
IET Systems Biology

Review Article

Review of tools and algorithms for network
motif discovery in biological networks

ISSN 1751-8849
Received on 6th January 2020
Revised 20th March 2020
Accepted on 21st April 2020
E-First on 27th May 2020
doi: 10.1049/iet-syb.2020.0004
www.ietdl.org

Sabyasachi Patra1 , Anjali Mohapatra1

1Department of Computer Science, IIIT Bhubaneswar, Odisha, India
 E-mail: sabyasachi@iiit-bh.ac.in

Abstract: Network motifs are recurrent and over-represented patterns having biological relevance. This is one of the important
local properties of biological networks. Network motif discovery finds important applications in many areas such as functional
analysis of biological components, the validity of network composition, classification of networks, disease discovery,
identification of unique subunits etc. The discovery of network motifs is a computationally challenging task due to the large size
of real networks, and the exponential increase of search space with respect to network size and motif size. This problem also
includes the subgraph isomorphism check, which is Nondeterministic Polynomial (NP)-complete. Several tools and algorithms
have been designed in the last few years to address this problem with encouraging results. These tools and algorithms can be
classified into various categories based on exact census, mapping, pattern growth, and so on. In this study, critical aspects of
network motif discovery, design principles of background algorithms, and their functionality have been reviewed with their
strengths and limitations. The performances of state-of-art algorithms are discussed in terms of runtime efficiency, scalability,
and space requirement. The future scope, research direction, and challenges of the existing algorithms are presented at the end
of the study.

1 Introduction
Technological enhancement in recent years leads to the
development of many real-world complex networks such as
biological networks, social networks, power distribution networks,
ecological networks (food web), software engineering diagrams,
molecular structures, computer networks, electronic circuits, and
world wide web (WWW). These networks are built to observe the
associated nature and functional behaviour of the constituent
elements. In this study, several tools and algorithms for discovering
network motifs are reviewed. Network motif is one of the
important local properties of biological networks such as metabolic
networks, gene regulatory networks, and protein–protein
interaction (PPI) networks. These networks provide insight for
biological systems to understand the biological functions better.
However, the huge size of the biological networks demands
efficient computational methods to extract information about how
these interactions perform various vital functions.

A graphical representation can depict considerable information
about any real-world network. In the context of network analysis, a
graph data structure can be used to model the biological networks.
In biology, transcriptional regulatory networks and metabolic
networks are usually modelled as directed graphs. For instance, in
a transcriptional regulatory network, nodes represent genes, and
edges represent the transcriptional relationships between them. In
this network, if gene A regulates gene B, then the directed edge
starts at A and terminates at B. Understanding interactions between
proteins in a cell may benefit from a model of a PPI network. PPI
networks are typically modelled as undirected graphs, in which
nodes represent proteins and edges represent interactions between
the proteins in an organism. There is no direction associated with
the interactions in such networks. Metabolic networks describe the
biochemical interactions within a cell through which substrates are
transformed into products through reactions catalysed by enzymes.
Metabolic networks generally require more complex
representations, such as hyper-graphs or bipartite graphs, as
reactions in metabolic networks generally convert multiple inputs
into multiple outputs with the help of other components. These
networks can represent the complete set of metabolic and physical
processes that determine the physiological and biochemical

properties of a cell. Metabolic networks are complex. There are
many kinds of nodes (proteins, particles, and molecules) and many
connections (interactions) in such networks.

The properties of biological networks can be classified into two
broad categories: global properties and local properties. Global
properties are mainly used for network modelling and
characterisation. Some of these properties are small-world
property, power-law degree distributions, clustering coefficients
etc. Recently researchers have shifted their attention from global
properties to local properties that describe a large complex network
as a composition of several small subgraphs. Many real-world
networks contain recurrent patterns that are overrepresented with
respect to their appearances in the random networks. These
recurrent patterns are described as network motifs by Milo et al.
[1]. These are recognised as basic building blocks of complex
networks and associated with unique functional properties [2]. The
study of these network motifs enhances the knowledge of network
functions. Network motif is found in several real-world networks
such as PPI [3, 4], gene regulatory network [5–8], social network,
WWWeb [9], food webs [10], brain neural network [11], electronic
circuits [12], and software life cycle [13].

