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Bcl-xL is an oncogenic driver in colorectal cancer

Anna-Lena Scherr*,1, Georg Gdynia2,3, Mariam Salou4, Praveen Radhakrishnan5, Katarina Duglova3, Anette Heller3, Sophia Keim1,
Nicole Kautz1, Adam Jassowicz1, Christin Elssner1, You-Wen He6, Dirk Jaeger1, Mathias Heikenwalder7,8, Martin Schneider5,
Achim Weber9, Wilfried Roth10, Henning Schulze-Bergkamen11 and Bruno Christian Koehler1

Colorectal cancer (CRC) is the second most common malignant neoplasia in women and men worldwide. The B-cell lymphoma 2
(Bcl-2) protein family is mainly known for its pivotal role in the regulation of the mitochondrial death pathway. Anti-apoptotic Bcl-2
proteins may provide survival benefits and induce therapy resistance in cancer cells. Among anti-apoptotic Bcl-2 proteins, we
found solely Bcl-xL strongly upregulated in human CRC specimens. In order to study protein function in the context of tumor
initiation and progression in vivo, we generated a mouse model lacking Bcl-xL in intestinal epithelial cells (Bcl-xL

IEC-KO). If
challenged in an inflammation-driven tumor model, Bcl-xL

IEC-KO mice showed a significantly reduced tumor burden with lower
tumor numbers per animal and decreased tumor sizes. Analysis of cell death events by immunohistochemistry and
immunoblotting revealed a striking increase of apoptosis in Bcl-xL-negative tumors. qRT-PCR and immunohistochemistry
excluded changes in proliferative capacity and immune cell infiltration as reasons for the reduced tumor load and thereby identify
apoptosis as key mechanism. Human CRC tissue was cultured ex vivo and treated with the small molecule compound ABT-737,
which inhibits Bcl-xL and Bcl-2. Under ABT-737 treatment, the amount of apoptotic tumor cells significantly increased compared
with controls, whereas proliferation levels remained unaltered. In summary, our findings identify Bcl-xL as a driver in colorectal
tumorigenesis and cancer progression, making it a valuable target for clinical application.
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Colorectal cancer (CRC) is one of the most frequently
diagnosed cancers throughout the world, with especially high
incidences in developed countries. In addition, it is a main
cause for cancer-related death in humans.1 Despite sub-
stantial progress in the development of targeted therapies,
patients with metastasized CRC still face a poor prognosis.2

The B-cell lymphoma 2 (Bcl-2) protein family is well
established for its essential role in the intrinsic apoptotic
signaling pathway. Under physiological conditions, pro-
apoptotic members like Bax and Bak are sequestered and
thereby inhibited by anti-apoptotic relatives like Bcl-xL, Bcl-2 or
Mcl-1. If apoptotic stimuli like DNA damage or massive protein
aggregation occur, then they are sensed by proteins of
the BH3-only subgroup, functioning as a molecular switch
that determines cells fate. Due to the activity of BH3-only
proteins like PUMA and NOXA, pro-apoptotic proteins get
released from their binding, leading to subsequent mito-
chondrial activation and initiation of the downstream apop-
tosis cascade.3 Anti-apoptotic proteins are overexpressed in
different tumor entities, supporting cell death avoidance as
classical hallmark of cancer.4,5 In CRC, high Bcl-xL expression

has been shown to correlate with lower tumor differentiation
and poorer overall patient survival.6 In contrast, high Bcl-2
levels seem to correlate with a good clinical outcome.7

Since anti-apoptotic proteins have always been described
as being redundant, with regard tomitochondria activation, the
mentioned findings are counterintuitive and underline the
necessity of a better understanding of their relevance and
commitment in CRC. There is growing evidence that anti-
apoptotic proteins have also a role in other cellular processes
important for cancer initiation and progression, which might
provoke the reported differences. For instance, Mcl-1 has
been shown to inhibit cell-cycle progression via binding of
proliferating cell nuclear antigen (PCNA)8 and Cyclin depend-
ing kinase 1 (CDK1).9 In addition, it has been implicated in
DNA damage repair,10 what further enhances the probability
of Mcl-1 having a tumor suppressor role besides its cell death-
preventing function. In migration and invasion assays, it turned
out that Bcl-xL, Bcl-2 and Mcl-1 increase the migratory
capacity of human CRC cells in vitro independent of cell death
regulation.11
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In our study, we aimed at dissecting the role of anti-apoptotic
proteins in the context of CRC initiation and progression.
Immunohistochemical staining of human CRC samples
compared with healthy mucosa identified Bcl-xL as the
only anti-apoptotic protein being overexpressed in tumor
tissue. In intestine-specific knockout mice, challenged in an
inflammation-driven tumor model, the loss of Bcl-xL diminishes
carcinogenesis. In addition, we show that elevated Bcl-xL
protein levels in human CRC can be therapeutically exploited
using an ex vivo model. In summary, our findings identify
Bcl-xL as a central player in colorectal tumorigenesis and
tumor progression, which is an interesting target for clinical
application due to its druggability.

