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Identifying structures of 
continuously-varying weighted 
networks
Guofeng Mei1, Xiaoqun Wu1,2,3, Guanrong Chen4 & Jun-an Lu1

Identifying network structures from dynamical observations is a fundamental problem currently 
pervading scientific research on complex systems, as understanding and modeling the structure of 
a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better 
understanding of its functional behaviors. Usually, one needs to identify a network’s structure through 
a limited number of observations. Particularly, couplings of many real-world networks are sparse 
and continuously varying with time. In this study, a new framework is developed via optimization 
for identifying structures of continuously-varying weighted networks formed by sparsely-connected 
dynamical systems. Furthermore, a regularization technique is employed to increase the numerical 
stability of the parameter estimation algorithm. Three numerical examples are provided to illustrate the 
feasibility and effectiveness of the proposed identification method. In comparison with other existing 
techniques, the main advantages of our method include its ability to identify structures of continuously-
varying weighted networks in addition to static ones, as well as its requirement of a relatively small 
number of observations. The proposed method has a potential applicability to a variety of evolving 
complex dynamical networks.

Time-varying networks describe a large number of systems whose constituents and interactions evolve over time1–3.  
This subject has attracted extensive attention from researchers in various fields. For instance, Starnini et al.  
proposed several immunization strategies for epidemic processes in time-varying networks2, Amritkar et al. 
studied the synchronization properties of coupled dynamics on time-varying networks and the corresponding 
time-average network4, and Nicola et al. explored the random walk process in a fairly general class of time-varying 
networks5. Indeed, complex systems taking the form of time-varying networks are ubiquitous. Some plausible 
representations of the relational information among entities in dynamical systems are time-varying networks that 
are topologically rewiring and semantically evolving over time6–8, such as a social community, living cells, e-mail 
messages, mobile telephone calls, functional brain networks, food webs and other networks of species. It is note-
worthy that topological structures of complex networks play an important role in determining their evolutionary 
dynamics and functional behaviors, and may have significant consequences for many real-world applications9. 
However, in many practical situations, the precise structure of a complex dynamical network is unknown or 
uncertain. Therefore, to find a general solution to the structure identification problem of complex networks is of 
primary importance.

Many achievements have been made on structure identification of complex networks10–16. For example, Zhang 
et al. constructed an auxiliary complex network in a very general form and designed some adaptive controllers 
to identify network structures based upon generalized outer synchronization10, Wu et al. used Granger causality 
test to infer network structures11,12, Wang et al. estimated network parameters based on compressive sensing13,14, 
Kolar et al. presented two new machine learning methods for estimating time-varying networks based on a tem-
porally smoothed l1-regularized logistic regression formalism15, and Rao et al. used a state-space model to infer 
time-varying network topologies from gene expression data16. However, most if not all of these studies focus on 
the case that network structures are static, and those works regarding estimating time-varying structures of net-
works only care about topological changes in the structures, not about continuous changes of coupling weights. 
Yet, networks are not only specified by their structures but also by the dynamics of information taking place 
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on the structure17. Examples include a social network where there exists stronger or weaker social ties between 
individuals, a metabolic network where there are more or less flux along particular reaction pathways, a food 
web where there are varying energy or carbon flow between predator-prey pairs18, among many others. Thus it is 
practical to assign varying weights for each edge of a complex network without changing the structure17.

In this paper, we propose a method to identify structures of networks whose edge weights continuously 
vary with time. In many situations, the interactions among elements of a large system are rapidly changing 
and are usually characterized by processes whose timing and duration are defined on a very short temporal 
scale3. Since interactive weights among elements in a real-world network sometimes are varying continuously 
with time, the assumption of static structures or activity-driven varying structures is sometimes inappropri-
ate. Continuously-varying structures should thus be taken into account for analysis of this kind of realistic 
complex networks. Furthermore, due to the fact that the structure of a real-world network normally is sparse 
and there is only a limited number of observations, we propose an optimization framework to identify the 
continuously-varying weights of a complex network. In designing the algorithm, a regularization technique 
is incorporated, which led to an efficient and robust scheme as finally verified by accurate or noisy data sets 
observed from a 6-node directed chaotic network, a 50-node undirected network, as well as a 50000-node 
small-world network.

