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Introduction

Vaccination is one of the most efficacious medical interventions that have decreased human morbidity and mortality in all regions
of the world. It not only has dramatically reduced the incidence of numerous diseases (Hilleman, 1985; Andre et al., 2008), such as
measles, diphteria, mumps, rubella, tetanus, yellow fever, pertussis, and poliomyelitis, but also eradicated the dreaded smallpox
viral infection (Strassburg, 1980). Efforts are currently also focused on developing vaccines for treatment of other diseases
(Ada, 2003). This triumph over infectious diseases has been achieved by using either killed or attenuated conventional vaccines. A
conventional or prophylactic vaccination is based on deliberate exposure to non-virulent form of the pathogen to establish
immunity from subsequent exposure to the virulent form of the pathogen (Lee et al., 2012). This approach requires little
knowledge of the molecular nature of the individual pathogen antigens or the immune responses they elicit. To date, this
approach has undoubtedly been the most successful.

There is, however, an ongoing trend towards emerging infectious diseases (Fauci, 2001; Fauci et al., 2005) against
humankind in different parts of the world. These diseases are caused by the emergence of new pathogens, resurgence of old
ones, constantly mutating pathogens, drug-resistant pathogens, and even include pathogens used as agents of bioterrorism.
Previously undescribed pathogens, such as severe acute respiratory syndrome (SARS), bird flu (avian influenza), mad cow, and
HIV/AIDS, are appearing at an increasing frequency. On the other hand, old diseases such as ebola, hanta, dengue and cholera,
among others, are invading populations from which they have disappeared or cross species barrier to invade new species.
Occasionally, pathogens mutate (or recombine) and then they adapt and show up as new variants that evade the host’s acquired
immunity. The annual influenza epidemics are generally due to genetically drifting strains of influenza that differ slightly from
previous strains (Bouvier and Palese, 2008). The development of drug-resistance pathogens, such as malaria, pneumococci,
enterococci, and tuberculosis, has increased over the years, partly due to the widespread and inappropriate use of drugs
(Knobler et al., 2003). Moreover, the pathogens responsible for the emerging infectious diseases are also of potential use as
bioterrorist weapon (Ryan, 2008). For these reasons, emerging infectious diseases continue to pose threats to public health
(Morens and Fauci, 2013). Therefore, there is a need for more effective vaccines to help reduce human morbidity and mortality
from emerging infectious diseases.

The last decade has seen significant advances in new technologies for the development of new vaccines. These technologies,
combined with our understanding of host response to foreign antigens, have laid the foundation for rapid advances in vacci-
nology. Few potential candidate approaches for this new family of vaccines (Arnon and Ben-yedidia, 2003; Minichiello, 2002;
Babiuk, 1999; Nandy and Basak, 2016) are subunit vaccines, genetically engineered live vaccines, and polynucleotide (DNA or
genetic) vaccines. All these new directions in vaccine development have something in common; their most important challenge is
the discovery of key antigens from the array of proteins encoded by the pathogen genome that are able to elicit protective immune
response against these pathogens and are effective for majority of the human population. The presence of genetic variation in the
genes of the host immune system across the human population and the genomes of the pathogen variants make this a multi-
dimensional and a combinatorial problem.

