the
regulatory region such as enhancers, as they may disrupt or create
a binding site for a transcription factor. The identified mutation
blocks are further mapped to enhancer regions provided by Enhan-
cerAtlas2.0 [42]. Once all mutation blocks are linked to either DMR
or DEG, the strength of genes associated (e.g., through gene, TSS,
TES, or 50distance) to relevant mutation blocks is inferred by a
method similar to weighted voting systems [59], where four fea-
tures are used in ranking: 1) the number of patients having
affected mutation blocks in a gene, 2) the probability of logistic
regression fitting for DMRs associated to a gene, 3) the absolute
log10 transformed P-values of DEG, and 4) the annotated genomic
region that is linked to a mutation block (e.g., a mutation block
locates in TSS, Gene, Enhancer, TES, and 50distance region will be
assigned a weight 4, 4, 3, 2, and 1, respectively). An average of nor-
malized four features’ scores (min–max normalization) is being
used to rank the strength of associations between a mutation block
and a gene (e.g., normalized score spans from 0 to 1). Finally, muta-
tion block-gene pairs with an average of normalized feature
scores>0.5 are extracted, and subjected to GO and pathway enrich-
ment analysis (P-value < 0.05) by using DAVID functional annota-
tion tool [60]. In Fig. 2, a workflow or pipeline for such integrated
analysis (DMR, DEG, TAD information, and DNA sequence varia-
tion) of mutation blocks in FL is presented.
2.8. A robustness analysis of mutation block-gene associations by
evaluating seven chromatin states

Here, a new robustness analysis is developed to evaluate the top
ranked mutation block-gene associations obtained from an average
of normalized feature scores (e.g., 327 genes in Fig. 2). The new
analysis is based on independent information i.e. segmentation of
human genome to seven functional regions based on chromatin
features [53] (e.g., active or repressive histone modifications and
nucleosome density), which was not used in the prediction. The
robustness analysis utilized a permutation test to assess the signif-
icance of associated mutation blocks in seven chromatin states
(e.g., R, T, TSS, enhancer, CTCF, WE, PF), respectively. The segmen-
tation of human genome in chromatin states was predicted by two
machine learning methods ChromHMM and Segway. First, for
mutation blocks associated to each predicted target gene, if there
are N number of mutation blocks in a gene, then the percentage
of blocks (the actual percentage) located in the seven chromatin
states are calculated, respectively. Then, we randomly draw
10,000 times of N mutation blocks from all � 66467 blocks of 14
FL patients that overlap with the seven chromatin states, where
the N mutation blocks predicted in the first step are excluded. Sub-
sequently, for each sampled N random mutation blocks, their per-
centage (the expected percentage) in the seven chromatin states is
computed, respectively. In each of the chromatin states, if the
expected percentage obtained from the randomly sampled muta-
tion blocks is greater than the actual percentage in the first step,
then the chromatin state is incremented by one. Finally, for each
Fig. 2. Work flow for integrative analysis of regulatory mutations in follicular lymph
expression and TAD information. First, SNVs from the whole genome sequencing (WG
mutation blocks in FL by using BayesPI-BAR2. Then, the mutation blocks were annota
enhancers collected from EnhancerAtlas 2.0. Subsequently, mutation blocks overlapping
(DEG) are recorded. For a mutation block-DEG association that is linked by a 50distance
located in the same topologically associated domain (TAD). The importance of mutation b
affected mutation blocks, 2) the significance of a DMR, 3) the significance of the differen
gene, TSS, TES, 50distance or enhancers) that a mutation block is mapped to. Finally, a se
genes are enriched in a common pathway or GO biology process.
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tested gene, an expected P-value of its associated mutation blocks
located in one of the seven chromatin states is calculated (e.g., P-
value = the total number of the expected percentages greater than
the actual ones divided by the number of samplings such as
10000), respectively. A filtered list of top ranked mutation block-
gene associations will be obtained by assuming that the functional
regulatory mutation blocks are significantly enriched (e.g.,
expected P-value < 0.05) in either TSS or enhancer regions. Thus,
a final top ranked (e.g., within the top 20) mutation block-gene
associations will be more reliable, if they passed such robust anal-
ysis in multiple predictions based on the same data.
3. Results

3.1. Predicting DMRs with a new machine learning method

To identify DMRs between FL patients and normal samples, a
newly developed machine learning approach (default parameters)
was applied on the WGBS data of 8 tumors and 4 control samples,
where multiple samples from each group were analyzed simulta-
neously. A probability P > 0.7 of logistic regression model was used
as a cutoff value for detecting DMRs between case (FL) and control
(normal) samples. Total 275,949 DMRs were predicted. These
DMRs were annotated to four defined genomic regions (TSS, TES,
gene, and 50distance), as well as to human enhancers obtained
from EnhancerAtlas [42] by using intersection function of BED-
Tools [61]. Example of predicted DMRs is: mr37 in chromosome
1 (SFig. 1), having probability = 1 in the logistic regression model.
A counter example of a region not considered DMR (mr60385 in
chromosome three; probability = 5.582354e-16 in logistic regres-
sion model) is illustrated in SFig. 2. In SFig. 1, the predicted DMR
is roughly 250 bp long with six attributes illustrated. A difference
in the trend of smoothed methylation profiles between tumor
and normal samples can be seen in the upper panel of SFig. 1. Upon
calculating the PCA based on the smoothed methylation profiles,
tumor samples clearly separate from the normal ones in a 3-D plot
of the first three principal components. Nevertheless, it is crucial to
see the shape of methylation level distribution in the lower panel
of SFig. 1, where � 53.8% of the methylated sites in the MR are dif-
ferentially methylated (P-value < 0.05) between tumor and normal
group. Clustering accuracy of K-means clustering for tumor and
normal samples is high (equals � 0.92), according to the two-
dimensional t-SNE projections for all available methylation sites
in the MR. Especially, the difference between intra-group and
inter-group Euclidian distance is marginally significant for normal
group (P-value < 0.06) but significant for tumor group (P-value < 0.
0083), and the peak for mean group methylation changes is cen-
tered around �0.1. These six attributes in the SFig. 1 reiterate the
significant differential methylation in mr37 on chromosome one.