Results

Bcl-xL is the only anti-apoptotic protein upregulated in
human CRC. To investigate the oncogenic role of anti-
apoptotic proteins in colorectal carcinogenesis, their expres-
sion levels were immunohistochemically analyzed. A tissue
microarray (TMA), containing adenoma, adenocarcinoma
and normal mucosa specimens was stained for Bcl-xL,
Mcl-1 and Bcl-2 (Figure 1a). In adenomas, Bcl-xL was found
to be significantly overexpressed (P= 0.007) if compared with
normal mucosa with further increase in adenocarcinomal
tissue (P= 0.0002) (Figure 1b). For Bcl-2, no significant
differences in the expression levels were found. Surprisingly,
Mcl-1 was found to be significantly downregulated in
adenomas (P=0.0007) with a slight rebound in the malignant
stage (P=0.03).
Since Bcl-xL expression showed the greatest heterogeneity

within the groups, we additionally compared protein expres-
sion by western blot analysis in tumor versusmucosa samples
taken from the same patient. In total, tissue specimens of
13 patients were analyzed. In line with the results obtained
from the TMA, a significantly higher expression of Bcl-xL in
carcinoma tissue compared with healthy mucosa was
observed (P=0.01, Figure 1c).

The knockout of Bcl-xL in intestinal epithelial cells
causes no spontaneous phenotype. Analyses of human
CRC tissue revealed Bcl-xL as the only anti-apoptotic protein
being overexpressed in the malignant state. To investigate its
role for intestinal tissue homeostasis under physiological
conditions and for carcinogenesis in an inflammation-driven
tumor model, we generated mice with a conditional loss of
Bcl-xL in intestinal epithelial cells (Bcl-xL

IEC-KO). The selective
loss of Bcl-xL expression in colon lysates of Bcl-xL

IEC-KO mice
was shown by western blot analysis (Figure 2a), proving an
organ-specific deletion. Bcl-xL

IEC-KO mice were born healthy
and at expected mendelian ratios. Compared with control
littermates, they show no overt phenotype in terms of overall
survival and body mass index (BMI) (Figure 2b). For
morphometric analysis, crypt diameter and number in H&E-
stained colonic crypt sections were determined (Figure 2c)
and revealed a normal crypt architecture and morphology.
Since the loss of an anti-apoptotic protein might lead
to spontaneous cell death induction, a TUNEL (TdT-mediated
dUTP-biotin nick end labeling) assay was performed.

Compared with the DNAse-treated positive control, neither
Cre control nor Bcl-xL

IEC-KO animals showed a noteworthy
amount of TUNEL-positive cells in the colon mucosa
(Figure 2d). Immunohistochemical staining of Ki67 as proli-
feration marker and Lysozyme as marker protein for Paneth
cells (Figure 2e) revealed no differences between control and
Bcl-xL

IEC-KO mice in terms of cell-cycle control or Paneth
cell function. In summary, there was no basal phenotype in
Bcl-xL

IEC-KO detectable.

Loss of Bcl-xL inhibits carcinogenesis in an inflam-
mation-driven tumor model. Since our data show that
Bcl-xL is markedly upregulated in human CRC tissue
(Figure 1), we reasoned that Bcl-xL

IEC-KO mice could be more
resistant to experimentally induced tumorigenesis. Therefore,
mice were injected intraperitoneally with the mutagenic agent
azoxymethan (AOM) to initiate intestinal tumor formation,
which was subsequently promoted by three cycles of the
pro-inflammatory reagent dextran sodium sulfate (DSS) in the
drinking water (Figure 3a). During the course of treatment,
Bcl-xL

IEC-KO mice showed a better health status mirrored by
less severe diarrhea and less pronounced weight loss during
DSS cycles (Figure 3b). Rigid colonoscopy of mice 80 days
after AOM injection revealed a higher tumor burden in control
animals (Figure 3c). The average tumor number (P=0.03)
and size (P=0.008) of single tumors were significantly lower
in Bcl-xL

IEC-KO mice compared with controls (Figure 3d).
Furthermore, the BMI was higher in Bcl-xL

IEC-KO mice at the
end of treatment (P= 0.0003). Taken together, these obser-
vations argue for a reduced susceptibility of Bcl-xL

IEC-KO mice
toward chemically induced and inflammation augmented
carcinogenesis.

