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Abstract

Recent technological advances in the field of big data have increased our capabilities to

query large databases and combine information from different domains and disciplines. In

the area of preclinical studies, initiatives like SEND (Standard for Exchange of Nonclinical

Data) will also contribute to collect and present nonclinical data in a consistent manner and

increase analytical possibilities. With facilitated access to preclinical data and improvements

in analytical algorithms there will surely be an expectation for organisations to ensure all the

historical data available to them is leveraged to build new hypotheses. These kinds of analy-

ses may soon become as important as the animal studies themselves, in addition to being

critical components to achieve objectives aligned with 3Rs. This article proposes the appli-

cation of meta-analyses at large scale in corporate databases as a tool to exploit data from

both preclinical studies and in vitro pharmacological activity assays to identify associations

between targets and tissues that can be used as seeds for the development of causal

hypotheses to characterise of targets. A total of 833 in-house preclinical toxicity studies

relating to 416 compounds reported to be active (pXC50� 5.5) against a panel of 96

selected targets of interest for potential off-target non desired effects were meta-analysed,

aggregating the data in tissue–target pairs. The primary outcome was the odds ratio (OR) of

the number of animals with observed events (any morphology, any severity) in treated and

control groups in the tissue analysed. This led to a total of 2139 meta-analyses producing a

total of 364 statistically significant associations (random effects model), 121 after adjusting

by multiple comparison bias. The results show the utility of the proposed approach to lever-

age historical corporate data and may offer a vehicle for researchers to share, aggregate

and analyse their preclinical toxicological data in precompetitive environments.

Introduction

A critical part of the drug development process is the assessment of toxicity of a candidate at

preclinical level in order to predict its safety profile. This is an area with high dependency on

animal testing and still, despite the experimental effort, safety is a primary cause of attrition in

the pharmaceutical industry. It is calculated that for each marketed drug, 50 research projects
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will fail, with the main cause of attrition being non clinical toxicity in preclinical stages, safety

in Phase I trials and efficacy, followed by safety, in Phase II trials [1].

Compared to other earlier stages in the drug development process, prediction of nonclinical

toxicity or clinical safety is a big challenge for several reasons:

1. Nature of the data: As a drug discovery process progresses, the data evolves from being

mainly quantitative in nature, homogenous and highly structured (for example, early stages

are characterised by large production of quantitative numerical data like potency, physico-

chemical properties and other, mainly in-vitro, assays that come often from a common pro-

tocol and are normally stored in centralised relational databases) to a more qualitative,

heterogeneous and less structured data mainly stored in reports that may be scattered

through different systems and formats (for example, narrative of a toxicity study, histopath-

ological observations, images of lesions in tissues). Access and aggregation of such data for

modelling becomes more difficult. Also, different ontologies may have been used to codify

information at different stages, making aggregation even more difficult.

2. Availability of the data: As the drug discovery process progresses the assays and studies also

become more complex and expensive and tend to be only performed on the most promis-

ing candidates, the results obtained becoming more strategic as opposed to transactional.

This means that datasets coming from early stages often have a greater number of chemical

structures with few information for each structure while datasets from later stages tend to

have fewer structures with much information on each. This, together with the fact that the

decision to obtain more strategic data is based on results of previous steps, means that a

selection bias may be introduced.

3. Mechanistic understanding: Most of the areas in machine learning with recent advances are

mainly based on statistical learning and are thus limited to the provision of signals based on

tests for significance. However, statistical significance is not the same as biological

plausibility.

In recent years, there have been technological advances that will help to overcome issues

related with the nature of data, as for example, NoSQL (Not only SQL) databases that facilitate

the management of diverse kinds of data and scale efficiently a amounts of information

increase [2, 3], Natural Language Processing (NLP) methods, with potential to be used to

quantitatively analyse text data [4, 5] and Convolutional Neural Networks in machine learning

with potential to learn from histopathology images to make predictions [6, 7]. Regarding data

availability, there has been an increase in the number of precompetitive collaborations among

pharmaceutical companies in this space with the objective to share data and exploit it, in many

cases in partnership with academic institutions and with incentive from governments, such as

TOXCAST and eTOX [8]. These collaborations with exchange of data are also showing the

urgent need for standardised controlled terminology and ontologies in preclinical toxicology.

The introduction of the Standard for Exchange of Nonclinical Data (SEND), requiring compa-

nies to send in electronic format raw data from preclinical toxicology studies since December

2016, is expected to help in increasing both the volume of data available and its normalisation

[9]. Finally, the introduction of frameworks such as the Adverse Outcome Pathways (AOP) is

providing tools for practitioners to think and organise data in a causality manner [10, 11].