Network analysis
Mathematical notations.  Some necessary notations that will be used throughout the paper are introduced. 
x (or M) denotes the transpose of a vector x (or a matrix M), x 2 is the Euclidean-norm of x, x 0 is the l0 norm 
of x, ⊗​ represents the Kronecker product, N  is the N-dimensional real space, ∈×

×I N N
N N  denotes the identity 

matrix of order N.

Figure 1.  Structure identification of the 6-node network with accurate observations. Left: c1j(t) (j =​ 1, 2, 3); 
right: c2j(t) (j =​ 2, 3).

Figure 2.  Structure identification of the 6-node network with accurate observations. Left: c3j(t) (j =​ 2, 3); 
right: c4j(t) (j =​ 4, 5, 6).
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Consider the following complex dynamical network consisting of N identical nodes with continuously-varying 
couplings:

∑= + Γ =
=


t t t c t t i Nx f x x( ) ( , ( )) ( ) ( ), 1, 2, , ,

(1)
i i i

j

N

ij j
1

where = ∈t x t x t x tx ( ) ( ( ), ( ), , ( ))i i i ir
r

1 2
  is the state vector of the i-th node, and   ×+ f :i

r r  is a 
smooth nonlinear vector-valued function governing the dynamics of the i-th node. Matrix Γ ∈ ×r r is the inner 
coupling matrix determining the interaction of component variables. The configuration matrix =

×
C t c t( ) ( ( ))ij N N

 
describes the continuously-varying topology of the weighted network. Specifically, at time point t, if there is a link 
from node j to node i (j ≠​ i), then the coupling strength cij(t) >​ 0, otherwise cij(t) =​ 0. The diagonal entries of 
matrix C(t) are defined as

∑= − = .
= ≠

c t c t i N( ) ( ), 1, 2, ,
(2)

ii
j j i

N

ij
1,

D enote     = ∈t t t tX x x x( ) ( ( ) , ( ) , , ( ) )N
Nr

1 2  and  = t t t t t tF X f x f x f( , ( )) ( ( , ( ) ), ( , ( )) , ,i i N1 2
 

 ∈t tx( , ( )) )i
Nr. Then, network (1) can be rewritten as

= + ⊗ Γ ⋅ . t t t C t tX F X X( ) ( , ( )) ( ) ( ) (3)

Furthermore, by denoting = ⊗ ΓM t C t( ) ( )  and = −t t t tY X F X( ) ( ) ( , ( )), one has

= .t M t tY X( ) ( ) ( ) (4)

In general,  tX( ) can be approximated by its first-order difference quotient, that is,

Figure 4.  Structure identification of the 6-node network with noisy observations. Left: noise satisfies a 
uniform distribution on the interval [0, 0.01]; right: noise satisfies a uniform distribution on the interval [0, 0.1].

Figure 3.  Structure identification of the 6-node network with accurate observations. Left: c5j(t) (j =​ 4, 5, 6); 
right: c6j(t) (j =​ 4, 5, 6).
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(5)

Here, t*​ is a time point that is sufficiently close to t so that  tX( ) can be more accurately approximated.
Let = −k mX ( 1, 2, , 1)t

k  represent the observed node dynamics X(t) at time point t for the k-th time, 
where m −​ 1(m ∈​ ) is the total number of observations. Then one has

=− −
 MY Y Y X X X[ , , , ] [ , , , ], (6)t t t

m
t t t t

m1 2 1 1 2 1

where Mt =​ M(t) and X Y,t
k

t
k represent the k-th observations of X(t) and Y(t), respectively.

