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INTRODUCTION

Cell reprogramming is of great significance to biomedical science, especially in regenerative medicine
application. The classical mode called indirect reprogramming is to obtain stem cells or induced
pluripotent stem cells (iPSCs) and stimulate them to become mature differentiated cells, which has
been applied in cardiac disease, neuron disease, etc. For example, with transfection of four
transcriptional factors Oct4, Sox2, Klf4, and c-Myc (Yamanaka factors), somatic cells could be
reprogrammed into iPSCs and further be stimulated to differentiate into mature functional cells
(Takahashi and Yamanaka, 2006; Takahashi et al., 2007).

In contrast with indirect reprogramming, direct reprogramming has received lots of attention in
recent years, due to its unique advantage of fast, efficient, and low risk of tumorigenesis. Direct
reprogramming refers to the application of transcription factor overexpression, noncoding RNA
delivery, or small molecule delivery to promote the direct transformation of cells into target
differentiated cells. In other words, compared with indirect reprogramming, direct
reprogramming does not have to go through the stage of pluripotent stem cells or progenitor
cells, whichmeans it is easier to perform during cell differentiation. Lately, direct reprogramming has
been applied as a therapeutic strategy to many diseases. For example, in ophthalmology, with
application of five small molecules, Mahato et al. successfully reprogrammed fibroblasts into rod
photoreceptor-like cells in vitro, which were further transplanted to restore vision of blind mice
(Mahato et al., 2020). In another study, direct reprogramming was applied to wound healing in vivo.
Kurita et al. (2018) proved that with the introduction of a combination of four epidermal growth-
related factors into the wound site, cells inside the wound were reprogrammed into epidermal cells,
which enabled non-invasive wound healing and the function of new born skin was the same as the
normal skin.

The greatest value of direct reprogramming is that it makes cell reprograming in vivo possible to
perform (Sekiryu and Matsuda, 2021). The common method for in vivo reprograming rely on virus-
based strategy, which transfect transcriptional factor gene into targeted cells. Themost common used
vector for gene transfection could be classified as viral and nonviral vectors (Chong et al., 2021). Viral
vector has the advantage of high efficiency of gene transfection, while exogenous genes may be
inserted randomly into the host cell genome, which threatens the integrity and safety of the cell
genome (Geis et al., 2017). Nonviral vectors, such as liposome and nanoparticle, could reduce the rate
of host immunogenicity response, which has received more concerns recently. Wang et al. developed
a novel nonviral delivery system for cardiac reprograming, which consists of nanoparticles and
biofilm. In detail, to enhance the targeting efficiency of this system, mesoporous silicon nanoparticles
were decorated with neutrophil-mimicking membranes, which was modified with folic acid peptide.
With high efficiency delivery of miRNA1, 133, 208, and 499 in vivo, cardiac fibroblasts in myocardial
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infarction area could be reprogramed into induced
cardiomyocyte-like cells, and cardiac function of injury area
finally recovers (Wang et al., 2021). However, compared with
viral vectors, relatively low transfection efficiency limited the
application of the nonviral vector.

Sonoporation is a special type of nonviral physical transfection
strategy. Compared with other physical transfection modes, such
as electroporation and gene microinjection, sonoporation has
shown great application potential for gene transfection in vivo,
due to the advantage of high specificity, deep penetration, and low
cost (Tachibana et al., 1999). With gas-filled microbubbles (MBs)
as cavitation nuclei and gene vector, ultrasound, able to trigger
MBs rapidly oscillating and disrupt cell membrane to form
transient pores (sonoporation), then enhances cellular
membrane permeability and promotes gene entering into
cytoplasm (Helfield et al., 2016; Rong et al., 2018; Meng et al.,
2019). Sonoporation was considered as a non-invasive and
nonviral approach to deliver functional molecules, such as
pDNA, siRNA, or molecular drug, to overcome the
physiological or pathological barriers for the purpose of
preventing or treating diseases (Delalande et al., 2015; Bez
et al., 2018; Tran et al., 2019).