3.2. Comparison of predicted DMRs between the new method and the
HMST-seq-Analyzer

Though HMST-Seq-Analyzer is a tool to predict DMRs from data
obtained from multiple methylation detection methods including
oma by using whole genome sequencing, differential methylation, differential
S) data of 14 follicular lymphoma (FL) patients were used to identify genome-wide
ted to four genomic regions (gene, TSS, TES, and 50distance regions) as well as to
with either differentially methylated region (DMR) or differentailly expressed gene
region of gene, the method requests that both the mutation block and the gene are
lock-gene associations is ranked by four features: 1) the number of patients having
tially expressed gene, and 4) a weighted score for annotated genomic region (e.g.,
t of top ranked mutation block-gene associations are extracted, where the selected
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Whole Genome Bisulfite Sequencing (WGBS) [51], in the case of
group comparisons, it performs one-to-many comparison only. In
this study, mean methylation levels of 4 normal GCB WGBS sam-
ples were used to compare to 8 FL patient data [40], respectively,
by using the default parameters of HMST-seq-Analyzer. Only those
DMRs (�60322) predicted in all 8 samples (�78–90% of each pre-
diction) were used for further comparison to the new results
(�259963 with probability > 0.8 in logistic regression model of
new machine learning approach). Around 92% (239325) of the
DMRs from the new prediction method were completely overlap-
ping with that from the HMST-Seq-Analyzer. If the probability cut-
off of logistic regression model is varied between 0.5 and 0.7, the
overlap between the two results remains � 91 to 92%. It is worthy
to note that HMST-Seq-Analyzer generates much longer DMRs
than the new method, which explains why more DMRs are pre-
dicted by the new method than the HMST-Seq-Analyzer while
maintaining a high percentage of overlap between the both. Thus,
DMRs detected by the new method are robust and their shorter
length makes their annotation and integrated data analysis further
easier.

3.3. Including differential methylation and differential gene expression
in regulatory mutation analysis

There are 118867 and 81812 single nucleotide variants (SNVs)
in 14 FL patients, called by MuTect and Strelka, respectively. About
71235 SNVs (�87% overlap) were detected by both methods. They
were selected to identify genome-wide mutation blocks in FL by
using BayesPI-BAR2 [58,62]. The result spans to 66868 mutation
blocks, which requests minimum one patient and one SNV in a
cluster. The SNP cluster and block distance was kept as 30 bp
and 500 bp, respectively. Here, a built-in mutation background
model from BayesPI-BAR2 was not applied to select highly
mutated blocks (i.e., SNVs from multiple patients are located in
the same mutation block). Instead, a putative functional mutation
block was selected based on a different criterion: either it overlaps
with a DMR or triggers a nearby gene activity (e.g., DEG). This
assumes that gene regulation or TF binding and DNA methylation
often affect each other [63,64]. For example, impact of SNV on TF
binding may cause a variation of DNA methylation levels in neigh-
boring regions or a dysregulation of gene expressions in the nearby
location. Following this assumption, �13143 mutation blocks were
found overlapping with the predicted DMRs. After considering
genes that were associated to these DMRs through a gene body,
TSS, TES, or 50distance regions, and mutation blocks that are over-
lapping with either DMR (�4603 mutation blocks) or their associ-
ated genes are differentially expressed (�1831 DEG; P < 0.05),
previously published mutation block-gene associations in FL are
recovered in this initial analysis: for example, three known regula-
tory mutation blocks near the promoters of dysregulated BCL6 and
BCL2 genes [57] (up and down regulated in FL compared to normal,
respectively). This is a result that supports the hypothesis that
functional regulatory mutation may affect DNA methylation level
and/or gene expression activity in the nearby region.

3.4. Ranking mutation block-gene association by considering diverse
information

Though it is possible to narrow down the number of mutation
block-gene association by considering both DMR and DEG informa-
tion, it is a challenge to evaluate their significance. The problem is
further complicated by the fact that a mutation block may be
assigned to multiple 50distance regions of different genes (e.g.,
from 1 Mb to 5 kb upstream of the TSS). Thus, an additional eval-
uation of mutation block-DEG associations through 50distance
regions is needed: for example, if a mutation block and a gene
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are not located in the same TAD, then their association through
50distance region will be ignored. In this study, information of com-
mon TADs/boundaries in five cell lines (GM12878, HUVEC, IMR90,
HMEC and NHEK) were obtained from a previous publication [41].
After thus filtering mutation block-gene pairs, �1453 differentially
expressed genes (DEG in TSS, TES, gene, or 50distance) are associ-
ated with � 5756 mutation blocks (e.g., either overlapping with
DMRs or not). Among these mutation blocks, �3684 of them are
located in enhancer regions [42]. To rank the significance of these
inferred mutation block-gene associations, a weighted vote
approach was used to rank them by integrating normalized four
feature scores (e.g., the number of patients affected by mutation
blocks, DMR significance, P-value to DEG, and the weighted geno-
mic feature for a mutation block; Fig. 2).

In this work, an average of normalized feature scores was used
to export the top ranked mutation block-genes associations: for
example, with a mean feature score>=0.5, �327 genes are selected.
Among these the BCL2 gene is ranked at the top. The number of
mutation blocks located in enhancers/TES/TSS/Gene remains stable
(�76%) when a mean feature score cutoff value is decreased (e.g.,
<0.4). These 327 top ranked genes were used in further pathway
analysis because functional mutations often influence multiple
genes in the same pathway or biological process [65,66]. Thus,
GO enrichment analysis is applied on these top ranked genes by
using DAVID functional annotation tool [60]. The enriched GO bio-
logical process and KEGG/BIOCARTA pathways (e.g., P < 0.05) are
extracted for defining a final list of mutation block-gene associa-
tions, which includes 159 genes involved in several important sig-
naling pathways and biological processes related to FL. For
example, intrinsic apoptotic signaling pathway in response to
DNA damage, T cell receptor signaling pathway, B cell receptor sig-
naling pathway, NF-kappa B signaling pathway, transcriptional
misregulation in cancer, and immune response etc. The aforemen-
tioned enriched pathways are affected by mutation blocks from at
least 13 FL patients (data in supplementary website). Notably, our
previously predicted putative functional regulatory mutation
blocks near BCL2 and BCL6 genes [57] are ranked in the top 10
(e.g., ranked 1 and 9 for BCL2 and BCL6, respectively; supplemen-
tary Stable 2) by this new analysis. Additionally, several novel
mutation block-gene associations in FL are also identified (e.g.,
mutation block associated to CTSO and CDCA4 are ranked at top
2 and 5, respectively; supplementary Stable 2). The presence of
numerous mutation blocks and DMRs in the vicinity of these genes
urges also to investigate the role of long-range interaction in their
regulation. Coming sections will discuss the genes and the respec-
tive distal elements in detail.