Since 1980s, the focus of vaccine design has been on the pathogen’s variable domains, mutants, multivalent coverage and not
so much on conserved regions (Plotkin, 2005). However, a large body of data is building up in the field of vaccine design and
epitope prediction that points to the neglected aspect of conserved epitopes as important targets of vaccine development. In fact,
evidence is accumulating that while many variable regions are highly antigenic, sufficiently large number of them are actually
non-immunoprotective and have been exploited by viruses and other pathogens for immune escape and may lead to immuno-
pathology (Haydon and Woolhouse, 1998). Conserved epitopes were thought to be un-important due to their lack of immu-
nogenicity (Bona et al., 1998; Li et al., 2011). However, the immunogenicity of such conserved epitopes especially those which are
immune-protective and conserved amongst many variants and mutant strains, can be boosted using adjuvants, which are che-
micals or approved drug molecules. Moreover, conserved epitopes also help address the issues of ethnicity (“pan-haplotype
responsive”) compared to variable epitopes (Khan et al., 2008). In addition, the conserved epitopes can circumvent vaccine design
issues of escape mutants and the need of using the latest strains. In particular, if a set of conserved, immunogenic, and immu-
noprotective epitopes are suitably boosted, they will not elicit mutations in the pathogen, and thus can be reasonably predicted to
remain unchanged in the next season of infection. The possibility of extended efficacy of vaccines would be a tremendous advance
for the vaccine industry and will potentially serve the global population with protection against infections (Sylvester-Hvid et al.,
2002; De Groot et al., 2004; Sette et al., 2001; Raman et al., 2014; Khan et al., 2017).

Vaccine informatics, a fledgling sub-field of reverse vaccinology, has the potential to develop effective vaccines (Hegde et al.,
2017; Khan et al., 2017). With the rapid expansion of vaccine related data (host and pathogen) stemming from both classical and
high-throughput genomic/proteomic approaches, identifying conserved, robust, immunogenic, and immunoprotective epitopes
manually from this large data pool is inefficient. Vaccine informatics is a practical science for designing new vaccines with a focus
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on bioinformatics-driven acquisition, manipulation and analysis of data related to the immune system and disease agents
(Raman et al., 2014). It provides a means for systematic study of big data, pre-screening of targets, and facilitates experimental
design for validation by a small number of key experiments. The bioinformatics support can be divided into two, the standard
bioinformatics support and the more specialised immunoinformatics support (Petrovsky et al., 2003). The standard support
includes basic bioinformatics functions, such as sequence comparison and alignment, database searching, hunting for patterns and
profiles, 3D-structure analysis and modeling, and data annotation (reviewed in Brusic and Petrovsky (2003)). Immunoinformatics
is a more targeted bioinformatics support with an emphasis on data-warehousing and mining of immunological data, such as
prediction of immunogenicity (Soria-Guerra et al., 2015; Brusic and Petrovsky, 2003). Vaccine researchers are taking advantage of
these bioinformatics approaches, in combination with experimental validation, to discover and facilitate better understanding of
the components of the human immunome, which then aid in the design of new vaccines. The immunome can be defined as the
complete set of genes and proteins of the immune system. Highly accurate target predictions can diminish discovery cost by 10–20
folds (De Groot et al., 2002; Kast et al., 1994).
Background

In the human and higher vertebrate host, the major functions of the immune system are the maintenance of homeostasis,
surveillance and tolerance to self-structures, and defence followed by immunity against pathogens (Yatim and Lakkis, 2015).
The immune system is widely distributed in the body and comprises of immune organs, tissues, and cells, connected as a complex,
but tightly regulated network (Jerne, 1993; NIH, 2003; Nicholson, 2016). In general, the processes that take place at the molecular
level and cellular level largely initiate and regulate the function of the immune system. A healthy immune system will discriminate
‘non-self’ or foreign antigenic proteins from those that are normally present (‘self’) in an organism and will raise appropriate
responses. The number of self-structures is large, but finite; the number of non-self structures is practically infinite. In the cell, both
self and non-self proteins are digested by the proteasomes into short peptide fragments, which are then bound by major
histocompatibility complex (MHC) molecules to form peptide/MHC complexes and are displayed on the surface of host cells
(Vigneron and Van den Eynde, 2014). These peptides are recognition labels, which display the contents of host cells to T cells of
the immune system. The presence of non-self peptides is a prerequisite for the initiation of immune responses. Peptides produced
by degradation of intracellular proteins bind MHC class I molecules and are recognised by CD8þ T cell receptor (Shastri et al.,
2002; Chowell et al., 2015; Blum et al., 2013). MHC class II molecules present peptides, produced by degradation of proteins of
extracellular origin, on the surface of antigen-presenting cells to CD4þ T cells (reviewed in Lennon-Duménil et al. (2002)).
A major function of CD8þ T cells is to recognize and destroy cells infected by pathogens (Nicholson, 2016). Peptides displayed by
the MHC class II molecules mainly serve to regulate immune responses; they are crucial for the initiation, enhancement and
suppression of immune responses.

