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Abstract

Dengue fever virus (DENV) is a global health threat that is becoming increasingly critical.

However, the pathogenesis of dengue has not yet been fully elucidated. In this study, we

employed bioinformatics analysis to identify potential biomarkers related to dengue fever

and clarify their underlying mechanisms. The results showed that there were 668, 1901, and

8283 differentially expressed genes between the dengue-infected samples and normal sam-

ples in the GSE28405, GSE38246, and GSE51808 datasets, respectively. Through overlap-

ping, a total of 69 differentially expressed genes (DEGs) were identified, of which 51 were

upregulated and 18 were downregulated. We identified twelve hub genes, including MX1,

IFI44L, IFI44, IFI27, ISG15, STAT1, IFI35, OAS3, OAS2, OAS1, IFI6, and USP18. Except

for IFI44 and STAT1, the others were statistically significant after validation. We predicted

the related microRNAs (miRNAs) of these 12 target genes through the database miRTar-

Base, and finally obtained one important miRNA: has-mir-146a-5p. In addition, gene ontol-

ogy (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment were carried out, and a protein–protein interaction (PPI) network was con-

structed to gain insight into the actions of DEGs. In conclusion, our study displayed the

effectiveness of bioinformatics analysis methods in screening potential pathogenic genes in

dengue fever and their underlying mechanisms. Further, we successfully predicted IFI44L

and IFI6, as potential biomarkers with DENV infection, providing promising targets for the

treatment of dengue fever to a certain extent.

Author summary

Dengue fever is a mosquito borne viral disease caused by a single stranded RNA virus

with four serotypes. DENV infection can cause various diseases, such as breakbone fever,
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haemorrhagic fever, and shock syndrome. As one of the most viral diseases leading to

incidence rate and mortality in animal arthropods, Dengue fever has become an increas-

ingly serious global health threat. However, the pathogenesis of dengue fever has not been

fully elucidated. In this study, we used bioinformatics analysis to identify potential bio-

markers associated with dengue fever and elucidate their underlying mechanisms. Finally,

we predicted that IFI44L and IFI6 might be potential biomarkers of DENV infection. This

finding provides a promising target for the treatment of dengue fever to a certain extent.

In addition, the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment, protein–protein interaction (PPI) network were imple-

mented to analyze the key differentially expressed genes after DENV infection, and the

related mechanisms were illuminated by this study.

Introduction

In the tropical and subtropical parts of the world, dengue fever virus (DENV) infection has

become an increasingly common health concern. Due to the large geographic extent, increase

in the number of cases, and severity of the disease, the DENV infection has evolved from a spo-

radic disease to a major public health problem with significant social and economic impacts

[1–4]. Dengue is a mosquitoes-transmitted viral disease caused by a single-stranded RNA

virus, which has four serotypes (DENV 1–4)[5]. DENV infection can cause various illnesses,

such as breakbone fever, haemorrhagic fever, and shock syndrome[6]. Dengue divides into

three phases: the febrile phase with acute onset of fever, the critical phase with metabolic acido-

sis and severe haemorrhage, and the recovery phase with resolved symptoms[3]. At present,

some clinical trials have been conducted to reduce the effects and symptoms of dengue[7–9].

There are a few dengue vaccines but no specific antiviral treatment[3,5]. A DENV vaccine can-

not elicit protection in naive individuals but only those with prior exposure, in addition, that is

not equally protective against all four serotypes[10].

As one of the most viral diseases transmitted by arthropods that causes human morbidity

and mortality, numerous studies have been performed to explore the pathogenesis of disease;

The mainstream view is that immunity leads to cytokine storm, which leads to vascular leak

and thus contributes to severe dengue disease in secondary infections[11]. However, many

patients with DENV infection do not develop plasma leakage[12]. Plasma leak typically occurs

in the critical phase[13], which is at the end of the acute phase[14]. Therefore, the febrile phase

with or without the critical phase is the acute phase, which may lead to severe dengue[14]. A

hypothesis based on molecular mimicry posits that some DENV-induced antibodies can

cross-react with host proteins. A study verifies that the level of pre-existing anti-DENV anti-

bodies is directly associated with the severity of secondary dengue disease in humans[11]. In

sum, it still remains unclear, more research is needed to understand the potential pathogenesis

in dengue.