Network motifs are not only statistically significant but also
significant to their respective systems. Higher frequencies of
network motifs suggest that these are present due to evolutionary
factors and important functionality [1]. Each network has different
motifs that are more frequent and thus more important to the
system or organism. The characteristics of network motifs are
almost similar in all real-world networks. For example,
transcriptional regulatory networks and neuronal connectivity
networks have common network motifs known as feed-forward
loops [14] and bifans [14]. This observation suggests that these two
networks are similar in some design aspects. However, networks
having altogether different characteristics may possess the same
network motifs. For example, a feed-forward loop is thought to be
used in information processing [1] and found in neuronal
connectivity and gene regulatory networks. However, food web
networks that do not deal with information processing possess this
network motif. This observation indicates how network motifs are
biologically significant in their ability to help analyse, explain, and
classify networks. Owing to the significance of network motifs,

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

171

many efforts have been put forth in developing tools that can
discover network motifs.

All network motif discovery algorithms include the following
steps:

i. All possible subgraphs of a given size are extracted from the
input network.

ii. Frequencies of these enumerated subgraphs are calculated from
the input network.

iii. The statistical significance of each candidate network motifs is
determined by comparing their frequencies to those of random
networks having the same degree distribution as the input
network.

These steps involved a huge computational cost. First of all, the
time complexity of enumerating all possible subgraphs in the input
network is exponential as the number of alternative patterns
increases exponentially along with the increase of network size and
motif size. This problem also includes the subgraph isomorphism
check, which is NP-complete [15]. Generating a large number of
randomised networks to measure statistical significance multiplies
the computational cost many folds. In addition to this, the gradual
increase in the size of real networks amplifies the challenges
mentioned above. To address these challenges, several algorithms
based on heuristics and approximations have been proposed in the
literature. The key strategy used by many algorithms is subgraph
sampling. Another important strategy is to apply the symmetry
breaking policy to reduce isomorphism-related computations [16].
The pattern growth approach is extensively used to reduce the
number of graph isomorphism check. A list of existing literature
reviews is presented in Table 1.

In this study, network motif discovery tools and algorithms are
extensively reviewed, and comprehensive analysis has been done.
Various strategies are discussed with their strengths and limitations.

The algorithms are explained with pseudo code and classified
based on their strategy. This review also includes the experimental
results derived from a few comparative studies in the literature.
Finally, the challenges involved in network motif discovery and
future research directions in this area are discussed.

The rest of the paper is organised as follows: Section 2 briefly
discusses some of the applications of network motifs in various
fields. Section 3 introduces the various concepts related to network
motif discovery. The strategies used by various tools and
algorithms are discussed in Section 4. Section 5 classifies the
algorithms into various categories. Section 6 summarises the
performance, strengths, and weaknesses of major motif discovery
algorithms. Section 7 presents the dataset and experimental results
derived from a few comparative studies in the literature.
Conclusion and future research directions are discussed in Section
8.

2 Some applications of network motifs
Network motifs find important applications in network modelling,
performance analysis of biological networks, network homology
detection, protein function annotation, superfamily classification,
complex prediction, disease discovery, drug design, network
resource management etc. Some of these applications are
summarised here.

• Network modelling: Network motifs provide a better
understanding of the modularity as well as the large-scale
structure of the complex biological network [25]. The artificial
network model can be created from the real-world networks
utilising the network motifs.

• Performance analysis: The primary information storage units in
biological and artificial networks are directed feedback loop and
feed-forward loop. Hence, identification of these motifs helps to

Table 1 List of reviews on network motif discovery
Year Authors Tools and algorithms

reviewed
Contributions and limitations

2008 Ciriello and
Guerra [17]

MFinder, Enumerating Subgraph
(ESU), Rand-ESU, and

NeMoFinder

this survey present a summary of motif discovery algorithms for PPI networks only. It is
necessary to study other biological networks which have different topological

characteristics.
2009 Ribeiro et al. [18] MFinder, FAst Network MOtif

Detection (FANMOD), and
Grochow

this survey limited to three methods only, and the performance of these methods are
relatively low compared to the state-of-art algorithms

2010 Wong and Baur
[19]

MFinder, FANMOD, Grochow–
Kellis, MODA, NeMoFinder,

Kavosh, and MAVisto

this is a survey on various tools and algorithms for network motif discovery, which
include the experimental data and limitations of these algorithms. Experimental data
from various tools are provided in this study, including runtimes for different subgraph

sizes, network sizes, number of random networks generated, different frequency
measures.