Driven by methods of molecular and cell biology, significant advances in the understanding of immunological processes have
been made during the last two decades. This progress over the years resulted in the continuous accumulation of huge amount of
immunological data obtained experimentally. This growing number of immunological data and the high complexity of the
functional and structural foundation of the immune processes created a need for improved data management to enable advance
data analysis. The need to manage and analyse this growing amount of complex data has led to the development of a number of
immunological databases (Brusic et al., 2000), such as SYFPEITHI and MCHPEP, IMGT and FIMM, and complex computational
models (Petrovsky and Brusic, 2002). The purpose of immunological databases is to facilitate the collection of, access to, and use
of immunologically relevant data. One of the applications of the databases in immunology is for vaccine research and devel-
opment by using complex computational models in combination with experimental approaches to help precise our understanding
of antigen presentation and recognition by the immune system.

The combined effort between experimental and computational immunology provided us with a new perspective to designing
vaccines that will be effective across demographic boundaries. Previously, the extreme degree of polymorphism observed in the
MHC posed limitations for the development of such a vaccine because the ability to trigger an effective T-cell response is partly
determined by the MHC phenotype of the individual and different individuals have different MHC allele (Macdonald et al., 2001;
Marrack et al., 2017). The MHC genes are the most polymorphic of all human genes, with more than 10,000 alleles known (as of
Feb 2018), and are important in increasing the range of responses that different individuals can mount. In humans, this poly-
morphism results from concentrated amino acid substitutions in the peptide-binding groove of human leukocyte antigen
(HLA, the human MHC system) molecules that produce variability in peptide binding and presentation to T cells (MacDonald
et al., 2000). Over the years, few groups have investigated the possibility of a functional classification of HLA polymorphism based
on peptide-binding specificities. It was found that majority of HLA alleles (both class I and II) could be grouped into 18 or more
different ‘supertypes’, purely on the basis of similarities in their peptide binding specificity (Lund et al., 2004). It has been
suggested that the majority of all major human populations can be covered by only few HLA supertypes, where the different
members of each supertype bind similar peptides (‘promiscuous peptides’) for presentation to T-cell (Sette et al., 1999). Further,
latest developments show evidence for presence of “immunological hot-spots” (Srinivasan et al., 2004) in antigens. Immunolo-
gical hot-spots are defined as antigenic regions possessing multiple promiscuous peptides that are supertype specific. This area of
research raises the prospect of identifying key pathogenic antigens that possess immunological hot-spots as best candidates for
vaccine design as it will provide protection at the population level, irrespective of ethnicity.
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The humoral response involves antibodies produced by B-cells, which recognize both linear and conformational B-cell epitopes
on the surface of the pathogen. Conformational neutralizing epitopes are the primary focus of various vaccine research for
protective humoral responses. However, unlike linear B-cell epitopes and T-cell epitopes, reliable computational tools for pre-
diction of conformational epitopes are limited (Kulkarni-Kale et al., 2005; Zhang et al., 2011).

As for the pathogens, the last decade witnessed the rapid expansion of sequence data at our disposal, stemming from both genomic
and proteomic approaches, enabling analysis to map key antigens that are potential targets for protective immune responses. The
genomic sequences of a large number of pathogens that threaten public health have been completed or are impending completion. For
example, the whole genome of over 7,475 viruses have been sequenced and deposited in the major public database Entrez Genome
(see “Relevant Website section”). The data derived from the genome/proteome sequencing and related projects for a particular species
of pathogen, such as West Nile Virus, is the missing gap towards the development of vaccines effective against the majority of the
variants currently known within that pathogenic species and probably against novel ones that are yet to emerge (Koo et al., 2009). Such
vaccines will be much superior to the current generation of vaccines, which are solely based on a single or few antigens providing
protection only against certain variants of a pathogen and therefore might elicit too narrow a breadth of response to provide protection
from the remaining diverse variants of the same pathogen species (Doolan, 2003).