Tumors of Bcl-xL
IEC-KO mice show increased cell death

without compensatory proliferation. H&E staining of
colonic sections, taken from Bcl-xL

IEC-KO and control mice
after AOM/DSS treatment, identified the gathered neoplastic
lesions as being well-differentiated adenocarcinomas with
similar morphology in Bcl-xL

IEC-KO and control animals. With
regard to cell death, tumors of Bcl-xL

IEC-KO mice showed a
higher positivity for cleaved PARP arguing for an increased
rate of apoptosis in Bcl-xL-negative tumors (Figure 4a).
Immunoblotting was done in order to characterize the
subtype of cell death in tumors of Bcl-xL

IEC-KO mice. Initiator
Caspases 8 and 9 were both found to be activated
(Figure 4b). Densitometric analysis revealed that the amount
of cleaved Caspase 8 was threefold higher in Bcl-xL-negative
tumors than in comparable controls (P=0.035) and the one
of cleaved Caspase 9 was more than doubled (P=0.045). In
addition, expression levels of Bcl-xL itself, Mcl-1 and Bcl-2
were determined by western blot analysis. This revealed no
compensatory upregulation of Mcl-1 or Bcl-2 in tumors
derived from Bcl-xL

IEC-KO mice (Figure 4b). For Mcl-1, this
finding was further verified by an immunohistochemical
staining, comparing expression levels in both mucosa and
tumor tissue derived from Bcl-xL

IEC-KO and control mice
(Supplementary Figure S1a) and on the mRNA level by
qRT-PCR analysis (Supplementary Figure S1b).
Ki67 staining revealed that the increase in cell death was not

accompanied by increased proliferation in Bcl-xL
IEC-KO mice
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(Figure 5a). This observation was further validated by
qRT-PCR analysis of RNA extracted from tumor tissue. Here,
the relative mRNA levels of PCNA, as an alternative indicator
for proliferating cells, were also not significantly changed
(Figure 5b). To investigate whether higher lymphocyte infiltra-
tion rates might be responsible for the increased activation of
Caspase 8 in Bcl-xL-negative tumors, immunohistochemical
staining was done with antibodies against CD3 to detect
T cells and CD20 to detect B cells (Figure 5a). Staining
revealed equal abundance of T as well as B cells in Bcl-xL-
negative and control tumors. Unaltered mRNA levels of the
pan-leukocyte marker CD45 further underline this finding
(Figure 5b). We conclude that the lower tumor burden found in
AOM/DSS-treated Bcl-xL

IEC-KO mice is not due to a different
immune response or proliferation but solely relays on an
increased cell death rate.

The Bcl-xL/Bcl-2 inhibitor ABT-737 is effective in vitro and
ex vivo. Since Bcl-xL was found to be overexpressed in
human CRC (Figure 1), we sought to exploit the high levels of

Bcl-xL using a small molecule inhibitor targeting the protein.
We used ABT-737, which is a BH3 mimetic with high affinity
to the BH3 groove of Bcl-xL and Bcl-2.12

First, 3D cell culture systems were used for long-term cell
culture of human CRC cell line HT29 in a tissue mimicking
environment. After 4 days of treatment with ABT-737 (1 μM) or
DMSO as control, scaffolds were sectioned and stained for
cleaved PARP. Staining showed massive apoptosis induc-
tion in ABT-737-treated cells with an average of 36% cleaved
PARP-positive cells. By contrast, almost no cell death
was detected in DMSO-treated controls (0.5%, Po0.001;
Figures 6a and b). This observation was validated by measur-
ing lactate dehydrogenase (LDH) in the supernatant of
scaffolds as a parameter for tumor cell death. In line with
the cleaved PARP staining, LDH activity is almost doubled
(1.9-fold; Po0.001) in supernatants of ABT-737-treated
scaffolds, further substantiating the potency of Bcl-xL inhibition
in long-term 3D cell culture (Figure 6c). Furthermore, scaffold
sections were stained for Ki67, revealing an unaltered
proliferative capacity of HT29 cells under ABT-737 treatment.