3.5. Hypomethylation of mutation blocks and enhancers in the BCL2
promoter region can contribute to BCL2 overexpression in follicular
lymphoma.

The BCL2 gene is located at chromosome 18q21 and codes for
BCL-2 protein which inhibits apoptosis and is important for normal
B-cell development and differentiation. Follicular lymphoma
shows the t(14;18) chromosomal translocation. This translocation
involves BCL2 and causes its overexpression, thus providing sur-
vival advantage to the malignant B-cells [67]. A previous study
aimed at predicted two mutation blocks in TSS region of BCL2
[57]. The same two mutation blocks of 3113 bp and 726 bp
(block_66303, block_66304 respectively) in the TSS region
(Fig. 3; stable 3) are detected by this new genome-wide analysis.
However, the new method expands its scope beyond the promoter
region, hence there are additional eleven mutation blocks pre-
dicted in gene body of BCL2 and one in 50 distance of BCL2
(Fig. 3). Especially, 9 mutation blocks out of total 14 (Table 1) were
found overlapping with enhancers from 197 tissue/cell types. Tar-



Fig. 3. Mutation blocks, differentially methylated regions, and enhancers in a single TAD around BCL2 identified by the new integrative data analysis. This figure
displays mutation blocks, DMRs and enhancers that are identified in a single TAD containing the BCL2 gene. First panel presenting brown color horizontal bars presents mean
methylation levels of normal samples in the DMR that are predicted around BCL2 and overlaps with the mutation block and enhancers. Second panel containing green
coloured horizontal bars presents mean methylation levels of the same DMR in FL samples. Third panel presents all predicted DMRs with respective DMR IDs in the region in
form of red tiles. Fourth panel presents overlapping enhancers (with mutation blocks or DMRs) in the region from the 5 FL related cell lines (DOHH2, GC B cell, Namalwa, OCI-
ly1 and OCI-Ly7) in light blue color. Fifth panel presents mutation blocks (with respective block IDs) predicted by BayesPI-BAR2 in dark blue tiles. Sixth panel presents the
RefSeq genes (BCL2, KDSR) present in the region. Seventh panel presents the TAD boundaries around the region, linking the start of TAD with its end with a grey curve. A
yellow vertical bar across the figure highlights the important overlapping mutation blocks, DMRs, enhancers discussed in result section. Coordinates for all these genomic
features are mentioned in stable4. (For interpretation of the references of color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Information of the selected four top ranking FL related mutation block-gene pairs identified by new integrative data analysis. Table contains details for the selected top
ranking four genes (BCL2, BCL6, CDCA4 and CTSO). Total mutation blocks and DMRs (differential methylated regions) identified around the four genes and the enhancers
overlapping with any of these are mentioned. TAD (topological associated domains) boundaries around the genes, identifies genomic regions are mentioned, and DEG (differential
gene expression) levels are also described. Gene name marked by * means it did not pass the robustness analysis by using chromatin state segmentations (Stable 7) that was not
used in the prediction.

Gene
name

Mutation blocks DMRs Overlapping enhancer TAD Gene expression

BCL2 14 total
(9 overlapping to enhancers)

5 total (2 in TSS, 1 in 50dist, 2
in gene)
3 hypo, 1 hyper, 1 mixDMR.

With mutation blocks = 2 (16 cell
lines), 14
(FL related)
With DMRs = 8 FL related

chr18:60675000–
61075000
Low-active

Upregulation
(pval < 1.7e-6)

BCL6 23 total
(22 overlapping with
enhancers)

1 total (in 50dist)
hyperDMR

With mutation blocks = 89 (7 cell
lines), 17
(FL related)
With DMRs = 1 FL related

chr3:187400000–
189600000
Low-active

Down regulation
(pval < 0.0008)

CDCA4 30 total (14 overlapping with
enhancers)

13 total (in 50dist)
4 hypo,9 hyperDMRs

With mutation blocks = 1 (5 cell
lines), 10
(FL related)
With DMRs = 17 FL related

chr14:105225000–
107374540
Heterochromatin

down regulation
(pval < 0.001)

CTSO* 47 total
(7 overlapping with enhancers)

3 in total (50dist)
1 hypo, 1 hyper, 1 mixDMR

With mutation blocks = 18 (6 cell
lines), 0
(FL related)
With DMRs = 2 non FL related

chr4:156850000–
158025000
Low

Upregulation
(pval < 5.5e-10)
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get genes of the majority of these mutation blocks related enhan-
cers are VPS4B and KDSR. Both genes are nearby BCL2. This indi-
cates that there is a potential impact of these mutation blocks on
long ranged regulation of these two genes. VPS4B is differentially
expressed in diffuse large B-cell lymphoma [68]. KDSR is signifi-
cantly differentially expressed between FL patient and normal
samples (e.g., P-value < 0.0003; upregulated in FL compared to nor-
mal). Detailed enhancer target gene information of these mutation
blocks is provided in the supplementary data.
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Furthermore, to take into account the tissue specificity of
enhancers, tissues/cell lines closer to FL were selected from the
LL-100 panel which covers 100 cell lines for human leukemias
and lymphomas [43]. There are 5 FL-related cell lines (DOHH2,
GC B-cell, Namalwa, OCI-Ly 1 and OCI-Ly 7) with enhancer infor-
mation in this study. Interestingly, 8 mutation blocks out of the
total 14 are overlapping with 14 different enhancers from these
5 lymphoma cell lines. Additionally, 5 DMRs were found in and
around BCL2, and one of them (mr22253) overlaps with the muta-