We have made significant progress in understanding the processes in the host that are involved in mounting an immune
response. However, we are still far from having a good understanding of the natural complexity of the pathogens. A good starting
point would be by utilizing the pathogens genomic/proteomic data to study their sequence diversity, and identify antigens
containing conserved and variable immunological hot-spots. To fully realize the promise of the available datasets for such study,
we would require the development of appropriate technologies for systematically converting genomic/proteomic data into pro-
tective vaccines. Recently, systematic genome-wide approach to identify the key antigens of a pathogenic species from the
numerous variant sequences of the same pathogen have been reported (Dhanda et al., 2017; Rizwan et al., 2017; Goodswen et al.,
2014; Vivona et al., 2006; Del Tordello et al., 2016; Maria et al., 2017; Doolan, 2003; Raman et al., 2014; Koo et al., 2009; Khan
et al., 2017). The selected key antigens will represent the minimal representative sets of target sequences required to provide
immunity against the majority of the existing variants of a particular pathogen species.

Bioinformatics is an inter-disciplinary field that is essential for the analysis and interpretation of complex and large quantity of
biological data generated by functional studies and high throughput technologies. It is used to propose the next sets of experi-
ments and, most importantly, to derive better understanding of biological processes. As stated, the number of pathogen sequence
data in public databases is increasing rapidly, however, experimental approaches to study this large data pool for the development
of immune interventions are time-consuming, costly and almost impractical. Through combination of bioinformatics and
experimental approaches, it is possible to select key experiments and help optimize experimental design. Computer algorithms are
increasingly used to speed-up the process of knowledge discovery by helping to identify critical experiments for testing hypothesis
built upon the result of computational screening. A number of successful examples for application of computer models to study
immunological problems have been described in Brusic et al. (2005). Such examples illustrate the power of computational
approach to complex problems involving potentially vast datasets with potential biases, errors and discrepancies.
A Computational Framework for Vaccine Target Discovery

Reverse vaccinology, a bottom-up genomic approach, has been successfully applied to the development of vaccines against
pathogens that were previously not suited to such development (Vernikos, 2008; Rappuoli and Covacci, 2003; Rappuoli, 2001;
Del Tordello et al., 2016). The pre-requisite for this approach is the sequence data of the target pathogen, which acts as input to
various bioinformatics algorithms for prediction of putative antigens that are likely to be successful vaccine targets. These can-
didates can then be validated by a small number of key experiments in the lab. The approach has been successfully applied to the
development of universal vaccines against group B Streptococcus (Maione et al., 2005) and vaccine candidates against MenB
(Pizza et al., 2000), among others (Rappuoli and Covacci, 2003). Reverse vaccinology is a promising method for the high-
throughput discovery of candidate vaccine targets that have the potential to mirror the dynamics and antigenic diversity of the
target pathogen population, which includes the diversity of the interacting partner, the immune system. However, a big challenge
to this end is the need to understand how vaccine developers can cover antigenic diversity and develop a systematic approach to
rationally screen pathogen data to select candidate vaccine targets that cover the diversity.

Over the years, a number of bioinformatics pipelines have been designed that predict vaccine candidates both rapidly and
efficiently. VacSol (Rizwan et al., 2017), NERVE (Vivona et al., 2006), and Vacceed (Goodswen et al., 2014) are examples of
such pipelines for proteomes of bacterial or eukaryotic pathogens and these pipelines are highly configurable and scalable
(Zaharieva et al., 2017). They include multiple steps and integrate various algorithms for analysis and comparison. Shortlisted
candidate vaccine targets are ranked for prioritization towards experimental validation. These pipelines are expected to improve
the vaccine target discovery process.