B
cl

-x
L

Mucosa Adenocarcinoma

0
2
4
6
8

10
12
14
16

B
cl

-x
L 

ex
pr

es
si

on
[G

ra
di

ng
] 

Mucosa
Adenoma
Adenocarcinoma

*
*
*

M
cl

-1
B

cl
-2

0
2
4
6
8

10
12
14
16

B
cl

-2
 e

xp
re

ss
io

n
[G

ra
di

ng
] 

100µm

0
2
4
6
8

10
12
14
16

M
cl

-1
 e

xp
re

ss
io

n
[G

ra
di

ng
] **

*
*

0

1

2

3

re
l. 

B
cl

-x
L 

ex
pr

es
si

on

Mucosa

Tumor

*
*

Bcl-xL

Tubulin

T M T M T M T M

30

kDa

55

*
*

Pat.1 Pat. 2 Pat. 3 Pat. 4

Figure 1 Expression levels of anti-apoptotic Bcl-2 proteins in human CRC. (a) IHC staining against Bcl-xL, Mcl-1 and Bcl-2 on a TMA, containing normal mucosa (n= 13),
adenoma (n= 22) and adenocarcinoma tissue (n= 61). Exemplary spots of mucosal and adenocarcinomal tissue are shown. Scale bar indicates magnification for all panels.
(b) Evaluation of staining intensities by multiplying values for staining quantity and quality. All P-values are calculated using mucosa as control group. Bcl-xL is significantly
overexpressed in adenomas (P= 0.007) and adenocarcinomas (P= 0.0002), Mcl-1 shows a decreased expression whereas Bcl-2 shows no deregulated expression.
(c) Significant increase of Bcl-xL expression in CRC tissue compared with the corresponding normal mucosa (P= 0.01), determined by western blot analysis and subsequent
densitometric evaluation (T= Tumor, M=Mucosa, Pat=Patient; n= 13 patients in total). Exemplary western blot of four patients is shown. Values are expressed as means+S.D.
*Po0.05; **Po0.01; ***Po0.001

Bcl-xL is an oncogenic driver in CRC
A-L Scherr et al

3

Cell Death and Disease



Expression levels of Bcl-xL itself also remained unchanged in
the presence of the inhibitor (Figures 6a and b).
To evaluate the potential of ABT-737 in a human ex vivo

system, vital CRC specimens of 10 patients were treated with
ABT-737 (5 μM) or DMSO for 72 h. After treatment, H&E-
stained sections of CRC specimens were assessed for vital
tumor cell content and for tissue quality by a pathologist.
Thereupon, specimens derived from five patients were further
analyzed with regard to cell death and proliferation. Immuno-
histochemical staining for cleaved PARP revealed a significant
increase in the amount of dead cells from 8.9 to 31.5% under
ABT-737 treatment (P= 0.028). Results from a Ki67 staining
were in line with the findings obtained in our mouse model and
the in vitro experiments, showing no significant change in the
proliferative capacity of CRC tissue under ABT-737 treatment
(Figures 7a–c). Even though, expression levels of Mcl-1 and
Bcl-2 seem to be different in individual patients, western blot

analysis revealed no significant changes in the expression of
anti-apoptotic Bcl-2 proteins under ABT-737 treatment
(Supplementary Figure S2). To prove the cell death pheno-
type, an additional ATP assay was performed. Measured
luminescence, which directly correlates with the amount
of ATP within the tissue, significantly decreased in ABT-737-
treated tissue specimens (P= 0.024). This argues for a
subsidence of tissue viability in presence of the inhibitor
(Figure 7d).