In view of heterogeneity, biomarkers for reliably predict the development of severe dengue

among symptomatic individuals are desperately needed in current research. The currently uti-

lized warning signs to predict severe dengue are based on clinical parameters that appear late

in the disease course and are neither sensitive nor specific. It promotes not only continued

morbidity and mortality, but also ineffective patient triage and resource allocation[15]. Pro-

vided that we have had highly discriminating biomarkers, then developed a single, robust clini-

cal algorithm, it will be broadly applicable across all age groups and in different locations[16],

PLOS NEGLECTED TROPICAL DISEASES Identification of potential biomarkers in dengue via integrated bioinformatic analysis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009633 August 4, 2021 2 / 15

database (accession numbers: GSE28405,

GSE38246, GSE51808 and GSE84331).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0009633


which is meaningful to predict severe dengue and differentiate dengue-infected diseases with

similar clinical phenotypes.

Microarray data analysis can identify DEGs in dengue fever patients with differing disease

severity[2]. In addition, an increasing amount of evidence indicates the potential role of micro-

RNAs (miRNAs) in regulating DENV[17,18]. MiRNAs are small non-coding RNA molecules

that can regulate gene expression by inhibiting messenger RNA (mRNA) translation or induc-

ing mRNA degradation[17]. Recently, Pong et al. reported that, with a DENV-1 infection, 23

highly differentially expressed miRNAs jointly modulate the adaptive immune response

involving TGF-β, MAPK, PI3K-Akt, Rap1, Wnt, and Ras signalling pathways[19].

In this study, we performed a biological information analysis using microarray data and

identified the DEGs for the infected and normal samples. Subsequently, the Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–

protein interaction (PPI) network, and miRNA-target gene interaction network were analysed

to understand the molecular mechanisms underlying dengue fever. In conclusion, our study

aimed to explore the molecular biomarkers of dengue based on bioinformatic analysis and

provide candidate biomarkers for early diagnosis and therapeutic targets.

Materials and methods

Microarray data

The Gene Expression Omnibus is a public and functional genomics database that contains

high throughput gene expression data, chips, and microarrays. In this study, the GSE28405

[20], GSE38246[21], and GSE51808[22] microarray data were downloaded for analysis. Con-

sidering that the transcriptional profiles between the fever phase and convalescence phase in

dengue patients are are quite different, we only included the data of samples collected in fever

patients and the control group from these three data sets. Additionally, GSE28405, GSE38246,

and GSE51808 are consisting of 26, 8, and 9 control samples and 31,105 and 28 infected sam-

ples in fever, respectively.

Data processing

We used the R 4.0.1 statistical software (https://www.r-project.org/) and a Bioconductor

(http://bioconductor.org/biocLite.R) to process raw data and screen differentially expressed

genes. The data of GSE28405 and GSE38246 were batch calibrated and standardized by using

the limma package. Limma package contains particularly powerful tools for reading, standard-

izing and exploring such data, and its core component is to fit gene linear model to gene

expression data to evaluate the ability of differential expression[23]. The data of GSE51808 was

batch calibrated and standardized by using the affy package. The differentially expressed genes

were then filtered using a limma package. The screening threshold was p-value < 0.05 and

fold-change� 1.5. The ggplot2 package was used to visualise the DEGs into a volcano map,

while the pheatmap package was used to cluster the significant DEGs.

Function and pathway enrichment analysis of DEGs

The Gene Ontology (GO, http://www.geneontology.org) is a community-based bioinformatics

resource. It provides information about genes and gene product functions and uses ontology

to enhance biological knowledge[24]. The KEGG (https://www.kegg.jp/) is a database for the

qualitative interpretation of genomic sequences and other biological data, including system-

atic, genomic, and chemical information as well as an additional human-specific category of

health information[25]. The related biological functions and signal pathways were analysed
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using GO/KEGG enrichment and analysed again with the cluster Profiler software package,

with p< 0.05 considered to be statistically significant.