From Eq. (2), one has =M1 ONr t Nr
 , where ∈1Nr

Nr is a row vector whose elements are ones and ∈ONr
Nr 

is a row vector whose elements are zeros. Let  
= −

A X X X 1[ , , , , ] ,t t t t
m

Nr
1 2 1   

= −
B Y Y Y O[ , , , , ]t t t t

m
Nr

1 2 1 . 
Then, one has

= .A M B (7)t t t


If every row of C(t) ⊗​ Γ​ is a sparse vector, the above problem can be translated into solving the following 
minimization problem:

= . . =M i Nr A M Bmin , 1, 2, , , s t , (8)t
i

t t t0


where index i represents the i-th row of matrix Mt. To ensure the restricted isometry property, one will normalize 
At with dividing elements in each column with the Euclidean norm of that column13.

Figure 5.  Time-varying structures can be successfully identified from transient non-synchronous network 
dynamics. Left: identification of c1j(t) (j =​ 1, 2, 3); right: time evolution of the first component variable of each 
node in one trajectory.

Figure 6.  A W–S small-world network generated with rewiring probability p = 0.5. 
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Results
In this section, three numerical examples are provided to illustrate the effectiveness of the identification technique 
proposed in the preceding section. In the first two examples, each node in the network represents a well-known 
three-dimensional chaotic Lorenz system, as described by







= −
= − −
= −







x a y z
y cx bxz y
z xy bz

( ),
,

, (9)

where a =​ 10, b =​ 8/3, c =​ 28.
In the following numerical simulations, the fourth-order Runge–Kutta method is employed to solve the ordi-

nary differential equations of the dynamical network. The m −​ 1 observations are collected by solving the ordi-
nary differential equations in Eq. (3) with m −​ 1 sets of different initial values.

Numerical validation on a 6-node weighted directed network.  Consider a weighted directed net-
work (1) consisting of 6 Lorenz oscillators, with the continuously-varying structure matrix being

π π

π π

= =
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−
− − +

−
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×C t c t

t t

t t

t t

( ) ( ( ))

5 sin 4 1 sin 4 4 0 0 0
0 1 1 0 0 0
0 1 1 0 0 0
0 0 0 6 4 2
0 0 0 1 2 cos 4 1 cos 4
0 0 0 2 3 5

,ij 6 6

and the inner coupling matrix being Γ​ =​ I3×3. In the following simulations, it is always assumed that the observed 
X(t) in Eq. (4) is accurate. The time step used in the Runge-Kutta method for generating data is h =​ 10−6, and 

Figure 7.  Structure identification of the 50-node small-world network with accurate observations. Left: 
identification of c13(t); right: identification of c24(t).

Figure 8.  Structure identification of the 50000-node small-world network with accurate observations. Left: 
identification of c29(t); right: identification of c68(t).
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11(m =​ 12) different trajectories are generated from (1) starting from 11 sets of random initial values. Therefore, 
at time point t, 11 observations can be collected to identify instantaneous network structures.

Figures 1–3 display successful identification of C(t) from noise-free dynamical observations, where only 
nonzero elements of matrix C(t) are displayed. In all the figures, the dots (cij) represent the estimated values at 
different time points and the lines ⁎c( )ij  are the original curves of cij(t). From these figures, it is obvious that the 
estimated values match perfectly with the original structures.

In real-world applications, observation noise commonly exists. Thus, in order to test the robustness of the 
proposed optimization-based structure identification algorithm in practical scenarios, two more numerical sim-
ulations are carried out. Figure 4 presents identification results from noisy observations, where observed node 
dynamics are assumed to be contaminated by white noise. The left panel of Fig. 4 shows the result when obser-
vation noise satisfying a uniform distribution on the interval [0, 0.01] is inserted. It is seen that the varying 
structures are still correctly identified. In the right panel, the noise is stronger and satisfies a uniform distribution 
over the interval [0, 0.1]. The inferred values still match those of the original ones, though there is some slight 
disagreement caused by noise. This example illustrates the strong robustness of the proposed approach.