Fig. 4. A hypoDMR (mr22253) overlapping with mutation block (block_66303) identified in TSS region of BCL2. Figure displays six attributes of a predicted hypoDMR
(mr22253 in chromosome 18; probability equals one in logistic regression model) in follicular lymphoma. Upper panel of the figure, from the left to the right side is the
methylation profiles (both original 31 and smoothed 76 data points) of mr22253 in tumor (n = 8) and normal samples (n = 4), respectively, as well as a 3-D plot of the first
three principal components for tumor and normal samples. Lower panel of the figure, from the left to the right side is the smoothed methylation profiles of tumor and normal
groups where shadow arear represent a 95% confidence interval (�90.8% of data points are differentially methylated; P-value < 0.05), a 2-D plot of t-SNE map for 14 FL
samples (the clustering accuracy of predicted sample group labels is � 0.917), and a histogram plot of mean methylation changes (centered around �0.25) between the two
groups, respectively. Here, gcb/tumor vs gps means intra-group Euclidean distance of normal (P-value < 0.05)/tumor (P-value < 4e-10) samples versus inter-group Euclidean
distance between tumor and normal samples, and tumor and normal samples are illustrated by red and green points (or lines), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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tion block (block_66303) in TSS and an enhancer from OCI-LY1 cell
line (Fig. 3, Stable 3). Since BCL2 is significantly over expressed (P-
value < 1.66 e-06) in FL patients, one can expect a rise of
hypomethylation in the regulatory region of BCL2. The predicted
Fig. 5. Mutation blocks, differentially methylated regions, and enhancers in a singl
displays mutation blocks, DMRs and enhancers that are identified in a single TAD contain
methylation levels of normal samples in the DMR that are predicted around BCL6 and ove
horizontal bars presents mean methylation levels of the same DMR in FL samples. Third
red tiles. Fourth panel presents overlapping enhancers (with mutation blocks or DMRs) in
OCI-Ly7) in light blue color. Fifth panel presents mutation blocks (with respective block
genes (BCL6 etc) present in the region. Seventh panel presents the TAD boundaries aroun
was large, the region of the interest is zoomed in and the end boundary of the TAD is show
figure highlights the important overlapping mutation blocks, DMRs, enhancers discussed
(For interpretation of the references to color in this figure legend, the reader is referred
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DMR (mr22253 in chromosome 18) successfully meets the expec-
tation, by reporting it as a hypoDMR with a high score (probability
equals 1 from logistic regression model), and the significant differ-
ence in methylation levels between tumor and normal samples is
e TAD around BCL6 identified by the new integrative data analysis. This figure
ing BCL6 as well. First panel presenting brown color horizontal bars presents mean
rlaps with the mutation block and enhancers. Second panel containing green colored
panel presents all predicted DMRs with respective DMR IDs in the region in form of
the region from the 5 FL related cell lines (DOHH2, GC B cell, Namalwa, OCI-ly1 and
IDs) predicted by BayesPI-BAR2 in dark blue tiles. Sixth panel presents the RefSeq
d the region, linking the start of TAD with its end with a grey curve. Since the TAD
n in the right light blue vertical section of the image. A yellow vertical bar across the
in result section Coordinates for all these genomic features are mentioned in stable5.
to the web version of this article.)
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clearly illustrated in Fig. 4. Thus, an over expression of BCL2 in FL
can be credited to the hypomethylation of the enhancer and muta-
tion blocks present in promoter region of BCL2 (Figs. 3 and 4).
3.6. Differentially methylated region and mutation block in 50 distance
of BCL6.

Another key regulator in FL is the BCL6 gene. Located on locus
3q27, it codes for the BC-6 protein which is a transcriptional
repressor expressed by germinal center B cells, and is crucial for
GC formation [69]. In this work, 23 mutation blocks are identified
in and around the BCL6 gene. Except for 2 mutation blocks that
reside near TSS and gene body, all other mutation blocks are
located in the 50distance region of BCL6 (e.g., the long non-coding
region in the 50region of BCL6; Fig. 5, Stable4). There is a large gene
desert stretch in 50 distance region of the BCL6 (Fig. 5). Our previ-
ous study focusing on promoter regions only, reported one muta-
tion block in promoter region of BCL6 [57]. This time two
mutation blocks (sizes 1501 bp and 506 bp for block_11749 and
block_11750, respectively; Fig. 5) are identified in the promoter
region of BCL6, in which block_11749 is overlapping with the pre-
viously reported block [57] and is present in 11 out of 14 patients.
While examining these 23 mutation blocks in TSS and 50distance
region of BCL6, 22 of those are overlapping with 17 enhancers from
5 lymphoma related cell lines. Additionally, a 1638 bp long DMR
(mr60482; Fig. 6) is identified in the 50distance (or gene desert)
region of BCL6. This DMR is especially interesting because it covers
a mutation block (block_11760; Fig. 5) and overlaps with enhan-
cers from lymphoma related cell lines (OCI-LY1 and Namalwa).
Target genes for these enhancers are long non coding RNAs like
RP11-132 N15.3 and RP11-430L16.1, which involved in B-cell
malignancies [70]. As shown in Fig. 6, hypermethylation of this
DMR can result into inaccessibility of the affected enhancer region,
having a negative impact on regulation of BCL6. As expected, a sig-
Fig. 6. A hyperDMR (mr60482) overlapping with a mutation block (block_11760) ide
hyperDMR (mr60482 in chromosome 3; probability equals one in logistic regression mod
the methylation profiles (both original 28 and smoothed 163 data points) of mr60482
principal components for tumor and normal samples. Lower panel of the figure, from t
groups where shadow arear represent a 95% confidence interval (�69.3% of data point
samples (the clustering accuracy of predicted sample group labels is � 0.833), and a his
groups, respectively. Here, gcb/tumor vs gps means intra-group Euclidean distance of
Euclidean distance between tumor and normal samples, and tumor and normal samples
the references to color in this figure legend, the reader is referred to the web version of
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nificant lower expression of BCL6 is observed in FL patients [57] as
compared to that of the normal samples (p-value < 0.0008; down-
regulated in FL compared to normal). This suggests that the DMR,
present in the large gene desert stretch in the 50 distance region of
BCL6, may contribute in the oncogenesis of FL. Thus, hypermethy-
lation of the region and the presence of a mutation block can inac-
tivate the underlying enhancer by restricting TF binding, which
results into lower expression of BCL6 in FL patients.
3.7. Cell division cycle associated protein 4 (CDCA4) as a putative new
biomarker for FL