The general characteristics desired for a candidate vaccine target are (i) highly conserved; (ii) pathogen-specific; (iii) important
for structure/function; (iv) immune-relevant; and (v) antigenically similar to circulating strains. Highly conserved targets are less
likely to mutate and escape immune recognition. This is particularly so if they are important for structure and function, suggesting
a robust historical conservation. High conservation also reduces the possibility of altered-peptide ligand (APL) effect from variant
epitopes of the same pathogen species (Sloan-Lancaster and Allen, 1996; Evavold et al., 1993; Rothman, 2004). Variants may also
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originate from other pathogens, in particular those that co-circulate or co-infect with the pathogen of interest and if they belong to
the same family. In vaccine design, epitopes common to other pathogens could either be useful by inducing cross-protection, or
detrimental by inducing altered-ligand effect. Thus, potential vaccine targets should be analyzed for specificity to the target
pathogen. The definition of virus species-specific vaccine targets can be further expanded to exclude those with one amino acid
mismatch to human sequences in order to avoid possibility of molecular mimicry. Antigenic mismatch between a vaccine and
circulating strains has been shown to increases the risk of disease outbreak by 1000-fold compared to immunization using
identical strains (Park et al., 2004). Thus, it is important to assess the extent of antigenic identity between the candidate vaccine
targets and the circulating strains.

Typically, a generic semi-automated computational framework comprises of three key components: data collection, data proces-
sing, and data analysis (Khan, 2005, 2009; Khan et al., 2006, 2017). Fig. 1 illustrates the workflow of the framework and Fig. 2
provides a non-comprehensive list of commonly used tools. Data collection would involve the user providing a set of sequences
(aligned or unaligned) of the pathogen of interest for analysis. The sequences could be a single protein dataset, multiple or the
complete proteome. Additionally, comparative analyses of the sequences can be performed between subtypes/groups of the pathogen.
The sequences can be retrieved from public repositories, primary or specialist databases, such as the NCBI Entrez Protein database
(NCBI Resource Coordinators, 2017) or Influenza Research Database (IRD) (Zhang et al., 2017), respectively. User can also provide
sequences derived from their experimental work, not available in public databases. Typically, downloaded data would comprise full-
length or partial sequences, and the corresponding metadata. Data processing would involve removal of duplicate sequences from the
dataset, and for comparative analysis, the merging of the input sequences will be required prior to the alignment step. Multiple
sequence alignment will be carried out using an existing tool that is robust in dealing with large sequence data, such as (Sievers et al.,
2011; Katoh et al., 2017; Edgar, 2004; Do et al., 2005) Clustal Omega, MAFFT, MUSCLE or PROBCONS. The output alignment quality
will be manually inspected for any errors and/or misalignments, which are common when dealing with partial sequences. Henceforth,
the data would be ready for analyses, which can involve performing a diversity analysis, such as by measuring entropy values (Heiny
et al., 2007; Hu et al., 2013; Khan et al., 2008; Koo et al., 2009) and quantifying variant motifs for each, user-defined, k-mer positions in
the alignment. The results of these analyses will be plotted as an output for the user, providing a holistic view of the diversity, including
variant distribution. The user can define a preferred conservation threshold for selection of highly conserved sequences. These selected
sequences are then analyzed for distribution of variants in nature (Khan et al., 2008; Koo et al., 2009), including matches to human
proteins, enabling the identification of pathogen specific, highly conserved sequences. The robust nature of the historical conservation
can be assessed by performing functional and structural analysis (Sprenger et al., 2008; Hung and Link, 2011; Wizemann et al., 1999;
Sachdeva et al., 2005; Monterrubio-López et al., 2015; He, 2014; Tang et al., 2014; Maria et al., 2017). The relevance of the identified
potential candidate vaccine targets for use against current circulating strains can be assessed by measuring the incidence of the
candidate targets in the corresponding sequences of recent strains of the virus of interest (Khan et al., 2017). The antigenicity/
immunogenicity of the candidate sequences are predicted to assess their immune relevance. Experimental validation includes matching
the predicted epitopes with reported epitopes in public databases, such as the Immune Epitope Database (IEBD) or SYFPEITHI, or
performing quantitative measurements of the pre-selected candidate peptides by generating synthetic constructs and testing for their
immunogenicity, such as by use of HLA transgenic animal models that express specific HLA alleles (Rosloniec et al., 1997; Lefranc et al.,
2009; Gourlay et al., 2017; Khan, 2005).
Immunoinformatics