2011 Wong et al. [20] MFinder, FANMOD, Grochow–
Kellis, MODA, NeMoFinder,

Kavosh, and MAVisto

this is a survey on motif detection, specifically in the biological network. This review
briefly explained the various methods without including the corresponding algorithmic

details.
2012 Masoudi-Nejad

et al. [21]
MFinder, ESU (FANMOD),
Grochow–Kellis, MODA,

NeMoFinder, Kavosh, FPF
(MAVisto), and G-tries

this is a survey on computational aspects of major network motif discovery algorithms
with their merits and limitations. However, the algorithm details are missing in this

review.

2014 Tran et al. [22] MFinder, FANMOD, Grochow–
Kellis, MODA, NeMoFinder,

Kavosh, MAVisto, NetMODE,
Acc-Motif, and QuateXelero

this survey presents a study on 11 essential tools and algorithms for network motif
discovery. This survey compares these tools and algorithms and investigates their key
features. Classification of network motifs, biological significance, and the applications
of network motifs are discussed. This survey also includes future research directions
for network motif discovery. However, this study does not explain the algorithms with

suitable examples, and experimental data from various tools are not provided.
2015 Kavurucu [23] MFinder, FANMOD, Grochow–

Kellis, MODA, NeMoFinder,
Kavosh, and MAVisto

this is a review on various network motif discovery algorithms with an appropriate
example network. However, this study does not perform runtime analysis of the

existing algorithms.
2016 Salari et al. [24] MFinder, FANMOD, Grochow–

Kellis, MODA, NeMoFinder,
Kavosh, MAVisto, G-tries, and

QuateXelero

this survey demonstrates the importance of network motif discovery and discusses the
techniques available to solve this problem. The available algorithms are classified

using a simple framework, and their strengths and weaknesses are explored
considering the experimental and laboratory data. This review also skips the algorithm

details.

172 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

understand why some recurrent neural networks are known for
excellent memory performance [26].

• Network homology detection: Network motifs are used for
network homology detection [1].

• Function annotation: The labelled network motifs found in the
PPI networks can be used to predict the functions of the
unknown proteins. In this application, network motifs are
discovered based on the structure and biological meanings. The
identified network motifs are labelled so that they can be used to
predict the functions of unknown proteins in the PPI networks
[27]. The functional roles of some genes in gene regulatory
networks may be better understood from network motifs. For
instance, the identification of microRNA motifs in gene
regulation networks improves the understanding of their
functional roles [28].

• Superfamily classification: Network motifs are used for
superfamily classification [29], as similar network possesses
similar network motifs. Pržulj et al. [30] used network motifs as
features to classify PPI networks. These features are also used to
validate the PPI in the PPI networks [3].

• Complex prediction: Features extracted from network motifs can
be used to predict protein complexes in PPI networks.

• Disease discovery: Network motifs are used for cancer disease
diagnosis [31], prediction of survival possibility in breast cancer
[32], drug repositioning [33], functional behaviour in diabetes
patients [34] etc. The three-node network motifs found in the
human signalling network have been screened for identifying
breast cancer samples from normal samples [35]. The accuracy
of this method is good enough for breast cancer diagnosis and
therapy, as well as other types of cancer [35]. The identification
of the network motifs explores the mechanisms of cervical
carcinoma response to epidermal growth factor in regulation
networks [36].

• Network resource management: Network motifs are mapped to
applications for identifying network activity in network resource
management and security enforcement [37].

• Protocol identification: Application protocols in network traffic
are identified using network motifs. This application supports
network administrators to secure and manage network resources
[38].

• Validity of evolutionary trees: The evolutionary trees are built
based on the character overlap graphs. In this application, the
correctness of evolutionary trees is validated by finding under-
represented network motifs called holes in the character overlap
graphs [39].

• Clustering of proteins: Features extracted from network motifs
can be used for clustering the proteins in an interaction network
[40].

3 Basic concepts for network motif discovery
Network motif discovery is the process of finding subgraphs whose
frequency is statistically significant within a complex network. The
primary tasks involved in this process are frequency computation,
random graph generation, statistical significance measure,
subgraph isomorphism etc. The concepts related to these tasks are
discussed below.

3.1 Graph

A graph G = (V , E) comprises a set of vertices V = {v} and a set
of edges E ⊆ (V × V). An edge e = (u, v) ∈ E connects a pair of
vertices u and v. The vertices u and v are adjacent to each other.
Networks are represented as graphs.