Discussion

Even if anti-apoptotic Bcl-2 proteins have been studied in the
context of CRC, the available data are inconsistent and no
comprehensive study investigating the therapeutic potential
of Bcl-xL is available. Furthermore, no animal models studying
the role of Bcl-xL for intestinal pathophysiology including
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cancer have been generated so far. Thus, we sought to dissect
the role of Bcl-xL in human and murine CRC onset and
progression with the final aim of testing for a therapeutic value.
Earlier reports by Zhang et al.13 and Birrocio et al.14

correlated an upregulation of Bcl-xL with malignant behavior of
CRC and aworse clinical course. In line with these studies, we
detected an upregulation of Bcl-xL in human CRC compared
with healthy mucosa. This observation holds true for a single
patient situation and larger cohorts comparing independent
healthy mucosa with malignant tissue, arguing for a role of Bcl-
xL in human CRC. Birrocio et al. identified a significant
relationship of high Bcl-xL levels and upregulation of the
transcription factor c-MYB. Thus, c-MYB might be a mechan-
istic link that should be further investigated in future studies.
The counterintuitive downregulation of Mcl-1 in CRC speci-

mens might be due to its unique role in DNA damage repair.10

A similar pattern showing a loss of Mcl-1 and an acquirement
of Bcl-xL has been described by Krajewska et al.15 In case of
Bcl-2, we did not observe changes in the expression level,
indicating a non-redundant and organ-specific function of
these anti-apoptotic proteins.
To investigate the role of Bcl-xL for intestinal tissue home-

ostasis and for pathophysiologic processes like tumorigenesis
in further detail, we generated knockout mice lacking Bcl-xL
in intestinal epithelial cells. Bcl-xL

IEC-KO mice showed no overt
phenotype in terms of birth rates, growth and survival.

Histologic analysis revealed no differences in crypt morpho-
logy, cell death rates and proliferation. The lack of a sponta-
neous phenotype argues for a dispensability of Bcl-xL under
normal conditions, which might be due to the per se high
cellular turnover rates of IECs.16 Since we found Bcl-xL being
strongly upregulated in human CRC, we supposed that
Bcl-xL

IEC-KO mice could be more resistant to experimentally
induced carcinogenesis. The AOM/DSS model is a well-
establishedmodel for DNA damage induced and inflammation
promoted intestinal tumorigenesis.17 The lack of Bcl-xL might
accelerate apoptosis initiation under unfavorable conditions
and thereby prevent chaotic cellular destruction. We hypothe-
size that in IECs lacking Bcl-xL a swift and immediately
executed apoptosis, via a lowered cell death threshold, might
prevent greater tissue damage and subsequent mucosal
inflammation. This could be the reason for the better health
status of Bcl-xL

IEC-KO mice in terms of diarrhea severity, weight
loss and recovery time during the treatment course. The lower
tumor burden found in Bcl-xL

IEC-KO mice underlines the
importance of this anti-apoptotic protein for intestinal carcino-
genesis. Less tumors in addition to smaller tumor sizes point to
a role of Bcl-xL in CRC onset and progression. Immuno-
histochemical staining showed a remarkable amount of
cleaved PARP-positive cells in Bcl-xL-negative but not control
tumors. Closer analysis of the contributing Caspases revealed
activation of Caspase 9 as initiator Caspase of the intrinsic
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Figure 3 Bcl-xL
IEC-KO and control mice in an inflammation-driven model for intestinal carcinogenesis. (a) Schematic treatment course with intraperitoneal injection of AOM at

the start day and three cycles of DSS in the drinking water (2% w/v). (b) Diarrhea severity and weight loss after DSS administration (red arrow) and during recovery time (blue
arrow). Exemplarily shown for the third DSS cycle. (c) Endoscopic images of Bcl-xL
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tumor number (P= 0.03) and size (P= 0.008) at the end of treatment shows a significantly lower tumor burden in Bcl-xL

IEC-KO compared with control mice. Furthermore, the BMI is
higher in Bcl-xL

IEC-KO mice (P= 0.0003). Values are expressed as means+S.D. Control mice: n= 8; Bcl-xL
IEC-KO mice: n= 9. *Po0.05; **Po0.01; ***Po0.001
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apoptotic pathway as well as activation of Caspase 8 as
activator of the extrinsic pathway. Since Bcl-xL prevents
permeabilization of the outer mitochondrial membrane,
Caspase 9 cleavage is in line with the reported function of the
protein.18 To investigate whether higher lymphocyte infiltration
rates in Bcl-xL-negative tumors might be responsible for the
Caspase 8 cleavage, immunohistochemical staining and
quantitative real-time PCR were done. Even though DSS
causes intestinal inflammation, there was no difference in
immune cell infiltrates in tumors from Bcl-xL

IEC-KO and control
mice. Instead, our data argue against a strong role of immune
cells in the mechanism by which Bcl-xL attenuates malignant
transformation. In contrast, cell death appears as the key
switch for a lowered tumor burden of Bcl-xL