Despite progress made, one of the major problems that still confronts anybody trying to

analyse and model preclinical data to build hypotheses is how to aggregate results from differ-

ent animal studies. Animal studies are characterised by use of animals with low heterogeneity,

but also by very small sample sizes due to cost, time, ethics and practicalities of the studies,

which means those studies are generally underpowered or of unknown power [12]. While
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meta-analysis is the gold standard to aggregate clinical studies and increase statistical power in

clinical scenarios, it is not widely used in the preclinical space, although in the last two decades

different initiatives have emerged to promote its application there. For example, in 2004

CAMARADES was established to support groups involved in the systematic review and meta-

analysis of data from animal studies [13, 14], originally focusing on stroke but later extending

to other diseases. The SYRCLE group (Systematic Review Centre for Laboratory animal Exper-

imentation) also actively promotes and trains individuals in the conduct of systematic reviews

of preclinical studies [15]. In the more concrete space of preclinical toxicity, interest in evi-

dence-based methods is growing due to their potential to improve transparency, objectivity,

consistency and reproducibility, and to inform decisions [16]. Evidence based methods may

also prevent unnecessary duplication of experiments, reduce animal testing by making further

use of the data already available, refine animal tests by providing evidence to choose a particu-

lar animal model over another, suggest tests with lower burden of pain or shorten duration of

the tests [17]. In addition, such analyses can be used to explore sources of heterogeneity, iden-

tify biases and generate hypotheses [18].

With the current revolution that the pharmaceutical industry is experiencing in the fields of

data analytics and machine learning, it is possible that sooner rather than later data experi-

ments to analyse and model the available preclinical data will be as important as, or even more

important than, the conduct of new experiments based on animals in the area of preclinical

research, with high expectations that our capability to predict the safety of drug candidates will

improve. Moreover, there is an increasing expectation for researchers to use all former and

ongoing research data available to conduct new research, as summarised by Lund et al. in “The

evidence based research statement”, hence, the urgent need for systems to aggregate and criti-

cally appraise the available information [19].

This article proposes a large-scale application of meta-analysis to combine corporate in vivo

preclinical toxicity and in vitro pharmacology databases to mine for associations relating tar-

gets with events observed in in vivo studies. This approach may be useful to characterise the

safety profile of targets and also to generate statistical hypotheses that can be used as seeds to

direct efforts in the building of AOPs.

Methods

Information sources and data collection

A list of 97 targets of interest for safety purposes (referred in this article “the list” and available

in S1 File) was compiled from two literature references [20, 21].

Histopathology animal data was extracted from historical preclinical toxicity studies avail-

able in GSK in-house database with records organised at observation level (all studies in the

database were conducted in accordance with the GSK Policy on the Care, Welfare and Treat-

ment of Laboratory Animals and were reviewed the Institutional Animal Care and Use Com-

mittee either at GSK or by the ethical review process at the institution where the work was

performed). For each observation, among other details, the record includes information such

as the nature of the observation (e.g. necrosis, infiltrate), its location (e.g. Tissue), its severity

on a scale of 1 to 5, reference of the animal where it was observed, its species and strain, refer-

ences of the dosing group and study the animal belongs to, name of compound tested, dosing

regime, administration route, duration of the study and date and site of the experiments.

Pharmacology data against targets in “the list” for compounds for which preclinical data

was available (identified in the previous step) was extracted from our in-house database of in

vitro tests. Only data from functional assays was used, and activity concentrations 50 (inhibi-

tion or effect) were transformed into logarithmic scale (pIC50 or pEC50). Averages of
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logarithmic values were taken if a compound was tested in more than one functional assay for

the same target.

Data extraction and curation was performed by means of Standard Query Language (SQL)

queries embedded in in-house Python code.

Inclusion criteria and variables

The studies considered for meta-analyses were those (of any duration or administration route

and involving any species) available for compounds with an in vitro measured pEC50 or

pIC50 equal or greater than 5.5 for the target and mode of action analysed. Studies with combi-

nation of compounds or without control group were excluded.

For each study, the number of events in treated and untreated groups were counted per tis-

sue considered, an event being defined as an animal with at least one visible lesion of any mor-

phology and of any severity.

Synthesis of results

Meta-analysis for each target and mode of action in “the list” was performed against all tissues

explored in the preclinical studies included in the analysis. All tissues names were mapped to a

controlled vocabulary. In order to facilitate visualisation of results, tissues were group follow-

ing the Standard Organs Classification (SOC) where possible.

Aggregated odds ratios (OR) to assess the difference of prevalence of events in treated and

untreated animals were obtained, along with their 95% confidence intervals and p values,

applying both a Mantel-Haenszel fixed effect model and a Paule-Mandel random effects

model with Q-profile for calculation of confidence interval for inter-studies variance [22–24].

Studies with zero events were included and the Haldane-Anscombe correction applied for

empty cells. A meta-analysis would only be performed if there were data coming from at least

three different compounds and three studies per tissue/(target-mode of action) combination

analysed.

Additional meta-analyses of subgroups of studies aggregated by administration route, spe-

cies and duration of study were carried out in order to assess the effect of these covariates. In

the case of administration route, the routes considered were oral (“PO”), intravenous (“IV”),

dermal (“DERMAL”) and inhaled (“RESPIR”) with the remaining routes grouped under

“OTHER” category. In the case of duration, studies were classified as short (recorded duration

less than 9 days) and long (more than 9 days).

Heterogeneity was explored by means of a chi-squared test. Given the problem of the test

for heterogeneity being too specific for small datasets and overpowered for large datasets, the

I2 statistical is also calculated to assess the impact of the heterogenicity among studies (hetero-

geneity was considered high if I2 greater than 0.75, moderate if I2 between 0.5 and 0.75 and

low between 0.25 and 0.5) [25].