3.2 Induced graph

A subgraph Gs = (Vs, Es) of G = (V , E) consists of a subset of
nodes Vs ⊆ V and a subset of edges Es ⊆ E ∩ (Vs × Vs) connecting
the nodes of Vs in the original graph. This subgraph Gs is said to be
induced when it contains all the edges (u, v) ∈ E for all u, v ∈ Vs.

Fig. 1 presents an example of a graph along with induced and non-
induced subgraphs.

3.3 Subgraph isomorphism

Two graphs G = (V , E) and H = (V′, E′) are said to be isomorphic
if there exists a bijective function f between V and V′ such that for
each edge (u, v) ∈ E there exist an edge (f (u), f (v)) ∈ E′.
Checking graph isomorphism is an NP-hard problem. However,
finding a subgraph of G, which is isomorphic to H, is an NP-
complete problem. The computational cost of this problem can be
reduced by using heuristic approaches such as the canonical
labelling of a graph. McKay [15] developed a well-known method
for isomorphism testing known as NAUTY. This method represents
a graph in the form of a canonical label. Two isomorphic graphs
must have the same canonical label [41]. A hypothetical graph and
its two isomorphic subgraphs are shown in Fig. 2.

3.4 Subgraph frequency

The subgraph frequency of a network motif represents the number
of embeddings of that subgraph present in the target network [42].
The frequency measure depends on how the nodes and edges are
allowed to overlap among the embeddings of subgraphs [43, 44].
Based on the overlapping of graph elements, three frequency
concepts are derived, such as F1, F2, and F3. The F1 measure
allows the overlapping of both vertices and edges among the
instances of the subgraph, whereas only vertices can be shared in
F2 measure. Hence the subgraph instances of F2 measure are edge-
disjoint. The frequency measure F3 computes disjoint subgraph
instances in which no sharing of vertices or edges are allowed.
Downward closure property is satisfied by both F2 and F3
measures. These frequency concepts are illustrated in Fig. 3 and
Table 2. The selection of a specific frequency concept directly
affects the statistical significance measures such as z-score and P-
value [17]. Sometimes it is required to find overlapping
embeddings and, sometimes, only non-overlapping network motifs
are significant. Therefore, frequency concepts play a vital role in
the design of motif discovery algorithms [14, 19].

3.5 Random networks

Random networks are used to measure the statistical significance
of network motifs. Barabasi and Oltvai [45] provide an
introduction to network models and their properties. Some of the
relevant random graph models are discussed here. Random
networks preserve the degree distribution of biological networks
[46]. The degree distribution P(k) of a network represents the
probability of a node having a degree k. Most of the biological
networks have power-law degree distribution [47] that follow a
power-law P(k) ∼ k

−γ, where γ is the power-law exponent. These
networks are also known as scale-free networks. Random networks

Fig. 1 Graph G with non-induced subgraph Gs and induced subgraph Hs

Fig. 2 Isomorphic subgraphs G1 and G2 with bijective function
f :G1 → G2 defined as 1 → 1, 2 → 6, 6 → 5 and 3 → 4

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

173

are generated by using common randomisation techniques such as
switching method, stubs method, and the ‘go with the winners’
method [48].

Switching method: The switching method implements the Markov
chain technique. It uses the nodes of the input network, preserves
their in-degree and out-degree, and switches the edges between the
nodes numerous times to obtain randomisation. This method
randomly selects two edges, u → v and x → y, in the network, and
exchanges the ends to form two new edges u → y and x → v. This
process preserves the in-degree and out-degrees of the nodes. The
limitation of the switching method is that the time required for
proper mixing is not known for the Markov chain [49]. However, it
has been experimentally verified that a network with an E number
of edges achieves adequate randomisation by 100 × E times of
switching [49].
Stubs method: The stubs method keeps the same in-degrees and
out-degrees of the nodes of the input network. Each node has in-
stubs and out-stubs for in-degrees and out-degrees of the node,
respectively. A matching algorithm is used for the pairing of in-
stubs and out-stub. Theoretically, this creates random edges
between nodes while still preserving the in and out degrees of all
nodes. The method discards any self-edges or multiple edges. This
becomes a problem because numerous real-world networks have
multiple edges between two nodes [49].

Go with the winners' method: The ‘go with the winners’ algorithm
starts with multiple graphs. It then carries out the stubs method.
The algorithm periodically copies all of its graphs to compensate
for the eliminated graphs due to self-edge or multiple edges. This
maintains the average number of graphs to remain constant. The
process stops after linking all the stubs. This algorithm can be very
slow, especially with large-scale networks [49].