IEC-KO mice. The
evasion of cell death is a known hallmark of cancer cells and
contributes to an aggressive behavior of malignant tissues.19

The increased apoptosis in Bcl-xL-negative tumors was
not accompanied by compensatory accelerated proliferation.
We have recently shown that, in contrast to Mcl-1, Bcl-xL has
no crucial role in proliferation of CRC cells.11 Taken together,

our data identify canonical intrinsic apoptosis as the respon-
sible mechanism for the attenuated intestinal tumorigenesis
in Bcl-xL

IEC-KO mice. This is in line with similar observations,
made in large B-cell lymphoma, in which low levels of Bcl-xL
were associated with high rates of apoptosis.20

A variety of small molecules targeting anti-apoptotic
proteins (BH3 mimetics) have been designed and tested in
clinical trials.21,22 ABT-199 (venetoclax), a Bcl-2-specific
inhibitor, has recently been approved by the FDA for treatment
of a CLL subtype.23 Another BH3mimetic, ABT-737, was iden-
tified by library screening for high-affinity binding of recombi-
nant Bcl-xL.

12 Here, we tested ABT-737 in 3D cell culture
systems and human ex vivo CRC cultures. We detected a
remarkably high induction of cell death among treatment with
ABT-737 in both situations, in vitro and ex vivo. Hence,
ABT-737 shows efficacy in CRC treatment in vital human
tissue. Even if the clinical development of ABT-737 is ceased
due to toxic side effects, the concept of targeting Bcl-xL in CRC
retains its value. Recently, it has been demonstrated that
KRAS mutations confer apoptosis resistance in CRC via
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upregulation of Bcl-xL underpinning the role of the protein as a
potential target.24,25 Furthermore, Bcl-xL has been identified
as a critical survival factor utilizing frequent genomic altera-
tions in a subset of CRCs.26

Conclusions

Here, we identify Bcl-xL as an oncogenic driver in murine
and human CRC. Bcl-xL becomes upregulated during
the process of cancer onset and progression. Intestine-
specific deletion of Bcl-xL renders mice less sensitive
toward carcinogenesis, emphasizing the role of Bcl-xL in
CRC. Finally, we show that Bcl-xL overexpression in CRC can
be therapeutically exploited utilizing BH3 mimetics. In sum-
mary, Bcl-xL is a crucial protector from cell death in CRC
and needs further attention in clinical trials as a potentially
druggable target.

Materials and Methods
Human tissues and ethics statement. Specimens of colonic mucosa and
primary CRC tissue were taken upon surgical resection in the Department of
General and Transplantation Surgery, University of Heidelberg, Germany. The TMA,
containing spots of healthy colon mucosa (n= 13), adenoma tissue (n= 22) and
adenocarcinoma tissue (n= 61), was obtained from the Tissue Bank of the National
Center for Tumor Diseases (NCT, Heidelberg, Germany). The usage of patient
tissue for research purposes was approved by the local ethics committee of the
University Hospital of Heidelberg. All analyses were done anonymously and written
informed content was obtained from all donors.

Mice. Mice expressing the Cre-recombinase under control of the Villin-promoter
(Villin-Cre) were kindly provided by Dr. W Chamulitrat (Heidelberg, Germany) and
mice carrying loxP-flanked alleles of Bcl-xL (Bcl-xL

FLOX) by Prof. Y-W He (Durham,
USA). To generate mice with a conditional loss of Bcl-xL in intestinal epithelial cells
(Bcl-xL

IEC-KO), Villin-Cre mice were crossbred with Bcl-xL
FLOX mice. Mice were housed

in individually ventilated cages at the SPF animal facility of the University Hospital in
Heidelberg, Germany and kept under a 12-h light cycle with ad libitum feeding. All
experiments on mice were conducted according to Institutional, National and
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Figure 7 Evaluation of the Bxl-xL/Bcl-2 inhibitor ABT-737 in an ex vivo tissue culture approach. Human CRC specimens were sliced and kept in culture for 94 h. After 24 h, the
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European animal regulations and protocols were approved by local government
authorities.