Meta-analysis calculations were performed in R using the “meta” package version 4.11.0

[26]. All forest plots were created with the same meta package except plot in Fig 4, which was

generated using the “forestplot” package version 1.9 [27]. Version of R used was 3.6.2, “Dark

and Stormy Night” [28].

Control for multiple comparison bias

Multiple comparison bias in the generation of hypothesis for AOPs was controlled by adjust-

ing the p-values obtained in the Meta-analyses using the Benjamini-Hockberg method as

implemented in R (“p.adjust” function), with a 5% threshold for the False Discovery Rate

(FDR) [29].
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Results

Descriptive analysis

The following flow diagram provides a summary of the process followed (Fig 1).

The data queries returned a total of 831 studies available for analysis, involving 414 com-

pounds that were active for at least one target in “the list”.

These studies represented a total of 24,358 animals (17,256 treated and 7,102 controls) and

a total of 232,352 histological observations across 271 tissues. Most of the studies have a small

number of animals, with more than a half of them including less than 20 animals, often distrib-

uted in three dosing groups and one control group (more details about the distribution of ani-

mals per study in S1 Fig).

The preclinical data available is very sparse when it comes to tissue observations available

for every study: out of a theoretical full matrix with 225,743 tissue-study pairs (271 tissues x

833 studies) only 15,613 (6.9%) pairs were available. A group of 8 tissues that was consistently

observed in 648 of the 833 studies accounted for a 33% of all the data available, while a group

of an additional 38 tissues consistently measured in 179 studies accounted for an additional

40% of the data available.

Most of the preclinical data comes from studies in rat and has an oral route of administra-

tion. In terms of duration, a large proportion of the studies (42%) had durations of less than 10

days (mainly 7 days toxicity studies by protocol) while another 45% of the data was formed by

studies of durations between 11 and 40 days (mainly 14 days and 28 days studies by protocol).

Fig 2 summarises the distribution of the preclinical data.

The pharmacological data obtained for the compounds involved in the studies is also very

sparse. A total of 770 compounds with preclinical data available had been tested against at least

one of 71 out of the 96 targets included in “the list”. Out of the theoretical full matrix of 54670

measures (770 compounds x 71 targets), 19,522 (36%) compound-target pairs were available.

Most of the compounds (671) had data against a set of 25 targets and those measurements

accounted for 85% of the data. After applying the activity threshold (pXC50� 5.5), there were

only 414 compounds with activity greater than the threshold for at least one of 56 targets, result-

ing in a total of 978 compound-target interactions (without accounting for mode of action).

The merging of the in vivo preclinical and in vitro data sources to relate targets to tissues

resulted also in a very sparse dataset. Of the theoretical maximum of 19,241 target–tissue possible

pairs (71 targets x 271 tissues) only 1896 pairs had enough information available to fulfil the crite-

ria to be included in the meta-analysis, reducing the number of targets to 48 and the number of

tissues to 67. More specifically, the same group of 8 tissues mentioned earlier had data available

for a set of 46 targets (all the surviving targets but 2), accounting for 20% of the data, and an addi-

tional set of 40 tissues had data for 30 targets, accounting for another 62% of the data.

The 1896 target-tissue pairs increased to 2139 pairs when the mode of action (agonist or

antagonist) was considered, i.e. when different modes of action for the same target were

counted as different targets.

Preclinical studies available for each target-tissue pair were grouped together with the

objective to aggregate results using a meta-analysis. In many cases, the number of studies avail-

able for a target-tissue pair was small, with approximately 40% of the target-tissue pairs having

less than 10 studies available (S2 Fig).

Meta-analyses

Significant associations. A total of 2139 meta-analyses were carried out, producing 612

significant associations (i.e. target-tissue combinations for which there was a significant effect
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Fig 1. Flow diagram with the steps in the analysis.

https://doi.org/10.1371/journal.pone.0252533.g001
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of the compound on the number of events), involving 46 targets (63 taking into account mode

of action) and 54 tissues, at p� 0.05 using a fixed effect model, and 364 significant associa-

tions, involving also 46 targets (62 taking into account mode of action) and 42 tissues, when a

random effects model was applied. Control of multiple comparison bias by applying the Benja-

mini-Hochberg adjustment with a false discovery rate of 5% reduced the number of significant

associations to 304 in the case of the fixed effect model, involving 45 targets (58 taking into

account mode of action) and 41 tissues, and to 121 in the case of the random effects model,

involving 34 targets (41 taking into account mode of action) and 24 tissues. S3 and S4 Figs

summarise the number of significant target-tissue associations obtained after applying differ-

ent methods to control for multiple comparison bias. An Excel spreadsheet file is available in

supporting information with the significant associations obtained with the random effects

model (S2 File).

Heterogeneity and subgroup differences. Heterogeneity in the meta-analyses was gener-

ally low, with no heterogeneity observed in 80% of the meta-analyses performed, and only a

5% of the meta-analyses showing an I2 larger than 50% (S5 Fig).