Bioinformatics tools can facilitate the process of epitope mapping by identifying peptides that can potentially elicit T-cell
responses. Binding of epitopes to HLA antigens is highly allele-specific; core peptide-binding motifs (usually between 8- and 11-
mers, most often 9-mers) have been defined experimentally for a number of HLA class I and class II alleles and incorporated into
computational algorithms, allowing to predict candidate HLA-binding epitopes in silico from protein sequences (Parker et al.,
1994; Rammensee et al., 1999; Sturniolo et al., 1999; Zhang et al., 2005; Nielsen et al., 2010; Karosiene et al., 2013; Paul et al., 2013,
2015a,b; Andreatta et al., 2015; Andreatta and Nielsen, 2015; Pro et al., 2015; Trolle et al., 2015; Abelin et al., 2017; Jurtz et al.,
2017; Fleri et al., 2017). More recently, quantifiable predictive features of TCRab binding to HLA/epitope complexes have been
also described (Birnbaum et al., 2014; Dash et al., 2017; Glanville et al., 2017; Gee et al., 2017).

Two main categories of specialized immunoinformatics tools are available for prediction of MHC binding peptides – methods
based on identifying patterns in sequences of binding peptides, and those that employ three-dimensional (3D) structures to model
peptide/MHC interactions (Tong et al., 2007; Liljeroos et al., 2015; Gourlay et al., 2017). Pattern-based methods includes binding
motifs, quantitative matrices, decision trees, artificial neural networks (ANNs), hidden Markov models (HMMs) and support vector
machines (SVMs), among others. In contrast, the structure based methods are theoretically rooted and include homology modeling,
docking and 3D threading techniques (Dominguez et al., 2003; De Vries et al., 2010; Agostino et al., 2016; Khan and Ranganathan,
2010; Liljeroos et al., 2015; Gourlay et al., 2017). Although less accurate, pattern based approaches are over-represented in the literature
due to higher complexity in development and longer computational time of the more accurate structure-based approaches (Ranga-
nathan and Tong, 2007; Maria et al., 2017), including the sheer difference in the availability of linear versus structural data.

For a given sequence, typically all possible overlapping 9-mer (and later, 8- to 11- mer) peptide sequences are extracted.
Epitope prediction for HLA class I and class II alleles are performed using benchmarked prediction models, including, for HLA
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class I epitopes, the artificial neural network (ANN)-trained NetMHCpan (version 4.0) (Andreatta et al., 2015; Trolle et al., 2015;
Jurtz et al., 2017), and for HLA class II epitopes, NetMHCIIpan (Karosiene et al., 2013; Andreatta and Nielsen, 2015), and the
allele-specific consensus percentile ranks of all algorithms queried by the Immune Epitope Database and Analysis Resource (IEDB)
tools (combination of NN-align, SMM-align, and CombLib/Sturniolo) (Paul et al., 2015a,b). Additionally, proteasome cleavage
(Hakenberg et al., 2003; Nussbaum et al., 2001; Nielsen et al., 2005) and TAP binding predictions (Zhang et al., 2006; Bhasin et al.,
2007; Bhasin and Raghava, 2004) will be performed for priority ranking. Several tools, such as NetCTL (Larsen et al., 2005),
integrate these various predictions into one and predict for HLA supertypes, which are groups of HLA alleles with similar peptide
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Fig. 2 An example of commonly used tools and databases for vaccine target discovery.
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binding specificity. Potentially cross-reactive self epitopes may be searched within the human proteome using BLAST/BLAT
alignment tools (Kent, 2002; Altschul et al., 1990).
Case Studies: Vaccine on Infectious Diseases and Non-Infectious Diseases