Immunohistochemistry. Paraffin-embedded TMA and tissue sections were
dewaxed and rehydrated using xylene and a series of graded alcohols, followed by
heat-induced antigen retrieval with citrate buffer (pH 6). Subsequently, staining was
performed by using the NovoLink Polymer Detection System (Leica Microsystems,
Wetzlar, Germany), according to the manufacturer's protocol. The following
primary antibodies have been used: Bcl-xL (Cell Signaling, Danvers, MA, USA),
Bcl-2 (LSBio, Seattle, WA, USA) and Mcl-1 (Sigma, St. Louis, MO, USA). The
immunoreactive score (IRS), ranging from 0 to 12, was determined by two
independent and experienced examiners. First, separate scores for staining quantity
(0–10%= 1, 11–50%= 2, 51–80%= 3, 81–100%= 4) and staining quality
(unstained= 0, weak= 1, moderate= 2, strong= 3) were determined. In the end,
the final IRS was calculated by multiplying the two values obtained from the intensity
score and the quantity score.27 Negative controls were generated by omitting the
primary antibody.
Mouse colon tissue (Figures 2e,4a and 5a) was isolated, rinsed with PBS, covered

with OCT mounting medium (Science Services, Munich, Germany) and gradually
frozen in the gas phase of liquid nitrogen. In all, 8 μm cryosections were cut (Cryostat,
Thermo) and fixed in 4% paraformaldehyde (PFA). Antigen retrieval and staining were
performed as described. The following primary antibodies have been used for murine
tissues: Bcl-xL (Cell Signaling), Ki67, Lysozyme, cleaved PARP, CD3 (all from Abcam,
Cambridge, UK) and CD20 (Thermo Fisher, Waltham, MA, USA).

Protein isolation, SDS-PAGE and western blot analysis. Deeply
frozen tissue specimens in RLT buffer (Qiagen, Venlo, The Netherlands) were lysed
by using the Precellys Homogenizer 24 (Bertin Technologies, Montigny-le-
Bretonneux, France). For further steps, the AllPrep DNA/RNA/Protein Mini Kit
(Qiagen) has been used and proteins were isolated from the supernatant according
to the manufacturer's instructions. Equal amounts of protein were separated by 12%
SDS-PAGE and blotted onto nitrocellulose membranes by standard procedures.
Immunoblotting was performed using the following primary antibodies: Bcl-xL,
Caspase/cleaved Caspase 8, Caspase/cleaved Caspase 9 (all from Cell Signaling)
and Tubulin (Sigma) as well as peroxidase-conjugated secondary antibodies (Santa
Cruz Biotechnology, Heidelberg, Germany). Bound antibody was visualized using
an enhanced chemiluminescence detection system (Perkin-Elmer, Zaventem,
Belgium) and signal intensity was measured using ImageJ (by Wayne Rasband,
National Institutes of Health, USA) software.

AOM/DSS model and mouse endoscopy. Ten-week-old mice (n= 10
per group) with a body weight of 420 g were injected intraperitoneally with AOM
(10 mg per kg body weight). Experimental groups were similar with regard to age
and sex ratio.
The mutagenic agent AOM (Sigma) initiates intestinal tumor formation, which is

promoted by three cycles of the pro-inflammatory reagent DSS (MP Biomedicals,
Santa Ana, CA, USA) in the drinking water (2% w/v). Each cycle lasted 7 days with
14 days of recovery in between (Figure 3a). For evaluation of diarrhea severity, the
following score was used: (0) no diarrhea: solid stool with no sign of soiling around the
anus. (1) Mild diarrhea: formed stool that appears moist on the outside. Some signs of
soiling around anus. (2) Diarrhea: unformed stool with a mucous-like appearance.
Considerable soiling around the anus. (3) Severe diarrhea: mostly clear or mucous-
like liquid stool with very minimal solid present and considerable soiling around anus.
(4) Bloody diarrhea: severe diarrhea with bloody contingent and considerable soiling
around anus.
High-resolution mouse endoscopy was performed as described28 with a Mainz

COLOVIEW endoscopic system (Karl Storz, Tuttlingen, Germany). In all, 5%
isoflurane in oxygen was administered for anesthesia initiation and then decreased to
2% in oxygen for anesthesia maintenance. Eighty days after injection, mice were
killed by cervical dislocation and bowel cavity was opened. The colon was removed,
rinsed with PBS and opened longitudinally. Colorectal tumors were counted and
tumor diameters were measured with a sliding caliper. Some tumors were taken for
immunohistochemical analyses, whereas others were used for protein isolation as
described.