Subgroup meta-analyses taking account of possible differences in effect size between the

species, administration routes and duration of the studies found a low number of cases where

differences across group were significant. Significant differences across groups were found

only in 5.5% of the meta-analyses between species, in 3% of the meta-analyses between admin-

istration routes, and in 3% of the meta-analyses between short and long duration. Low num-

bers are expected given that in many cases, no events or a low number of events are observed

in the studies (almost half of the meta-analysis produced an OR of 1). If we confine attention

to the meta-analyses with higher size of effect (OR� 2), the number of significant differences

across groups increases for species and administration route (15% of meta-analyses had

Fig 2. Distribution of species, administration routes and duration across studies.

https://doi.org/10.1371/journal.pone.0252533.g002
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significant differences across species, 11% across administration routes) but remains the same

in the case of duration (3%). S9 Fig summarises the number of differences identified across

covariates.

Fixed effect vs random effects. Both random effects and fixed effect models showed in

general good agreement on the size of the effect (S6 Fig), especially in those situations where

heterogeneity was low, although a slight trend to produce larger OR was observed in the fixed

effect models. In 50% of the cases, the increase in ln(OR) was less than 0.06 and in 75% of the

cases it was less than 0.16. Fixed effect and random effects models agreed in giving the esti-

mated OR of the effect to be�2 in 407 target-tissue pairs (19% of the total number of meta-

analysis) and<2 in 1582 (74% of the total). The main disagreement between models was for a

set of 131 target-tissue pairs (6%) classified as OR�2 by the fixed effect models but not by the

random effects model. On the other hand, only 19 pairs (1% of the total) were classified to be

OR�2 by the random effect model but not by the fixed effect model (Cohen’s kappa value for

the agreement between random and fixed in classifying OR above or below 2 is 0.80, where κ
= 0 represents agreement no better than by chance and κ = 1 represents complete agreement).

The agreement is still high after excluding the 1948 meta-analyses with low heterogeneity

(I2<30%), both fixed effect and random effects models giving estimated OR > 2 in 107 meta-

analysis (56% of the remaining total number of meta-analyses) and to be less than 2 in 45

meta-analysis (24%) (κ = 0.54).

The main difference between random and fixed effect models was in the confidence inter-

val, which, as expected, are larger in the random effects models. Also as expected, the increase,

is small in situations with low heterogeneity (I2 < 30%), where in 75% of the cases the increase

in the confidence interval is less than 12%, whereas in situations with larger heterogeneity the

increase is larger than 58% in half of the meta-analysis and more than 100% in 25% of the

cases, reducing dramatically the number of results considered significant.

Summary of key findings

Fig 3 summarises all the results for meta-analyses where the OR obtained for the target–tissue

association was�2. Tissues are distributed in columns and targets in rows and the data points

are coloured by the magnitude of the p-value for the interaction, those in red being the results

that would be considered significant after adjusting by Benjamini-Hochberg method and

those in yellow, the results that did not achieve statistical significance on this criterion. This

figure may be useful to spot relations among the targets and tissues, to identify clusters of

results or patterns of activity. For example, looking column by column (tissues), the figure

seems to indicate thymus, stomach and liver are some of the organs accumulating more signif-

icant events in preclinical animal studies. In the particular case of thymus, after applying the

Benjamini-Hochberg adjustment, the results show association mainly with receptors related

with neurotransmitters and hormones (AR, ADRA1B, ADRB2, CHRM1, CHRNA1, HTR1A,

HTR2A, HTR3A, SLC6A3, SLC6A4) apart from a calcium channel (CACNA1) and a tyrosine-

protein kinase (LCK). Also interesting is the cluster of associations highlighted between mam-

mary gland and targets related with dopamine, serotonin, histamine and adrenaline in addi-

tion to the androgen receptor, although only DRD2 (Dopamine receptor 2) and AR

(Androgen receptor) would be significant after adjusting the p-values. Looking row by row

(targets), the figure can be used to characterise targets, for example, in the case of androgen

receptors, the figure indicates events in the immune system, the adrenals, stomach, skin,

femur, incisor and almost all the reproductive tissues observed, while in the case of PPARG

(Peroxisome Proliferator Activated Receptor Gamma), the events concentrate in brown adi-

pose tissue, stomach, liver, femur and sternum-bone marrow.
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Fig 3. Summary of largest effect sizes obtained (OR� 2). The plot contains all the target-tissue associations (regardless of mode of

action) for which a meta-analysis produced an OR� 2. Colours are based on p-values (yellow: not significant at p� 0.05, orange:

significant at p� 0.05 but with FDR> 5%, red: significant) and with FDR� 5%.

https://doi.org/10.1371/journal.pone.0252533.g003
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Target profiles

Fig 3 only summarises the largest size effects but the results provided by the meta-analyses can

be exploited to obtain more detailed analysis. The OR obtained in the meta-analyses and their

confidence intervals can be grouped by target in a multiple forest plot to obtain what could be

described as a ‘target profile’ over the range of tissues. Fig 4 shows an example of a target pro-

file plot for agonists of the Androgen receptor. To facilitate visualisation, ORs are displayed as

natural logarithms in order to keep confidence intervals symmetrical around the OR and facili-

tate the comparison of disparate values. In addition, related tissues are grouped by System

Organ Classification (SOC). In the case of Androgen agonists, significant OR (before control-

ling for multiple comparison bias) are obtained for Thymus, Adrenals, Stomach, Incisors, and

several reproductive tissues.