Infectious Diseases

Reverse vaccinology immunoinformatics approaches are widely applied for viral vaccine design, such as for influenza virus,
chikungunya virus, zika virus and others (Gupta et al., 2016; María et al., 2017), including parasites (Damfo et al., 2017) and
bacteria (Mistry and Flower, 2017; Zahroh et al., 2016; Rappuoli, 2001). Khan et al. developed a bioinformatics pipeline for DENV,
which proved generic as it was successfully applied to several viruses, such as WNV (Koo et al., 2009), a close relative of DENV
(Khan et al., 2008), and a number of other viruses, such as HIV-1 (Hu et al., 2013), among others. It provides a novel and
generalized approach to the formulation of peptide-based vaccines targeting a broad diversity of pathogens and applicable to the
human population at large. This methodology is a significant contribution to the field of reverse vaccinology as it enables the
systematic screening and analyses of pathogen data which would otherwise be impossible to carry out experimentally, due to too
many pathogen sequences (high viral diversity) and variations in immune system among individuals (extensive polymorphism of
HLA). This approach therefore significantly reduces the efforts and cost of experimentation, while providing for systematic
screening and analyses of pathogen proteomes (Raman et al., 2014).

Khan et al. (2008), Koo et al. (2009) and Hu et al. (2013) analyzed a large number of dengue (DENV), West Nile virus (WNV)
and clade B HIV-1, sequences, respectively, retrieved from the NCBI Entrez protein database (Table 1). The sequences were aligned
and the overlapping nonamer amino acid positions of the viral proteome, each a possible core binding domain for human
leukocyte antigen molecules and T-cell receptors, were quantitatively analyzed. The mean entropy of DENV nonamer sequences
was low, with a range of 0.2–1.0 for within and 1.6–2.6 for between serotypes. This was even lower for WNV, ranging from
0.2– 0.5, with the highest for HIV-1 clade B subtype, 1.9–4.2. Entropy is a general measure of diversity, and the data provided a
holistic overview viral diversity across the proteome. Accordingly, the incidence of variants to the most prevalent, index sequence
at the aligned nonamer positions was the lowest for WNV (intra: r10%) and the highest for HIV-1 clade B (intra: B80%–99%);
the variants incidence within each DENV serotype was comparable to WNV, but between serotypes (B60%–80%) was closer to
HIV-1 clade B subtype. Forty-four (44) sequences (pan-DENV sequences) identical in 80% or more of all recorded DENV
sequences represented 15% of the DENV polyprotein length. The proportion (34%) was much higher for WNV and at complete
conservation (100% incidence). Notably, at similar incidence level (4¼80% incidence) to DENV, although pan-clade, B35% of
the intra HIV-1 clade B proteome was highly conserved. The proportion of these conserved sequences that were immune-relevant
showed an inverse relationship: DENV (59% matched 9aa or more of 45 class I and II reported epitopes), WNV (50% matched 9aa
or more of 57 class I and II reported epitopes), and HIV-1 clade B (37% matched 9aa or more of 73 class I and II reported
epitopes). Khan et al. (2008) highlighted that conservation analysis should go beyond the species of interest, extending to all those
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Table 1 Key summary results of vaccine target discovery study on Dengue virus (DENV), West Nile virus (WNV) and clade B HIV-1.

Category DENV WNV HIV-1 clade B
(Khan et al., 2008) (Koo et al., 2009) (Hu et al., 2013)

Mean nonamer entropy Intra: 0.2–1.0 Intra: 0.23–0.51 Intra: 1.9–4.2
Inter: 1.6–2.6

General variants incidence trend Inter: B60%–80% lntra: o10% Intra: B80%–99%
% of the proteome covered by
conserved sequences

Pan-clade: 15% (4¼80% incidence) Intra: 34% (¼100 % incidence) Intra: 35% (4¼80% incidence)

Immune relevance (26/44) 59% matched 9aa or more of
45 class I and II reported epitopes