PPI network construction and identification and validation of hub genes

Protein–protein interaction (PPI) network analysis plays a major role in predicting the func-

tion of interacting proteins. It is a feasible tool that can be used to understand cell function

and disease mechanism[26,27]. The STRING database (http://string-db.org) focuses on pro-

viding a key assessment of protein–protein interactions by integrating a large number of

known and predicted protein–protein association data[28,29]. A PPI network visualised by the

Cytoscape software was constructed by using the STRING database. Furthermore, the cyto-

hubba plug-in of Cytoscape software was used to analyze the interaction of proteins and screen

out hub genes with a higher score in this analysis, which means that they have higher connec-

tivity in PPI networks. The statistical significance of these genes was verified by GSE84331[30]

microarray data analysed using GEO2R. GEO2R is an interactive network tool that allows

users to compare two or more sets of samples in a GEO sequence to identify differentially

expressed genes[31]. P < 0.05 was considered statistically significant.

MiRNA-target gene network

MicroRNA (miRNA) is a type of small endogenous non-coding RNA with 18–25 nucleotides.

It is the main central regulatory factor at the post-transcriptional levels. It is involved in many

biological processes such as cell cycle, cell differentiation, and apoptosis, among others[32,33].

The miRTarBase database contains manually managed and experimentally validated miRNA–

gene interactions as well as detailed metadata, experimental methods, and conditions[32].

Accordingly, we constructed the miRNA–gene targeting relationship for overlapping differen-

tial genes and hub genes based on the miRTarBase database.

Results

Identification of DEGs

The datasets included are shown in Table 1. After analysing the GSE28405 dataset, we screened

668 DEGs, including 364 upregulated genes and 304 downregulated genes (Fig 1A); GSE38246

and GSE51808 were used to screen 1901 DEGs (924 upregulated and 977 downregulated) and

8283 DEGs (4165 upregulated and 4118 downregulated) respectively (Fig 1C and 1E). After

screening the differential genes based on the volcano map, cluster analysis was carried out, as

shown in Fig 1B, 1D and 1F. Finally, through a Venn analysis, 69 common DEGs were identi-

fied from three datasets, including 51 upregulated genes and 18 downregulated genes, which

were subsequently used for further study (Fig 2 and Table 2).

GO and KEGG pathway analysis

The detailed results of the GO enrichment analysis and KEGG pathway analysis of GSE28405,

GSE38246, and GSE51808 are shown in Figs 3, 4 and 5. The type I interferon signaling path-

way, DNA replication, and chromosome segregation were relatively enriched from these data

sets in biological processes. In terms of cell components, the results showed that cytosolic ribo-

some, organellar large ribosomal subunit, mitochondrial ribosome, and mitochondrial large

ribosomal subunit were significantly enriched. Concerning molecular function, ATPase activ-

ity, DNA-dependent ATPase activity, single-stranded DNA helicase activity, and catalytic

activity, acting on DNA play an important role in the enrichment results relatively. For KEGG
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pathway enrichment analysis, the relatively enriched pathways were the coronavirus disease,

cell cycle, DNA replication, and protein processing.

Protein–protein interaction work of overlapped DEGs and identification

and validation of key genes

To identify the potential interactions between overlapping DEGs, a PPI network was con-

structed on the STRING, consisting of 69 nodes (genes) and 174 edges (Fig 6A). The foremost

module in the PPI network was identified by MCODE, and 12 genes were identified as hub

genes (Fig 6B). After verifying with GSE84331, 10 genes (MX1, IFI44L, IFI44, IFI27, ISG15,

STAT1, IFI35, OAS3, OAS2, OAS1, IFI6, USP18) were statistically significant (Fig 7). Among

them, IFN inducible protein 44-like (IFI44L), and IFNα inducible protein 6 (IFI6) were found

to have a higher score in the PPI network and a lower p-value in the analysis.

MiRNA-target gene network

The networks of miRNA-gene targeting relationship of 69 overlapping DEGs and 12 hub

genes based on miRTarBase database are respectively presented in Fig 8A and 8B. According

to the miRNA interactions and number and importance of target genes, has-mir-146a-5p was

attained.