Both BCL2 and BCL6 genes are well known in FL, and they are
ranked in the top 10 of the mutation block-gene associations in
this new genome-wide mutation analysis. Among the top 10 pre-
dictions (Stable 2), a mutation block (block_61069) in chromosome
14 near CDCA4, has the highest mutation frequency across all 14 FL
patients. Apart from this particular block, CDCA4 is also associated
with 30 mutation blocks through its 50distance region (Stable 5).
Additionally, the 50 distance region not only had large number of
mutation blocks, but also showed extensive differential methyla-
tion (Fig. 7). There are 13 DMRs identified in 50distance region of
CDCA4, and all of them overlapped with mutation blocks (Stable
5). Additionally, 16 of 30 mutation blocks were also found overlap-
ping with multiple enhancers from different cell lines. Interest-
ingly, 14 out of these 16 mutation blocks overlap with 17
enhancers from the selected follicular lymphoma related cell lines.
The target genes of all these enhancers are mainly from IGH family
(i.e., IGHA1/2, IGHG2, IGHGP, IGHEP1, IGHG3, IGHD, IGHM, IGHJ4/5
etc). Moreover, all of these mutation blocks, DMRs, genes, and
enhancer are located in a single TAD, which strengthens the idea
of long-ranged interaction between the mutation blocks/DMRs
and the genes (Fig. 7). For example, a mutation block
(block_61069) overlaps with both enhancers (from all 5 FL related
ntified in 50 distance region of BCL6. Figure displays six attributes of a predicted
el) in follicular lymphoma. Upper panel of the figure, from the left to the right side is
in tumor and normal samples, respectively, as well as a 3-D plot of the first three
he left to the right side is the smoothed methylation profiles of tumor and normal
s are differentially methylated; P-value < 0.05), a 2-D plot of t-SNE map for 14 FL
togram plot of mean methylation changes (centered around 0.35) between the two
normal (P-value < 0.00063)/tumor (P-value < 0.007) samples versus inter-group
are illustrated by red and green points (or lines), respectively. (For interpretation of
this article.)



Fig. 7. Mutation blocks, differentially methylated regions, and enhancers in a single TAD around CDCA4 identified by the new integrative data analysis. This figure
displays mutation blocks, DMRs and enhancers that are identified in a single TAD containing CDCA4 as well. First panel presenting brown color horizontal bars presents mean
methylation levels of normal samples in the DMR that are predicted around CDCA4 and overlaps with the mutation block and enhancers. Second panel containing green
coloured horizontal bars presents mean methylation levels of the same DMR in FL samples. Third panel presents all predicted DMRs with respective DMR IDs in the region in
form of red tiles. Fourth panel presents overlapping enhancers (with mutation blocks or DMRs) in the region from the 5 FL related cell lines (DOHH2, GC B cell, Namalwa, OCI-
ly1 and OCI-Ly7) in light blue color. Fifth panel presents mutation blocks (with respective block IDs) predicted by BayesPI-BAR2 in dark blue tiles. Sixth panel presents the
RefSeq genes (CDCA4, IGHG, IGHD etc) present in the region. Seventh panel presents the TAD boundaries around the region, linking the start of TAD with its end with a grey
curve. A yellow vertical bar across the figure highlights the important overlapping mutation blocks, DMRs, enhancers discussed in result section. Coordinates for all these
genomic features are mentioned in stable 6. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cell lines) and two DMRs (mr34380 and mr34378; Fig. 8 and
SFig. 3), and both DMRs have near to zero methylation in normal
samples but high methylation levels in FL patients. Mutation
blocks in the enhancer region with high methylation levels (e.g.,
hypermethylation) can alter the transcription factor binding in
the region, which may result in altered target gene expressions
levels (e.g., decreased CDCA4 gene expression due to hypermethy-
lation in the regulatory region). Indeed, the expression levels of
CDCA4 were significantly decreased in FL patients (e.g., P-
value < 0.001). Thus, both the presence of mutation blocks and
the variation of DNA methylation in the same region might disrupt
the binding of transcription factors that are regulating CDCA4
expression. For that reason, BayesPI-BAR2 was used to predict TF
binding affinity changes at DNA sequences of 2 DMRs (mr34380
and mr34378), which overlap with both a mutation block and
enhancers (details in supplementary methods). The result suggests
that there are several transcription factors showing significant
binding affinity changes (SFigs. 4 and 5) between the tumor and
the normal DNA sequences. For example, in region of mr34378,
TFs (HOXD9, BAPX1, PBX1, MSX3, MAFB, HOXA2, TST-1, EN1) have
significantly reduced binding affinity on sequences with the pres-
ence of mutation blocks (SFig. 4). For mr34380, the binding affini-
ties of both TFAP2A and HIC1 are negatively impacted by the
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mutations in FL (SFig. 5). TFAP2A has been reported previously as
hypermethylated in diffuse large B-cell lymphoma [71].

3.8. CTSO as potential biomarker for follicular lymphoma

CTSO (Cathepsin O) gene encodes for a proteolytic enzyme
which plays an important role in cell death and apoptosis. Cathep-
sins are generally considered as house-keeping enzymes which are
ubiquitously expressed in human tissues. CTSO and other members
of the same enzyme family have already been recognized as a bio-
marker in other cancers such as breast cancer. However, in our
study we found that a non-coding region upstream of CTSO can
harbour regulatory potential for FL. We detected 47 mutation
blocks in and around CTSO, and 4 mutation blocks out of these
overlapped with enhancers from different cell lines and tissues
(SFig. 6, Stable 6). Interestingly, we found 3 DMRs in the same 50

region. All three of them overlapped with mutation blocks, and
two (mr43894 with block_27288 in SFig. 7 and mr_43917 with
block 27297 in SFig. 8) of them also overlapped with 18 enhancers
from 6 different cell lines. All three predicted DMRs are hypoDMRs
and lie within the same TAD as the gene and mutation blocks
(SFig. 6). One of the DMRs (mr43894) predicted by our method.
This is shown in detail in (SFig. 7) where there is a clear difference