Meta-analysis can also be used to explore the consistencies in the results for a given target-

tissue association across the different covariates in the studies, by means of subgroup meta-

analysis. Those analyses can also be visualised by means of forest plots which offer a way to

evaluate consistencies across groups that is quick and easy to interpret, helping to identify

potential sources of heterogeneity and to identify studies with odd results. Fig 5 presents aggre-

gate results grouped by species, administration routes, and durations, for the association

between agonists of the androgen receptor and events in testes, which is one of the meta-analy-

sis results with higher heterogeneity (I2 = 63%).

The subgroup meta-analysis at species level shows significant heterogeneity between studies

on rat and on dog (p< 0.01 for subgroup differences). In fact, a significant effect of com-

pounds on number of events, according to the random-effects model, is only observed within

the studies on rat. Borderline heterogeneity (p = 0.05) was observed at administration route

level, with the effect of compound on number of events coming mainly from oral studies (S5

Fig). Good agreement was observed when comparing short and long studies, with no signifi-

cant heterogeneity observed (p = 0.78) (S6 Fig).

Additionally, a forest plot with all the studies facilitates the inspection of consistency across

all the results obtained in the preclinical studies (S7 Fig).

The presence of bias can be assessed by means of a funnel plot such as the one in S8 Fig for

the case of androgen receptor agonists–testes association. In this example, no marked biased

can be inferred from the visualisation of the data points in the plot, and this is also indicated

by the lack of significance in the Egger test (p = 0.65).

Discussion

Potential applications

The results of the meta-analysis presented here only represent statistical associations between

targets and an increment in the number of events in the tissues explored, and this does not

imply that the targets are responsible for the events as a statistical association does not neces-

sarily imply causation. Moreover, the individual preclinical studies that are included in the

meta-analyses were originally designed to show whether the compounds are responsible for

the events. For that reason, it is important to apply a weight of evidence approach, examining

the magnitude of the effect, the dose response and the biological plausibility of the events given

the pharmacology of the compounds tested. A systematic review of literature available should

be carried out to explore the biological plausibility of the association and gather the informa-

tion needed to establish a causal explanation which could be represented in the form of an

Adverse Outcome Pathway (AOP). In that sense, the results of the meta-analysis can be used

as seeds to develop AOPs, suggesting potential links between molecular initiating events and
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effects (the two ends of the adverse outcome pathway). Meta-analysis results could also act as a

heuristic function to prioritise research towards generation of AOPs (e.g. to guide literature

reviews or exploration of knowledge graphs).

It is not the purpose of this article to establish such causal relations or generate AOPs, but

to present a methodology to generate the associations. However, it is important to gather some

insight on how likely this technique is to identify true associations between targets and tissues.

Given that all the targets included in the analysis presented here are well characterised it is pos-

sible to assess if the effect on frequency of events of compounds known to hit those targets are

in agreement with what would be expected from what is already known about the targets.

In the case of the associations related to thymus, it is interesting to find neurotransmitters

at the top of the associations found by the random-effects models. It is important to take into

account that the conditions of toxicity studies often induce stress in animals, with downstream

effects on food consumption and activity of the animal, and will produce alterations in the

immune and endocrine systems, especially on tissues like thymus, spleen and adrenals [30]. In

the results presented, all studies included in the meta-analysis included control groups that

underwent the same stress and the OR in each study should reflect the active compound vs.

control comparison, potentially offsetting the component due to study design. While the

meta-analyses did not have enough resolution to treat each dosing group as separate and estab-

lish a dose effect relationship, the size of the effects of the events that are considered significant

after controlling by FDR is generally high, with OR above 2. From a biological perspective, it is

recognised that the central nervous, the immune and the endocrine systems are interconnec-

ted through dense nerve and hormonal pathways [31]. Androgen receptors are found in the

thymic epithelium and are postulated to modulate thymus size and thymocyte development

and accelerate thymocyte apoptosis [32, 33]. B2 adrenergic receptors have been identified in

the medulla of the rat thymus gland with experiments suggesting their relation with thymocyte

proliferative response, histological changes and thymopoiesis [34–36]. Muscarinic receptors

have also been reported in thymocytes and suggested to appear in late periods of cell matura-

tion [37]. Additionally, the developing thymus of rat contains serotonin receptors and trans-

porters and it has been suggested that those play a role on thymic development [38].

The associations of androgen receptors with reproductive tissues and adrenal glands was

expected, as it was the association of brown adipose tissue with Peroxisome Proliferator Acti-

vated Receptor Gamma (PPARG), given its role in brown adipocyte differentiation required

for the development and function of the tissue [39].

The relationship of dopamine with the mammary gland is expected, given that dopamine is

the primary regulator, through its interaction with lactotroph D2 receptors, of the production

in the pituitary gland of prolactin, which regulates the development of the mammary gland

[40, 41]. In the case of a potential role for serotonin, that is not that well established but there

are suggestions that the mammary gland contains a complex serotonergic regulatory system

that plays an important role in the processes of mammary homeostasis and early involution

[42]. Histamine is postulated to be involved in pregnancy-associated growth of the mammary

gland in preclinical species [43]. Adrenergic α and β receptors can be found in the mammary

gland, with reports that α adrenergic stimulation produces changes in milk yield and peak

flow rate, indicating a function for adrenalin in the gland [44, 45].