Discussion

DENV infection can further lead to recessive infection, dengue fever, and severe dengue fever

[34,35]. It is mainly transmitted to humans through female Aedes mosquitoes. Aedes mosqui-

toes are widespread in the tropical and subtropical regions of the world, putting nearly two-

thirds of the world’s population at risk[36,37]. Therefore, screening the potential biomarkers

or exploring the related mechanisms through bioinformatics may contribute to the efficient

diagnosis and treatment of dengue fever.

GO analysis can annotate genes and gene products involving cellular components, biologi-

cal processes, and molecular functions[38]. In biological processes, DEGs are most enriched in

type I interferon signaling pathway, DNA replication, and chromosome segregation. Dengue

virus infection activates the innate immune system of the body to increase the secretion of

interferon. Type I interferon signal transduction can fight against a variety of viruses that

invade the human body. DENV can antagonize its signal transduction and promote its

genome replication in host cells[39]. The imbalance of the cell cycle and mitotic cycle after

DENV infection will affect DNA replication and cell proliferation. In terms of cell compo-

nents, DEGs are significantly enriched in the cytosolic ribosome, organellar large ribosomal

Table 1. Details of the data sources from Gene Expression Omnibus(GEO) for this study.

Reference GEO Series

(GSE)

Sample Sample

size

Normal vs

Infection

GEO Platform (GPL)

Tolfvenstam et al

(2011)

GSE28405 Whole blood 57 26 vs 31 GPL2700 Sentrix HumanRef-8 Expression BeadChip

Popper et al(2012) GSE38246 Peripheral blood mononuclear

cell (PBMC)

113 8 vs 105 GPL15615 SMD Print_1430 hr1

Kwissa et al(2014) GSE51808 Whole blood 37 9 vs 28 GPL13158 [HT_HG-U133_Plus_PM] Affymetrix HT

HG-U133+ PM Array Plate

Chandele et al

(2016)

GSE84331 Peripheral blood mononuclear

cell (PBMC)

12 5 vs 7 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array

https://doi.org/10.1371/journal.pntd.0009633.t001
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subunit, mitochondrial ribosome, and mitochondrial large ribosomal subunit, which is related

to the enrichment of DNA replication and chromosome segregation in biological processes.

Dengue virus genome replication in the cytoplasm of the host cell and take advantage of the

host cell organelles to protein synthesis and assembly[40]. The protein is synthesized in the

Fig 1. Volcano map and heat map of differentially expressed genes (DEGs) in GSE28405(AB), GSE38246(CD), and GSE51808(EF). (ACE) Red

dots indicated up-regulated genes and blue dots indicated down-regulated genes. Black dots indicated the rest of the genes with no significant

expression change. The threshold was set as followed: P<0.05 and |log2FC|�2. FC: fold change. (BDF) Gene expression data is converted into a data

matrix. Each column represents the genetic data of a sample, and each row represents a gene. The color of each cell represents the expression level, and

there are references to expression levels in different colors in the upper right corner of the figure.

https://doi.org/10.1371/journal.pntd.0009633.g001
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cytosolic ribosome, binding to a receptor protein such as the TOM complex on the outer

membrane of the mitochondria, and is introduced into the mitochondria in an unfolded con-

formation, where it is eventually folded and assembled into the intrinsic structure[41]. In

terms of molecular function, ATPase activity, DNA-dependent ATPase activity, single-

stranded DNA helicase activity, and catalytic activity, acting on DNA play an important role in

the enrichment results. ATP activation increases, generating cyclic adenosine phosphate

(cAMP) under the action of adenylate cyclase. cAMP may trigger the fusion of secretory vesi-

cles, again may by increasing vesicles and plasma membrane fusion between the diameter of

the hole and opening time to adjust have fusion of secretory vesicles[42]. In this case, the diam-

eter of the fusion hole and open time increasing, may increasing the dengue virus E protein

involved in virus and nuclear fusion peptide in the somatic cell membrane fusion process, and

promoting DENV through holes to promote infection in genetic material into cells.