Fig. 8. A hyperDMR (mr34380) identified in 50 distance region of CDCA4 overlapping with the highest ranked mutation block (block_61069). Figure displays six
attributes of a predicted hyperDMR (mr34380 in chromosome 14; probability equals one in logistic regression model) in follicular lymphoma. Upper panel of the figure, from
the left to the right side is the methylation profiles (both original 6 and smoothed 46 data points) of mr34380 in tumor and normal samples, respectively, as well as a 3-D plot
of the first three principal components for tumor and normal samples. Lower panel of the figure, from the left to the right side is the smoothed methylation profiles of tumor
and normal groups where shadow arear represent a 95% confidence interval (�67.4% of data points are differentially methylated; P-value < 0.05), a 2-D plot of t-SNE map for
14 FL samples (the clustering accuracy of predicted sample group labels is � 0.917), and a histogram plot of mean methylation changes (centered around 0.2) between the
two groups, respectively. Here, gcb/tumor vs gps means intra-group Euclidean distance of normal (P-value < 0.0015)/tumor (P-value < 0.013) samples versus inter-group
Euclidean distance between tumor and normal samples, and tumor and normal samples are illustrated by red and green points (or lines), respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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between methylation patterns of tumor and normal samples. Of
interest, there is a dip of the methylation level at the center of this
90 bp long DMR. There is a possibility that the lower methylation
level indicates an underlying transcription factor binding site in
the enhancer that overlaps with this DMR. We discuss this possi-
bility because methylation is a repressive mark and for a house
keeping enzyme like CTSO, DNA methylation levels must be lower
in the regulatory region of CTSO where relevant trans-acting ele-
ments are expected to bind. Existence of this hypomethylation
on top of enhancers that contain the mutation predicts upregula-
tion of CTSO in FL samples. Indeed, we found significant high
expression level of CTSO in FL sample as compared to normal sam-
ples (e.g., p-value < 5.5e-10). Hence, we conclude that the presence
of DMRs and mutation blocks in the upstream regulatory region of
CTSO may result in over expression of CTSO gene in FL tumors.
3.9. Robustness analysis of the predicted mutation block-gene
associations in follicular lymphoma

To evaluate the robustness of aforementioned four mutation
block-gene associations (BCL2, BCL6, CDCA4, and CTSO) based on
an integrative analysis of DMR, DEG and TAD information (e.g.,
327 genes in Fig. 2), we repeated analysis three times with differ-
ent setting or parameters and obtained three sets of top ranked
mutation block-gene associations from the same FL data: 1) top
ranked 327 block-gene associations predicted based on 2105
DEG, where RPKM values were quantile normalized and computed
from gene region; 2) top ranked 959 block-gene associations by
using 4603 DEG, where RPKM values were log transformed quan-
tile normalized and calculated from exon; 3) top ranked 758
block-gene associations selected based on the same 4603 DEG
but with different genome/regulatory feature scores (e.g., TSS = 4,
Enhancer = 3, Gene = TES = 2, and 50Dist = 1). Then, a newly devel-
oped robustness analysis was applied on these three sets of top
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ranked mutation block-gene associations, the fraction/percentage
of mutation blocks of a gene located in seven types of chromatin
segmentation in human genome (Fig. 9) was computed, respec-
tively. Results from Fig. 9 and supplementary SFigs. 9 and 10 illus-
trate that the majority of mutation blocks of a gene are overlapping
to R (repressed regions > 80%), T (transcribed regions > 25%), and E
(enhancer > 10%). Often, the mutation blocks are significantly (e.g.,
the mean of expected P-values is � 0.05 by 10,000 random sam-
plings) associated with R, E, TSS, and PF (promoter flanking)
regions. After filtering mutation blocks without significant associ-
ations with either TSS or E region, the top 20 ranked genes (supple-
mentary Stable 7) were reported from the three results,
respectively. The mutation blocks associated with BCL2, CDCA4,
and BCL6 passed such robustness analysis in all of the three tests
(e.g., the mutation blocks significantly enriched in either TSS or
enhancer region based on a new permutation test; the expected
P-value < 0.05), and are all ranked in top 15 from the three results.
None of the three results include CTSO, meaning it does not pass
our robustness analysis. Therefore, the predicted mutation block-
gene association for CTSO may not be as robust as the other three
ones, which requires further confirmation from newly evaluated
clinical samples.
3.10. Chromosome translocation and regulatory mutation blocks in
BCL2

BCL2 t(14; 18) translocation is found in 85–90% of FL cases,
which is considered to be the main cause of high BCL2 expression
in FL. In the current study, two regulatory mutation blocks
(block_66303 and block_66304; Fig. 3) near BCL2 are found to
affect>70% of 14 FL patients (Stable 1), and both of them are
located near a DMR at the promoter of BCL2 (hypoDMR
mr22253; Fig. 4). We suspect this regulatory arrangement has a
significant impact on BCL2 expression. Thus, it is very interesting



Fig. 9. Boxplots for the percentage and the expected P-values of mutation blocks associated with 327 genes that overlapping in the seven types of chromatin
segmentation. Left panel of figure shows a box plot of the fraction/percentage of mutation blocks that are overlapping with the seven types of chromatin segmentation (or
chromatin states) in human genome, the percentage for each gene is calculated based on the number of its associated mutation blocks overlapping to the seven types of
segmentation of genome, respectively. A red horizontal line represents the 10% of mutations blocks of a gene, and the green triangles are the mean values in each box plot.
Right panel of the figure displays the absolute log10 of expected p-values of mutation blocks associated to a gene are enriched in the seven types of chromatin segmentation,
respectively. The p-values are calculated on base of a permutation test of 10,000 times randomly sampled mutation blocks. A red horizontal line indicates an absolute log10 of
expected p-value = 1.3 (e.g., expected p-value = 0.05), and the green triangles are the mean values in each box plot. The seven types of chromatin segmentation of human
genome (or chromatin states) are R, T, E, TSS, WE, CTCF, and PF that represent the predicted repressed/low activity region, transcribed region, enhancer, promoter region/
transcription start site, weak enhancer/open chromatin region, CTCF enriched element, and promoter flanking region, respectively. The mutation blocks associated with 327
genes are selected by a weighted vote approach (e.g., mean feature score>=0.5; Fig. 2). (For interpretation of the references of color in this figure legend, the reader is referred
to the web version of this article.)