(44/88) 50% matched 9aa or more of
57 class I and II reported epitopes

(29/78) 37% matched 9aa or more of
73 class I and II reported epitopes

No. of other viral species
matched by the conserved
sequences

(27/44) 61% matched 64 flaviviruses (67/88) 76% of the sequences
matched 68 flaviviruses

(74/78) 95% matched 9 deltavi ruses

No. of pathogen specific
conserved sequences

17 21 4
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other species that are evolutionarily related as they may act as variants to the conserved epitopes identified. This step is necessary to
identify conserved epitope sequences that are pathogen specific, with none or minimal number of variant sequences within
or across other pathogen species. Variant epitopes are hypothesized to cause deleterious immune responses. Many of the cons-
erved sequences matched nine consecutive amino acids of many (flaviviruses; family of WNV and DENV) to few (deltaviruses;
genus of HIV-1) other related viruses, leaving only 17, 21 and 4 pathogen specific conserved sequences for DENV, WNV and
HIV-1 clade B subtype, respectively.
Non-Infectious Diseases

According to World Health Organization (WHO), non-infectious diseases, especially chronic diseases will lead the disability by
2020. Hence, diseases such as cancers, obesity, neurodegenerative disease addictions and others have become a recent focus of
vaccine development (Barrett, 2016). Cancer is the most common non-infectious disease that leads death world-wide. Due to the
advanced technology and success of in silico methods in infectious disease vaccine design, computational approaches have been
applied in study of cancer vaccine design. For example, VaccImm was developed as a bioinformatics approach to simulate peptide
vaccination in cancer therapy (von Eichborn et al., 2013). In addition, modeling approaches using computational biology, such as
Sim Triplex and MetastaSim model are important to understand the molecular interactions at the cellular and molecular level
(Pappalardo et al., 2013; Sankar et al., 2013). Adekiya et al. (2017) reports a recent example of a study that included bioinformatics
analysis in cancer vaccine development.
Conclusion: Vaccine Informatics and Future Vaccines

Future vaccines will be minimalistic in approach by focusing on key parts of the pathogen, such as regions containing epitopes that
cover antigenic diversity and, thus, will target immunologically similar subgroups of the human population and multiple
pathogen variants. This is evident from the trend observed in evolution of vaccine strategies, which has seen a shift from whole
organisms to recombinant proteins, and further towards the ultimate in minimalist vaccinology, the peptide/epitope/multi-
epitope based vaccines. The minimalist approach is also expected to cover the safety concerns that are associated with the
traditional vaccine approach of using whole organism (Sette and Fikes, 2003; Dertzbaugh, 1998). Vectored vaccines, suitable for
‘combination immunization’ that are produced by recombinant DNA technology and contain multivalent minimal antigens to
protect against multiple infections, are considered to be the future of vaccinology (Kutzler and Weiner, 2008). The future will bring
increased integration of vaccine research with advances in immunology, molecular biology, genomics, proteomics, informatics,
and high-throughput instrumentation, collective defined as the emerging field of “vaccinomics”, which is hailed to be responsible
for the next ‘golden age’ in vaccinology (Poland et al., 2008). Awareness of the novel technological possibilities in vaccine research
is also expected to grow. Future vaccinology will be based on detailed understanding of immune function, optimal stimulation of
immune responses (using adjuvants) and precise mapping and rational selection of immune targets (Brusic et al., 2005). To
achieve this, vaccine development will routinely be conducted through large-scale functional studies supported by genomics,
proteomics, and informatics techniques prior to clinical trials. This will provide an increased range of immune targets for vaccine
design. The author expects the emergence of new generation of vaccines to be personalised to both the genetic make-up of the
human population and of the disease agents. In summary, vaccinology will experience rapid progress and will eventually deliver
benefits to patients from improved diagnosis, treatment and prevention of diseases.
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See also: Computational Pipelines and Workflows in Bioinformatics. Extraction of Immune Epitope Information. Host-Pathogen Interactions.
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Relevant Website

www.ncbi.nlm.nih.gov/genomes/VIRUSES/viruses.html
Viral Genomes.
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