Coronavirus disease 2019 (COVID-19) was found to be associated with dengue fever. It is

hypothesized that dengue fever and COVID-19 share the same pathophysiological pathway,

resulting in plasma leakage, thrombocytopenia, and coagulopathy are the hallmarks they both

have[43]. Failing to diagnose dengue fever because of a false-positive test result for confirmed

COVID-19, so we speculate that antibody cross-reactivity may exist in serology tests[44,45].

Fig 2. The intersection results of GSE28405, GSE38246, and GSE51808.

https://doi.org/10.1371/journal.pntd.0009633.g002

Table 2. Up-regulated genes and down-regulated genes of overlapping DEGs.

Overlapping

DEGs

Gene terms

All 69 GOSR2, STAT1, MRPL17, THAP8, NR1H3, CBR1, MRPS18C, TOR3A, NAPA, BAK1,

HIST1H4H, SIL1, BST2, TRIP6, C1QC, HIST1H2BD, DNASE2, C2, MAGED2, ISG20,

SIGLEC1, IFI27L1, IFI35, TNNT1, SCO2, EPHB2, ATF5, CFB, OAS1, MT1F, OAS2,

CTSD, IFI44, IFI6, HESX1, CD38, FDXR, MX1, KCTD14, C1QB, OAS3, LAG3, IFI44L,

LGALS3BP, ISG15, CXCL10, LY6E, SPATS2L, TCN2, USP18, IFI27, CAMK1D, CMTM2,

VENTX, FRY, ZFP36L2, SORL1, THBD, KLRB1, ITPKB, CIITA, CD22, MS4A1, LYST,

CXCR5, PTGS2, STMN3, IVNS1ABP, TMEM71

Up-regulated 51 GOSR2, STAT1, MRPL17, THAP8, NR1H3, CBR1, MRPS18C, TOR3A, NAPA, BAK1,

HIST1H4H, SIL1, BST2, TRIP6, C1QC, HIST1H2BD, DNASE2, C2, MAGED2, ISG20,

SIGLEC1, IFI27L1, IFI35, TNNT1, SCO2, EPHB2, ATF5, CFB, OAS1, MT1F, OAS2,

CTSD, IFI44, IFI6, HESX1, CD38, FDXR, MX1, KCTD14, C1QB, OAS3, LAG3, IFI44L,

LGALS3BP, ISG15, CXCL10, LY6E, SPATS2L, TCN2, USP18, IFI27

Down-regulated 18 CAMK1D, CMTM2, VENTX, FRY, ZFP36L2, SORL1, THBD, KLRB1, ITPKB, CIITA,

CD22, MS4A1, LYST, CXCR5, PTGS2, STMN3, IVNS1ABP, TMEM71

Abbreviation: DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.t002
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Fig 3. The GO enrichment analysis and KEGG pathways analysis of GSE28405. Abbreviation: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.g003

Fig 4. The GO enrichment analysis and KEGG pathways analysis of GSE38246. Abbreviation: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.g004
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Cell cycle, DNA replication, and protein processing were significantly enriched in KEGG path-

way enrichment analysis, all of which are closely related to cell division. Knockdown of cyclin-

dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C) reduced genome replication of the dengue

virus and mitochondrial function in infected and uninfected cells as well as weakened glucose

Fig 5. The GO enrichment analysis and KEGG pathways analysis of GSE51808. Abbreviation: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.g005

Fig 6. The PPI network of overlapping DEGs (A) and the the important module of PPI network (B). Abbreviation: PPI, protein–

protein interaction; DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.g006
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metabolism and autophagy to inhibit viral replication and metabolism[46]. Cyclin G-associ-

ated kinases (GAK) phosphorylated adaptor protein complexes (APs), thereby regulating

membrane transport and promoting the dengue virus infection[47]. GAK inhibitors and their

derivatives showed antiviral activity against the dengue virus[48]. XuM et al. found that the

Fig 7. Verification of hub genes. P-value< 0.01 is considered to be statistically significant. (���P<0.001).