Table 2
A two-way contingency table for both the two BCL2 regulatory mutation blocks and the BCL2 t(14; 18) translocation in 14 follicular lymphoma samples. This table shows
the distribution of 14 follicular lymphoma samples with either two BCL2 regulatory mutation blocks (both block_66303 and block_66304; Fig. 3) or BCL2 t(14;18) translocation. A
two-sided Fisher’s exact test of this table is p-value = 0.01, which indicates that there is a significant correlation between the two BCL2 regulatory mutation blocks and the BCL2 t
(14;18) translocation in FL, though the number of sample size is small.

Two BCL2 regulatory
mutation blocks (Yes)

Two BCL2 regulatory
mutation blocks (No)

Total

BCL2 t(14;18) translocation (Yes) 10 1 11
BCL2 t(14;18) translocation (No) 0 3 3
Total 10 4 14
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to study the relationship between the two regulatory mutation
blocks and the BCL2 t(14;18) translocation in FL. We first tested
all 14 FL samples for presence of BCL2 t(14; 18) by using DELLY2
[72] program. We found 10 out of the 14 samples (71%) have
BCL2 t(14;18) translocation (Stable 1). As Supplementary SFig. 11
shows, all BCL2 t(14; 18) translocations appear near the 30 end,
which means the translocated chromosomal segment may contain
the two regulatory mutation blocks when IGH-BCL2 translocation
happens. Supplementary STable 1 provides a summary of the dis-
tribution of the two regulatory mutation blocks and the predicted
BCL2 t(14;18) translocation in 14 FL patients. In Table 2, a two-way
contingency table for the two regulatory mutation blocks and the
BCL2 t(14; 18) translocation in 14 FL samples is illustrated, where
a Fisher’s exact test of the table is p-value = 0.01. It indicates that
there is a significant correlation between the two regulatory muta-
tion blocks (blocks 66303 and 66304; Fig. 3) and the BCL2 t(14;18)
translocation in FL. Results of BCL2 differential expression analysis
between the four groups of FL samples (e.g., with/without the two
regulatory blocks or with/without BCL2 t(14;18) translocation) and
the normal control samples are shown in supplementary SFig. 12,
which suggest that both the two regulatory mutation blocks
(P-value < 0.001) and the BCL2 t(14;18) translocation
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(P-value < 0.002) contribute to high BCL2 expression in FL. Though
there is a significant difference (P-value < 0.029) of BCL2 expres-
sion between the FL samples without BCL2 t(14; 18) translocation
and the normal ones, the differential expression of BCL2 between
the FL samples without the two regulatory mutation blocks and
the normal ones is marginal (P-value < 0.057). Thus, the two regu-
latory mutation blocks around BCL2 may have an effect additive to
BCL2 t(14; 18) translocation that causes abnormally high BCL2
expression in FL. Nevertheless, the sample size is small in the cur-
rent study, which needs more data in future for confirmation.
4. Discussion

The regulation of the genome is complex and cannot be
explained by a single type of data set. Integration of the major
genomic changes like SNVs, DNA methylation, gene expression
and genomic structures like TADs, holds the promise of a more
thorough understanding of the genome in human disease. Complex
disease phenotypes like cancer are regulated by multiple genomic
and epigenomic factors. Differential gene expression can be caused
by changes in a nearby regulatory region like enhancer regions.
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Enhancer regions can show epigenetic change such as hypomethy-
lation, increasing the chance of transcription factor binding or can
show genetic changes like SNVs resulting into altered binding of
transcription factors. Both of these phenomena can cause over
expression of a gene. However, long range interaction between
potential regulatory regions like enhancers and mutation blocks
are difficult to be mapped to their target genes. TADs restrict such
long-range interactions within the TAD boundaries and can be
used to map the regulatory regions to their respective target genes.
TADs also are fundamental 3D genomic structures, which are
important for gene regulation and known to restrict long-
distance gene regulation in their boundaries (e.g., by topologically
limiting enhancer’s approach to its target genes) [73]. Usually,
TADs are stable across different cell-types or conditions and TAD
boundaries are more evolutionarily constrained as compared to
TADs [74–76]. Thus, it is reasonable to apply inferred common
TADs from cell line data, and to assume that both the long-
distance gene regulatory region (e.g., 50distance region) and the
putative target genes are positioned in the same TAD. In this
way, many non-significant associations between a gene and a
mutation block in its neighboring non-coding region like 50distance
regions can be removed.

In this work, a novel method for integration of aforementioned
diverse information is developed to understand the importance of
regulatory mutation in FL, by analyzing genetic, epigenetic, and
transcriptomic data collected from the same FL cohort. Gene
expression profiles of immune cell markers (e.g., T-cells (CD3),
macrophage (CD68), and B-cells (CD19; PAX5); SFig. 13) from the
14 FL samples shows that there is a similar expression level
between T-cells/macrophage genes and B-cell genes. This indicates
that these FL samples were representative of the tumour. Thus, a
new machine learning method (Fig. 1) was designed first to iden-
tify and rank DMR between two groups of samples. Then, the
extracted differential methylation information from genome-
wide DNA methylation data is integrated with mutation blocks
related to complex phenotype like FL. Mutation blocks are also
mapped to differentially expressed genes (DEG) and enhancers
that lie in the same TAD boundaries. Finally, a list of high confi-
dence disease related genes associated with mutation blocks and
DMRs is obtained by using a new weighted voting approaching
that considers four feature scores (e.g., the number of patients
affected by mutation blocks, DMR significance, P-value to DEG,
and the weighted genomic feature of a mutation block; Fig. 2).
Based on this new integrative data analysis pipeline, �66868
mutation blocks (initial) are initially identified in genome-wide
manner, from 14 FL patients by BayesPI-BAR2, but are reduced
to � 45570 blocks by considering the mutation blocks overlapping
with either DMR or DEG (DMR-or-DEG). This number is further
decreased to � 1272 mutation blocks with strong associations with
159 genes through TSS/TES/gene body/50Distance, when including
TAD information and GO biological process/pathway enrichment
information (DMR-or-DEG-Pathway). The number of mutation
blocks located in enhancers (e.g., � from 197 tissue/cell lines,
retrieved from EnhancerAtlas 2.0) is � 58% for initial analysis.
But it increases to 60%, and then 76% for DMR-or-DEG, and DMR-
or-DEG-Pathway analysis, respectively. Which means that when
more information is included in the analysis, a higher number of
mutation blocks with regulatory potential (through their overlap
with enhancers) are detected. Therefore, an integrative analysis
of mutation blocks by including diverse information (e.g., DMR,
DEG, TAD, and GO/pathway enrichment information) can signifi-
cantly improve the prediction of functional regulatory mutations
in disease.