Fig 4. Target profile forest plot for androgen receptor agonists (random effects). The meta-analyses can be

grouped by target to produce profiles of events per tissue. The figure shows the profile obtained for the meta-analyses

involving androgen receptor agonists for each tissue analysed. The results of the meta-analyses allow to identify the

tissues where there was a significant increase in number of animals with events vs controls.

https://doi.org/10.1371/journal.pone.0252533.g004
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Fixed effect vs random effects & heterogeneity

One of the decisions to make when applying a meta-analysis is whether to apply a fixed effect

or a random effects model. Under the fixed effect paradigm, it is assumed that one true effect

size is shared by all the combined studies, and variations across studies are due to sampling

from a same distribution (i.e. if all studies had infinite sample size all of them would produce

Fig 5. Androgen agonists subgroup analysis for the effect on number of events in testes (random effects): Forest plots with results by

species and tests for subgroup differences. Forest plots can be used to evaluate the consistency of the effect across covariates and studies.

https://doi.org/10.1371/journal.pone.0252533.g005
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the same result and error would be zero). Under the random effects paradigm, it is accepted

that the true effect can vary from one study to another as samples may be coming from differ-

ent distribution (i.e. even if studies had infinite sample sizes, i.e. they would produce different

results and the error of the mean effect, averaged over studies, would not be zero). In other

words, it is assumed that differences among observed outcomes are not only a result of ran-

dom sampling fluctuations but also caused by random variability between studies, which is

reflected by the presence of heterogeneity [46].

In general, low heterogeneity is observed in the meta-analyses presented in this publication:

90% of them had an I2 lower than 30% and only a 4% of them had an I2 greater than 50%.

However, it is important to keep in mind that tests for heterogeneity may be underpowered,

especially in those meta-analyses where the number of studies included is small and variance

within study is large, a situation which is frequent in preclinical studies as they are usually

underpowered due to its small sample size. Additionally, a non-significant p-value for hetero-

geneity is not proof that the studies share a common effect.

Animal preclinical studies are expected to have more homogenous populations than, for

example, clinical trials in humans, due to the use of inbred strains and a better control of expo-

sures, test conditions and outcome assessments [47]. However, heterogeneity in the meta-analy-

sis can be introduced due to the combination of different species or by variation in study design

and protocol (e.g. duration, administration route) although it may be justified to combine stud-

ies using different species if there is evidence that the outcome of interest works by the same

mechanism across species or if differences are accounted for in the statistical model [48].

In any case, indications of low heterogeneity should not be used as justification for choosing

a fixed effect model and the decision on what model to use should be based on whether there

are any reasons to believe that the true effect is going to be the same in all studies. For that rea-

son, and given that it may be difficult to assume that, for example, different species will share a

common true effect or that the effect is going to be same regardless of duration of the treatment,

it may be advisable to apply random effects models when all the studies are combined together

and also explore the effect of co-variates like species, duration and administration by subgroup

meta-analyses to assess consistency of results and explore potential sources of heterogeneity.

However, one problem may arise in preclinical scenarios when applying random effects

models: if the number of studies in the meta-analysis is small, the estimation of between stud-

ies variance critical in random effects models will have poor precision. Nowadays, there seems

to be a trend in literature suggesting as default approaches to random effects models the Paule-

Mandel and the REML methods, especially now that they are available in many software pack-

ages [49–51]. With the REML method, convergence to a solution is not always guaranteed. On

the other hand, the Paule Mandel method doesn’t require convergence, and has additional

advantages as no presuming a particular distribution for the data, and was selected as the pre-

ferred method for the results presented in this paper. Following recommendations in litera-

ture, the Paule Mandel method is used in conjunction with the Q-Profile approach for

obtaining confidence intervals for variance inter-studies [49].

To sum up, how to deal with heterogeneity in a complex scenario like the one posed by pre-

clinical studies is always going to be a complex decision and likely to impact the analysis. The

preclinical meta-analysis presented in this article is not expected to be used as a confirmatory

test but more as an explorative tool for hypothesis generation. Given the wide availability of

methods available nowadays in easy-to-access computational implementations it may be advis-

able to perform a sensitivity analysis with different methods [52]. The chosen trade-off

between the power of the analysis and the rate of false positives may depend on the potential

impact of the association identified, and the appetite and capacity of the researchers to act on

those hypotheses.
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False discovery rates

One of the purposes of meta-analyses of preclinical data at such scale may be the generation of

an ensemble of hypotheses associating targets with events in tissues that can be used as seeds

for the generation of new Adverse Outcome Pathways. Ideally, the number of hypotheses gen-

erated should be small enough to be actionable and to be pursued for further investigation in a

sustainable manner. Hypotheses will be selected by their p-value at a specified level of signifi-

cance (e.g. p� 0.05). Of the random effects meta-analyses, 364 produced significant associa-

tions, but decisions based on these unadjusted p values are expected to produce a large

number of false positives given the large number of meta-analyses carried out. However, any

attempt to reduce the number of positives will have the effect of reducing the power of the

analysis and increasing the number of false negatives too, potentially missing relevant associa-

tions. The Bonferroni correction may be too conservative, especially in scenarios with large

number of tests like this (only 38 out of the 364 unadjusted p-values satisfied the Bonferroni

adjustment) and, rather than adjusting the results to keep the probability of a false positive

below 5%, it may be more useful to adjust the results to keep the proportion of false positives

within a set of selected hypotheses below 5% (false discovery rate). One of the most widely

used methods to adjust a false discovery rate is the Benjamini-Hochberg method, which pro-

duced 121 significant associations.