As is known, synchronization is an obstacle to topology identification19,20. Figure 5 displays the identification 
results with a longer time span without noise perturbation. From the left panel, it is observed that structures 
can be correctly identified during the time period [0, 3.6). At about t =​ 3.6, the structures cannot be identified 
anymore. It is because that the network gets into partial synchronization, which results in identification failure. 
The right panel of Fig. 5 shows the time evolutions of the first component variables of all the nodes starting from 
one set of initial values, which arrive at synchronization after a short transient period. Therefore, it is important 
to ensure that nodes in a dynamical network are not in any kind of synchronization status, otherwise structure 
identification is likely to fail.

Numerical validation on a 50-node small-world network.  In this subsection, the proposed method is 
tested on a network consisting of 50 nodes. The Watts–Strogatz (W–S) algorithm21 is employed here to generate a 
small-world network. Specifically, start with a ring of N =​ 50 nodes, each connecting to its k =​ 4 nearest neigh-
bours by undirected edges. Then, rewire each edge in such a way that the beginning end of the edge is kept but the 
other end is disconnected with probability p and then reconnected to another node randomly selected from the 
network. A W–S small-world network generated with rewiring probability p =​ 0.5, as shown in Fig. 6, is employed 
here for illustration. For simplicity, assume c13(t) =​ c31(t) =​ |sin t|, c24(t) =​ c42(t) =​ ln(1 +​ t). For all the other cou-
plings, if there is a link from node j to node i (j ≠​ i) at time point t, then cij(t) =​ 1, otherwise cij(t) =​ 0. The diagonal 
entries of matrix C(t) satisfy = −∑ = .= ≠ c t c t i N( ) ( ), 1, 2, ,ii j j i

N
ij1,  The inner coupling matrix is Γ​ =​ I3×3.

In the following simulations, it is always assumed that node dynamics can be exactly observed. The time step 
used in the Runge-Kutta method for generating data is still h =​ 10−6, and m −​ 1(m =​ 101) different trajectories are 
generated from (1) starting from m −​ 1 sets of different initial values.

For brevity, Fig. 7 only shows the identification results for continuously-varying couplings c13(t) and c24(t). It is 
obvious that the couplings are correctly identified at different time points, which again illustrates the effectiveness 
of the proposed identification method from limited observations.

Numerical validation on a 50000-node small-world network.  In this example, the one-dimensional 
multi-agent system proposed by Saber et al.22 is taken as node dynamics. Denote xi as the state of agent i and sup-
pose that the dynamics of agent i is described by

∑= ∈ =
=

� �Rx c t x x i N( ) , , 1, 2, , ,
(10)

i
j

N

ij j i
1

where N is the number of agents. The collective dynamics of the group of interacting agents can be rewritten as

= C tX X( ) , (11)

where = x x xX ( , , , )N1 2
.

An undirected small-world network consisting of 50000 agents is used to illustrate the effectiveness of the 
proposed method. The network starts with a ring of N =​ 50000 nodes, each connects to its k =​ 8 nearest neigh-
bours by undirected edges that are rewired with probability p =​ 0.4. Specifically, assume = =c t c t t( ) ( ) sin29 92 , 

= = +c t c t t( ) ( ) ln (1 )68 86 . For all the other couplings, if there is a link between node i and node j (j ≠​ i) at time 
point t, then cij(t) =​ cji(t) =​ 1, otherwise cij(t) =​ 0. The diagonal entries of matrix C(t) satisfy = −∑ = ≠c t c t( ) ( )ii j j i

N
ij1,  

for = .i N1, 2, ,
The time step used in the Runge-Kutta method for generating data is h =​ 10−6, and m −​ 1(m =​ 10000) different 

trajectories are generated from (1) starting from m −​ 1 sets of different initial values.
For brevity, Fig. 8 only shows the identification results for continuously-varying couplings c29(t) and c68(t). It is 

obvious that the couplings are correctly identified at different time points, which again illustrates the effectiveness 
of the proposed identification method from limited observations.