Among the top 10 (Stable 2) of the final 159 genes having strong
associations with mutation blocks in FL patients, BCL2 is the high-
est scoring gene which shows over expression in FL. Additionally,
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two mutation blocks are detected in the promoter region of
BCL2. A novel hypoDMR was also found covering the two mutation
blocks (Fig. 3) and an enhancer. In the DMR, the high methylation
levels in the normal samples (Fig. 4; noticeably form two peaks in
the normal samples) indicate hypomethylation at the locations of
the two mutation blocks. However, in tumor samples the methyla-
tion levels are decreased, allowing possibility of transcription fac-
tor binding in the region which can be a reason for high
expression of BCL2 in FL. Our previous study reported altered TF
binding in the same region, justifying the higher expression levels
of BCL2 during lymphomagenesis [57]. BCL6 is also in the top ten
scoring genes from the current study, which is considered as a
key regulator in FL. In this work, a novel mutation block in the gene
desert stretch in the 50distance region of BCL6 is identified by the
new integrative data analysis (Fig. 5). Of interest, the mutation
block exists in an enhancer region and also shows significant
hypermethylation in the lymphoma samples (Fig. 6). The presence
of the hypermethylated DMR encircling a mutation block in an
enhancer region of BCL6 may explain the low expression of this
gene in follicular lymphoma.

Another interesting mutation block-gene association from the
top ten list is CDCA4, which appears in all 14 patients. One of the
mutation blocks is located in both the DMR and the enhancer
region of the CDCA4 gene. There are two hypermethylated DMRs
in this mutation block (Fig. 8 and SFig. 3), which may explain the
observed down regulation of the CDCA4 gene. Upon investigation
of the two DMRs in this mutation block, DNA sequence binding
affinities of several transcription factors are predicted to be signif-
icantly altered due to mutations in FL patients (e.g., SFigs. 4 and 5;
PBX1 and HOX family). Moreover, enhancers overlapping with the
mutation blocks in the upstream 50distance region of CDCA4 were
targeting IgH genes which are a molecular hallmark of FL [77,78].
There are few IgH genes like IGHG and IGHD also present in the
same TAD as seen in Fig. 7. It has been reported previously that
HOX genes contribute to oncogenesis in FL because of BCL2/IGH
rearrangements [79]. A similar pattern in neighborhood of CDCA4
is observed, where the DNA sequence binding affinities of HOXD9
and HOXA2 are negatively disrupted (SFig. 4; mr34378) in the
enhancer, which can influence the expression of IGH. Notably,
HOXD9 is also significantly differentially expressed (upregulated
in FL compared to normal; p-value < 1.91e-5) between FL and nor-
mal samples. It is also worthy of note that hindrance in expression
of CDCA4 in melanoma cells by siRNA causes inhibition of expres-
sion of BCL2 [80]. We suspect that CDCA4 has a functional collab-
oration with oncogenes and this could reflect its status as a
suspected tumor progressor gene that can affect pathways com-
mon to multiple cancers. Similarly, CTSO as a key player in cell
death and apoptosis, also harbours multiple mutation blocks (total
47) which overlap with enhancers and DMRs in its vicinity (SFig. 6).
All three predicted DMRs around CTSO are hypoDMRs (two pre-
sented in SFigs. 7 and 8). In connection to hypomethylation in 50

distance region of CTSO, CTSO was found over expressed in FL.
BCL2 overexpression helps malignant cells to escape apoptosis
[81]. Like BCL2, CTSO is also related to apoptosis. Both of these
genes have been previously reported as downregulated in other
cancers like melanoma and leukemia [82,83]. However, the muta-
tion blocks associated to CTSO did not pass the robustness analysis
(e.g., the significant enrichment in either enhancer or TSS regions;
Stable 7), based on seven chromatin states predicted from chro-
matin modifications (Fig. 9). Therefore, without a confirmation
from new clinical samples, CTSO may be a weaker candidate driver
gene than CDCA4 for FL oncogenesis, though not reported previ-
ously as such.

In conclusion, the new integrative analysis of genome-wide
SNVs in FL has uncovered candidate genes, mutation blocks and
DMRs that can guide further research, regarding their functional



A. Farooq, G. Trøen, J. Delabie et al. Computational and Structural Biotechnology Journal 20 (2022) 1726–1742
role in FL oncogenesis. This study also provides a rich data source
for the further exploration and understanding of FL, by providing
extensive lists of high confidence DMRs, of significant mutation
blocks in enhancer regions (Stable 8) and of mutation block-gene
pairs (supplementary website; https://amnfar.github.io/FL_pro-
ject/FL_webpage.html). Demonstrating the robustness of the
results, this work not only discovered mutation blocks reported
in previous studies but also identified new mutation blocks in
the non-coding regulatory region that are associated to FL. To
strengthen the evidence of identified association of sequence vari-
ation like SNVs with the disease, differential methylation events
were also assessed and DMRs were reported. From the regulatory
perspective, identification of differential methylation events sur-
rounding those mutation blocks, at 50distance region of genes
known for their relevance to FL, indicates that the mutation blocks
and DMRs are involved in dysregulation of those genes. From a
clinical perspective, DNA methylation changes identified in con-
nection to FL represent an attractive therapeutic target because
epigenetic changes are reversible in nature as compared to genetic
changes. The method developed in the present study can be used
to comprehensively identify driver elements of any other malig-
nancy, provided that data is available. Nevertheless, there is a lim-
itation in in silico predictions, the top ranked results may not
always be reliable (e.g., only three of four proposed mutation
block-gene associations passed a robustness analysis, by using an
independent information that was not included in the prediction)
and shall be confirmed by using newly evaluated clinical samples,
which is extensive and will become a future project.
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