Subgroup analyses

The results from the subgroup meta-analyses seem to indicate that in general, there are little

differences between subgroups but, in those cases where there are differences, they mainly are

at species or at administration route level (S11 Fig). There seems to be little difference between

short and long studies, but in the case of duration, only two categories were compared (shorter

or equal to 9 days and longer than 9 days). It is also important to keep in mind that the capacity

to detect differences between studies with high variability is limited. In that sense, the visual

analysis of the forest plot may be more useful to assess the concordance between groups than

only a decision based on a p-value.

Biases

Data availability. As mentioned in the results section, the datasets are very sparse. Not all

compounds are measured against all targets and different organisations may have different

strategies as to which targets are included in off target pharmacology panels to evaluate poten-

tial secondary interactions of their promising compounds, which means more activity data is

available for some targets than others. Moreover, results of activity on those targets are likely

to influence what will progress to animal studies, which will also bias the composition of data

available from animal studies, as compounds with high activities for non-desired off targets

will not be as likely to be progressed as compounds that are ‘clean’. This also means that most

of the compounds for which animal data is available will have low activities for those targets,

making it more difficult to find associations. The fact that the whole pharmacology of a com-

pound is rarely known, beyond the limited set of targets in the panels tested, means also that

polypharmacology can not properly be evaluated as confounder, and compounds could also be

potent against other non-measured targets which could have an impact on the results of the

study. The risk of polypharmacology can be minimised in some degree by excluding meta-

analyses based on less than a specified number of different compounds (the larger the number

of compounds and the more diverse the dataset, the lower the chance the compounds will all

hit the same unidentified target).
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The strategy used in animal studies is another potential source of bias. It is likely that results

in short term studies may affect the progression of an asset to longer term studies, the kind of

studies that will be performed or even its termination, affecting the amount and nature of data

available.

Additionally, not all the tissues are explored in all studies, with those tissues of higher rele-

vance being analysed in more studies, increasing the data available on them.

Inclusion criteria and definition of events. The inclusion criteria and the definition of

the events used in the meta-analyses are another potential source of bias.

In order to simplify the analysis and convert compound activity in a dichotomous variable,

the threshold to classify a compound as active is specified in this paper at a pXC50 of 5.5. This

value is frequently used in diverse scenarios to classify compounds as binders vs non binders,

toxic vs not toxic or active vs not active for classification purposes [53–55]. However, this

means that, for example, compounds with activities at micromolar level are considered equally

to compounds with nanomolar activity, whereas it is possible that the more active compounds

may be more likely to produce events. Additionally, it is also possible that compounds with

activities below a pXC50 of 5.5 may produce events if tested at very high concentrations, as it is

the case sometimes in preclinical toxicity studies. It should also be considered if different cut-

offs need to be applied to different targets of families of targets in case that some require differ-

ent levels of activation to produce events.

The definition of the event used in this publication attempts to remove subjectivity by con-

sidering a lesion as visible or not visible but not considering its severity. This may reduce the

power of the analysis, as low severity lesions are more likely to happen in control groups than

high severity lesions, but will contribute equally to the calculation of the effect size. Addition-

ally, the meta-analysis is restricted at counting events at tissue level without considering more

specific locations of the lesion or its morphology. Although a meta-analysis at higher level of

resolution would be desirable, the sample size quickly diminishes when trying to aggregate

data at levels more detailed than tissue, given the high number of potential morphologies and

locators, making the statistical treatment of the data almost impossible, as the studies are

severely underpowered.

Last but not least, the meta-analyses presented do not treat separately the different dosing

groups, so it is not possible to assess whether there is a dose effect relationship. Given that

these are toxicity studies, doses often are high, and events may be related with nonspecific

pharmacology. However, given the different potencies of compounds involved and pharmaco-

kinetic properties, a comparison based on dose would be difficult and it would probably be

more interesting to assess whether there is a relation with exposure, with the expectation that

events related with a target through a direct mechanism of action will be observed at lower

exposures than those due to nonspecific pharmacology. The ability to include toxicokinetic

data in a meaningful manner in the meta-analysis would be desirable.

Study design. Fixed effect models will be biased towards the studies with larger sample

size as these studies are more likely to produce values with more precision and hence less vari-

ance. Studies in rats and longer-term studies tend to have larger sample sizes and so, fixed

effect models could potentially bias results towards them.