With sonoporation, gene in acoustic responsive vector, such as
MBs, could be release quickly and enter into targeted tissue or
cells. Based on this theory, sonoporation-based direct
reprogramming strategy was applied in diabetes treatment. In
this research, Yang et al. applied SonoVue microbubble, which is
a kind of commercial contrast agent used in clinics, as vector for
hydrodynamic gene Pdx1, Neurog3, and MafA. First of all, in
order to optimize the transfection rate, related parameters,
including acoustic pressure, pulse repetition frequency, and
plasmid concentration were tested and the acoustic parameter
was set at 1 MPa acoustic pressure, 20 cycle pulses, and the
irradiation duration was set at 5 min with an interval of 6 s. With
the ultrasound irradiation at the liver after the gene-loaded MBs
administration, it was shown that the hepatocytes have been
reprogrammed into insulin-producing cells in a diabetic model
successfully. After treatment, the glucose levels decreased
significantly while the insulin levels were enhanced, which
indicated that diabetic symptoms were alleviated (Yang et al.,
2020). Accordingly, sonoporation was successfully applied in
direct cell reprograming in vivo, and provide a non-invasive,
safe, and efficient reprograming mode for regenerative medicine.

Nowadays, with the development of bioengineering science,
ultrasound could not only be applied as a diagnosis method for
clinics but also get more attention in its application in biological
function regulation, substance triggered release, ablation, and so
on. The continuous maturation of sonoporation technology also
promotes its application in clinics (Carpentier et al., 2016;
Dimcevski et al., 2016; Sitta and Howard, 2021). However, as
for cell reprogramming applications, sonoporation still has its
limitation. First of all is the choice of gene vector. During the
process of sonoporation, vector is not only used to carry genes,
but also play the role as cavitation nucleus to improve
permeability of tissue or cells during ultrasound irradiation.
Application of commercial MBs, such as SonoVue, is a
potential solution. In many clinical trials involving

sonoporation-mediated drug delivery, MBs are administered
separately from chemotherapy drugs. However, it is not
appropriate for gene transfection since genes are easily
degraded during circulation. Although a lot of novel vectors
with high gene loading were developed, the biocompatibility of
these chemically synthesized vectors is still a problem to be
solved. Research on inducing cell reprogramming by
facilitating small molecules into target tissues through
sonoporation may be an interesting topic. Second is the
standardization of sonoporation operation mode. Sonoporation
transfection involves many key parameters, including acoustic
pressure, frequency, irradiation time, and so on. The optimal
parameters reported by different researches vary greatly, which
may be caused by the various ultrasound devices applied. For
example, the optimal parameters used in the above research
(1 MPa acoustic pressure, 20 cycle pulses, 5 min for irradiation
duration, and interval of 6 s) are quite different from those used in
our previous research (Yu et al., 2018; Li et al., 2021) (0.6 MPa,
30% duty cycle, and 5 min for irradiation duration; 2.0 W/cm2,
50% duty cycle, and 1 min for irradiation duration). Therefore,
the operation mode of sonoporation is difficult to be unified and
requires individual customization. Last but not the least, the
transfection efficiency. Cell reprograming, especially in vivo
cell reprograming, has high requirements on gene transfection
efficiency. There is still a big gap in transfection rate between virus
strategy and sonoporation. Combining sonoporation with other
transfection strategies, such as virus transfection and chemical
transfection, is a potential solution. In addition, in order to
optimize transfection efficiency, it is valuable to explore the
influence of biological effects of ultrasound on mitochondria
and cell fate, and reveal its biological mechanism. In other
words, although sonoporation transfection still faces many
challenges, based on the integration and collaboration of
various disciplines (Huang, 2020), there is no doubt that
sonoporation will open a new chapter for regenerative
medicine in the clinic.
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