https://doi.org/10.1371/journal.pntd.0009633.g007

Fig 8. The miRNA-target gene network of overlapping DEGs (A) and hub genes (B) based on miRTarBase v8.0

database. Abbreviation: miRNA, microRNA, DEGs, differentially expressed genes.

https://doi.org/10.1371/journal.pntd.0009633.g008
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infection of Zika virus (ZIKV), a Flaviviridae similar to the dengue virus, was closely related to

cell cycle regulation; Hammack et al. found that ZIKV suspends host DNA replication during

the S phase and induces DNA damage response and enhanced virus replication, which may

occur with the dengue virus as well[49]. Therefore, cell division is a significant pathway for

virus replication and infection, including cell cycle, DNA replication, and protein processing.

The PPI could help us understand protein–protein interactions; the rich interaction in gene

expression of the dengue virus underscores the potential role of regulating host gene expres-

sion during infection[50]. Screening the most important module and its verification showed

higher degrees of IFI44L and IFI6 in the PPI network and lower p-values in the analysis, which

potentially indicates their significant association with dengue fever. Remarkably, DENV-

infected germ cells upregulated IFI44L by 130-fold confirmed in qRT-PCR, but not in ZIKV-

infected germ cells[51]. It is uncovered that IFI44L supports different viruses replication, and

negatively regulating type I IFN response induced[52]. IFI44L contributes to DENV infection

due to low levels of type I IFN response showed in patients with severe dengue disease[53,54].

The canonical pathway of Type I IFN is activated by the IFN-stimulated gene like IFI6, which

is up-regulated DENV infection[55]. Overall, IFI6 was demonstrated a high level of protection

against DENV infection, by inhibited DENV2-induced autophagy and apoptosis[55–57]. They

influence the occurrence and development of dengue virus infection through a complex and

undefined network of interactions. MiRNA is a small non-coding RNA molecule, and there is

an increasing evidence that the imbalance of miRNA results in many diseases. The MiRTar-

Base v8.0 database was used to predict miRNAs based on top the 12 hub genes, and miR-146a-

5p was the core miRNA. miR-146a-5p, a type I IFN-mediated regulator targeting NF-kb, had a

high correlation with the platelets and white blood cells count, especially in neutrophils and

lymphocytes in initially diagnosed dengue fever[58,59]. Furthermore, activitied serum aspar-

tate transaminase (AST) and alanine aminotransferase (ALT) also indicate miR-146a-5p affect

liver complication in infected dengue[58]. Exosome miR-146a can act on different immune

cells, making recipient cells more susceptible to many viral infections[60]. Surprisingly, some

studies assessed that miR-146a-5p is associated with induced autophagy, which is a process in

cell degradation and recycling for DENV replication[61–63]. Thus, miR-146a-5p has the

potential to serve as a circulating biomarker for dengue pathogenesis.

This study has some limitations. Firstly, a small sample size would increase the error of

research results to a certain extent. If the analysis can be based on large sample size, it is possi-

ble to more fully study the relationship between each central gene and pathway to improve the

accuracy. Meanwhile, there are different samples in different data sets we included, such as

whole blood and peripheral blood, which would cause some errors in our results. Finally, due

to ethical issues and lack of funding, we did not conduct in vitro experiments to further verify

our results but chose to use the results of another data set for validation analysis. This will also

affect our conclusion to a certain extent.

Dengue is now the most important mosquito-borne disease after malaria and can cause

serious complications such as bleeding or severe shock syndrome[64]. Therefore, it is urgent

to study the pathogenesis of dengue fever. In conclusion, we have studied the microarray data

of normal samples and DENV-infected samples through bioinformatics analysis to identify the

differentially expressed genes after dengue infection. Another microarray data set was then

used to verify genes of important modules, which resulted in 12 statistically significant hub

genes. Their associated miRNAs were then predicted based on the miRTarBase database.

Finally, we predicted that IFI44L, IFI6, and mir-146a-5p can be used as potential biomarkers

of dengue infection, Our study may have potential implications for future prediction of disease

progression in symptomatic dengue patients, and has important significance for the pathogen-

esis and targeted therapy of dengue.
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