Publication bias. There is little risk of publication bias, as a systematic approach based on

internal data will take in all the studies meeting the inclusion criteria available in the in-house

database, which are recorded independently of the outcome of the study. However, there is a

risk if an organisation follows different policies to store data for different kinds of studies (e.g.

internal studies vs outsourced), or if different ontologies are used in those studies, which may

make aggregation of data difficult. It is also possible that not all studies are available in elec-

tronic format, introducing another potential source of bias. The introduction of SEND, which
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specifies a way to collect and present nonclinical data in a consistent format, is expected to

reduce bias in this space. SEND requires a controlled terminology mapping which, for preclin-

ical toxicology, is not as developed or standardised as in the case of human safety (e.g. Med-

DRA). Several organizations have been working to develop controlled vocabularies and

ontologies in this space, such as the International Harmonization of Nomenclature and Diag-

nostic Criteria for Lesions in Rats/Mice and Non-rodent Species (INHAND) or the ontology

developed within the framework of the Innovative Medicines Initiative (IMI) eTOX consor-

tium and also currently used by the eTRANSAFE consortium [56, 57].

Conclusion

Technological advances in the field of big data have increased our capabilities to query large

databases and combine information from different domains and disciplines. With facilitated

access to preclinical data and improvements in analytical algorithms there will surely be an

expectation for pharmaceutical companies to make sure all the historical data available to

them is leveraged to build hypotheses.

Meta-analysis offers a solution to the problem of integrating data across preclinical studies

by offering a robust statistical integration and powerful tools to visualise and gather insights

from data that are easy to interpret, making it an ideal tool for democratising access to data,

and analytics and hypothesis building, in this space. However, it is important to be aware of

the potential issues inherent preclinical animal studies (extreme low sample size in some

cases), confounding factors and chances of false correlations due to the combining of data that

increase the number of combinations. Group analyses to understand the effect of covariates,

even if it is just at qualitative level, and control for multiple comparison bias, need to be part of

such analyses to reduce the risk of developing hypotheses just by chance. Given the many

meta-analysis methods implementations available nowadays and the commoditised access to

computer power, it may be advisable to carry out a sensitivity analysis with different methods.

In any case, the analyses should be used as exploratory tools, for example, to identify potential

target-tissue associations that may lead further investigation to develop causal hypotheses like

Adverse Outcome Pathways.

One of the main limitations is, despite the number of preclinical studies available, the spar-

sity of the data available but this is inherent to the nature of the drug discovery process. In that

sense, the aggregative nature of the meta-analyses may also provide a framework for organisa-

tions to share preclinical data in the form of tables with counts of events per tissue from studies

for compounds known to hit a common target, meta-analyse the results and increase the

knowledge about a particular target or develop more robust hypotheses, potentially in pre-

competitive environment and in the area of toxicology. With that purpose in mind and as

example, a file with the counts of the number of events per tissue in the studies involving

androgen receptor agonists presented in this publication is available as (S3 File). The R code

with the settings used to perform the meta-analysis and to produce the results in Fig 4 and in

S8–S10 Figs is also provided (S4 File).

Supporting information

S1 File. Initial list of off-targets of interest extracted from literature.

(TXT)

S2 File. List of target–tissue associations produced (random effects).

(XLSX)
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S3 File. Raw data: Number of events per tissue in studies involving androgen agonists.

(TXT)

S4 File. R Code with settings used for the meta-analyses.

(R)

S1 Fig. Distribution of number of studies by number of animals included in the study.

(TIF)

S2 Fig. Distribution of meta-analyses in terms of number of studies included.

(TIF)

S3 Fig. Significant target–tissue associations identified per adjustment method: Fixed

effect models in blue, random effects models in green.

(TIF)

S4 Fig. Plot (log10 scale) comparing observed p values (Y axis) and expected p values (X

axis): Line of unity in black. Line representing unadjusted p value cut-off (0.05) in magenta.

Line representing Benjamini-Hockberg 5% false discovery rate (FDR) in green. Line represent-

ing Bonferroni adjustment in red. The plot compares the astringencies of the different meth-

ods (points above the lines would be considered significant associations after adjustment).

(TIF)

S5 Fig. Distribution of heterogeneities (I2%) across meta-analyses.

(TIF)

S6 Fig. Fixed effect vs random effects odds ratios (ln): Vertical and horizontal represent a

value of 2 for the odds ratio (lnOR = 0.693) and line of unity appears as a dashed line.

Numbers in the quadrants separated by the horizontal and vertical lines represent the number

of meta-analyses for which the aggregated effect size falls within the quadrant. Datapoints are

coloured by the heterogeneity (I2) in the set of studies included in the meta-analysis repre-

sented by the datapoint.

(TIF)

S7 Fig. Androgen agonists subgroup analysis for the effect on number of events in testes

(random effects): Forest plots with results by administration route and tests for subgroup

differences.

(TIF)

S8 Fig. Androgen agonists subgroup analysis for the effect on number of events in testes

(random effects): Forest plots with results by duration of the study and tests for subgroup

differences.

(TIF)

S9 Fig. Androgen agonists-events in testes forest plot (random effects).

(TIF)

S10 Fig. Funnel plot (Androgen receptor agonists and events in testes).

(TIF)

S11 Fig. Subgroup differences in meta-analysis across covariates (random effects): p-values

for the test for differences across groups. Results are shown for all meta-analysis and also,

separately, for meta-analysis with larger effect size (OR> = 2). Results are also disclosed per

number of subgroups in on each meta-analysis.

(TIF)
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