Discussion
Identifying network structures is not only a very important research topic itself but also has applications in a 
variety of domains. Various methods had been presented to solve the problem of inferring structures of static net-
works from observations and perhaps through synchronization or control of dynamics. Within the growing body 
of work concerning time-varying networks, few studies have focused on the issue of identifying structures of 
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continuously-varying weighted networks. In this paper, we have proposed a new method based on optimization to 
identify structures of complex dynamical networks with continuously-varying weights from limited observations. 
Two problems, which can be used to solve optimal problems and increase the numerical stability, have been estab-
lished by rigorous mathematical analysis. In comparison with other existing methods, the main advantages of 
this approach are that it can handle the challenging identification problem of structures of continuously-varying 
weighted networks other than static ones. In addition, it only requires a relatively small number data, so it can 
dramatically reduce the difficulty in obtaining large numbers of observations. Furthermore, by taking into con-
sideration observation noise, the robustness of the method has been demonstrated. In the proposed algorithm, a 
regularization method has been incorporated, which can avoid large deviations caused by small singular values 
thereby further increase the numerical stability. Therefore, the method provides a sensible way to identify struc-
tures of continuously-varying weighted networks from observations, which has a clear potential applicability to a 
wide variety of complex dynamical networks.

Methods
Theoretical analysis and algorithm design (more details can be found in the SI).  Here, we design 
an algorithm to solve optimization problem (8). Topology identification for a complex network with limited 
observations can be casted into reconstructing a vector ∈x n from an underdetermined system of linear equa-
tions which has more unknowns than equations. The problem can be described by =Ax y, where A is an m ×​ n 
matrix, ∈y m, and m is the number of measurements, with m <​ n. Thus, the underdetermined system Ax =​ y 
may have infinitely many solutions. In order to find a solution to such a system, preferably optimal in some sense, 
one must impose extra constraints as appropriate. In this paper, it is assumed that matrix A has a full row-rank 
and x is sparse. In this case, one can minimize the number of nonzero components of x to obtain the sparsest 
solution to Ax =​ y, that is, to solve the following optimization problem23:

. . = .Ax x ymin , s t (12)x 0

where = x xx [ , , ]n1
. The minimization problem (12) can be transformed to the following problem24,25:

. . = .Ax x ymin , s t (13)x 1

where = + + … +x x x xn1 1 2  is the l1 norm of the sparse vector x. However, when the matrix A is 
ill-conditioned and y cannot be accurately observed, numerical instability will arise (more details can be found in 
the SI). In order to increase the numerical stability, a classical regularization is introduced here. The regularized 
problem is

α− +δAx y xmin1
2

, (14)x 2
2

1

where α =​ α(δ) >​ 0 is the regularization parameter used to avoid large deviation from the optimal solution. Here, 
∈δy m is an erroneous observation, δ is the noise level and δη η− = ≤δy y , 2 , η represents the observation 

error.
Therefore, the following problem is formulated for the case with accurate observation data.

Problem 0.1 By introducing multipliers, we can reformulate the augmented Lagrangian of problem (13) as

ρλ λ= + + − + −ρL x z g x z x z x z( , , ) ( ) ( )
2 (15)1 2

2

where λ ∈ n and ρ >​ 0 are the Lagrange multipliers and penalty parameter, respectively; z is an auxiliary vector 
that has the same dimension as x and satisfies the constraint x −​ z =​ 0; g(x) is the indicator function of 
∈ = Ax x y{ }n  to ensure x satisfying the constraint Ax =​ y.
For noisy observations, one has the following reformulation.

��Problem 0.2 When noise exists in observations, the optimal solution to problem (13) can be approximated by the 
solution to the optimization problem (14). By introducing multipliers, one has 

α ρλ λ= + + − + −ρL x z g x z x z x z( , , ) ( ) ( )
2

, (16)1 2
2

where λ ∈ n and ρ >​ 0 are the Lagrange multipliers and penalty parameter, respectively; z is an auxiliary vector 
that has the same dimension as x and satisfies the constraint x −​ z =​ 0; = −Ag x x y( ) 1

2 2
2.

Remark 0.1 Solving Problems 0.1 and 0.2, one can obtain solutions to the convex optimization problems (13) and 
(14) using the well-known ADMM algorithm26.
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