TUNEL assay. To detect apoptotic enterocytes, a TUNEL assay was
performed. Therefore, mouse colon tissue was isolated, rinsed with PBS,
transferred in OCT mounting medium (Science Services, Munich, Germany) and
gradually frozen in the gas phase of liquid nitrogen. In all, 8 μm cryosections were

stained by using the ‘In Situ Cell Death Detection Kit, Fluorescein’ (Roche
Diagnostics, Risch, Switzerland), according to the manufacturer's instructions.
TUNEL-stained specimens were imaged with a fluorescence microscope, using a
488 nm excitation laser with emission at 530 nm.

RNA extraction and qRT-PCR analysis. Total RNA was extracted from
murine tissues by using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen), according
to manufacturer's instructions. In all, 1 μg of total RNA was reverse transcribed in a
final volume of 20 μl using random primers as previously described.29 qRT-PCR
was performed using primer assay kits (Qiagen) and the LightCycler480 software
package (Roche, Mannheim, Germany). Each sample was run in technical
duplicates, and mRNA expression was normalized to the mRNA level of GAPDH.

Cell line and 3D cell culture. The human CRC cell line HT29 was
purchased from ATCC (Manassas, VA, USA). Cells were maintained in RPMI
+GlutaMAX (Gibco, Karlsruhe, Germany) supplemented with 10% heat-inactivated
fetal calf serum (PAA Laboratories, Colbe, Germany), 1% penicillin/streptomycin
(PAA Laboratories), 1% HEPES (Gibco) and 1% non-essential amino acids (Gibco)
and cultured in a humidified atmosphere (37 °C, 5% CO2). The cells were regularly
tested for contaminations and routinely subcultured twice a week.

To grow human HT29 CRC cells in a three-dimensional culture assay, Alvetex
scaffolds (Reinnervate, Sedgefield, UK) were used. Seeding of cells was done as
described previously.11 After 24 h, medium was changed and additionally
supplemented with 1 μM ABT-737 (Selleckchem, Munich, Germany) or DMSO as
control. After 4 days of treatment, in which medium and drug were renewed every
second day, scaffolds were harvested, cryosectioned and immunostained as
described.11 For staining, a primary antibody against cleaved PARP (Abcam) and the
NovoLink Polymer Detection System (Leica Microsystems) have been used,
according to the manufacturer's protocol. At least 10 pictures per section were
captured with an inverted microscope (Keyence, Neu-Isenburg, Germany), and the
number of cleaved PARP-positive cells was determined by manual counting.

Tissue culture. Tumor tissue from 10 patients with CRC was collected upon
surgical resection of the primary tumor. Tumor tissue was cut into 300 μm thick
slices as described,27,30 transferred onto filter membrane inserts and placed in
culture medium (DMEM supplemented with penicillin: 100 U/ml and streptomycin:
100 mg/ml) containing six-well plates. Tissue specimens were kept at the air–liquid
interface for up to 94 h. After 24 h of incubation in medium, cancer specimens were
treated with the small molecule inhibitor ABT-737 (2.5 and 5 μM) or the respective
vector substance (DMSO) for 72 h, by supplementing the culture medium with the
mentioned compounds. Finally, tissue slices were either used for performing an ATP
assay or fixed in 10% formalin and paraffin-embedded. In all, 4 μm sections were
immunohistochemically stained with antibodies against cleaved PARP and Ki67.

ATP assay. In all, 10 mg frozen human colon carcinoma tissue were
homogenized (Bioruptor sonication system, Diagenode, Seraing, Belgium) in
80 μl CellTiter-Glo buffer of the CellTiter-Glo Luminescent Cell Viability Assay
(Promega, Madison, WI, USA) for 30 min. Tissue lysate was centrifuged at
14 000 r.p.m. for 10 min at 4 °C to spin down cellular debris. The supernatant was
analyzed according to the instructions provided by the manufacturer. The
luminescent signal was recorded 10 min after reagent addition (Victor X3 Multimode
Plate Reader, Perkin-Elmer, Baesweiler, Germany).

Statistical analysis. The Student's t-test was used to analyze data obtained in
the 3D-scaffold (unpaired, two-sided) and tissue culture (paired, two-sided)
experiments. In the evaluation of all other data, significant differences were identified
by using the Mann–Whitney U-test. R 3.1.3 statistic software was used for all
statistical analyses (www.R-project.org). P-values o0.05 were considered as
significant and are indicated as following: *Po0.05, **Po0.01, ***Po0.001.
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