The switching algorithm is probably the algorithm of choice for
random graph generation that samples correctly in the limit of long
times and practice is found to give good results when compared
with other [46]. Some of the random networks preserving degree
distribution of the original network are shown in Fig. 4.

3.6 Statistical significance

Network motif discovery not only finds the frequent subgraph but
also validate their uniqueness using the uniqueness threshold. A
subgraph is frequent if its appearance in the graph is above a
threshold value. On the other hand, a subgraph is said to be unique,
if its frequency is statistically significant. A few measures related
to this are given below.

3.6.1 Frequency threshold: The frequency threshold requires
that the frequency of a subgraph in an input network (f input) must
exceed a threshold frequency (F). On the other hand, the
uniqueness threshold requires that the frequency of a candidate
motif must be a certain level higher than its mean frequency in a
set of random networks. Let a size-k subgraph gk occur f t times in
the input network. Let f r be the mean of frequencies of gk in the
random networks and U be the uniqueness threshold. Then, gk is
said to be unique if it satisfies the following condition;

f t − f r > U × f r (1)

3.6.2 Significance metrics: A list of significance metrics are
given below:

z-score: A candidate motif is said to be statistically overrepresented
if its z-score is above 2.0 [41]. z-score of a network motif with
frequency f t in the target network, mean frequency f r and standard
deviation σr in a set of random networks can be defined as

z−score =
f t − f r

σr
(2)

P-value: A network motif is said to be statistically significant if the
P-value of its frequency is <0.01. If n represents the number of
times the frequency of the candidate motif in random networks
exceeds its frequency in the target network out of N number of
random networks, then the P-value of the network motif can be
defined as

P−value =
n

N
(3)

Significance profile: The significance profile of a set of network
motifs is a vector of z-scores [29]. The significance profile of the
ith network motif (SPi) with z-score zi in a set of n number of
motifs can be calculated as

SPi =
zi

∑ j = 1
n

zj
2

(4)

Concentration: The concentration of a candidate motif in a
network denotes how frequent it is in comparison with other
subgraphs of the same size [50, 51]. Specifically, if there are n
number of size-k subgraphs in a network, then the concentration
(C(gk, i)) of the ith subgraph gk, i is defined as

C(gk, i) =
f k, i

∑ j = 1
n

f k, j

(5)

Fig. 3 E1 to E7 are list of embeddings of a candidate motif (M) in a target
network G. For frequency concept F1, the set E1 − E7 represents all
matches, so F1 = 7. For F2, one of the three possible sets {E1, E4, E7} or
{E1, E5, E6} or {E3, E4, E7} can be taken, so F2 = 3. Finally, for the
frequency concept F3, only one set {E1, E6} is allowed, therefore F3 = 2

Table 2 Listing of embeddings (as shown in Fig. 3) based
on frequency concepts F1, F2, and F3
Frequency
concept

Sharing
of

vertices

Sharing
of edges

Frequency Selected
embeddings

F1 yes yes 7 {E1, E2, E3, E4, E5,
E6, E7}

F2 yes no 3 {E1, E4, E7} or {E1,
E5, E6} or {E3, E4,

E7}
F3 no no 2 {E1, E6}

Fig. 4 Illustration of random networks preserving degree distribution of
the original network

174 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

where f k, i denotes the frequency of the subgraph gk, i.
Abundance: The abundance (Δ) of a network motif is a metric
similar to the z-score [29] and is defined as

Δ(gk) =
f t − f r

f t + f r + ϵ
(6)

For small frequencies, ϵ prevents the abundance approaching
infinity.

4 Network motif discovery process and strategies
An induced size-k subgraph {Gk} of graph G is called a network
motif for a given set of parameters {P, U, D, N} [18] if it satisfies
the following conditions:

• Over-representation: Prob(f¯r(Gk) > f t(Gk)) ≤ P

• Minimum frequency: f t(Gk) ≥ U

• Minimum deviation: f t(Gk) − f¯r(Gk) > D × f¯r(Gk)

Milo et al. [1] used {0.01, 4, 0.1, 1000} as the set of parameters
{P, U, D, N}, but depending on the requirements, other
combinations may be used.

The network motif discovery process is used to find all k-node
subgraphs {Gk} with 3 ≤ k ≤ K occurring in G such that the
frequency or concentration of Gk is above the given frequency
threshold F and significantly higher than that in the random
networks. The confidence level P represented in terms of either z-
score or abundance or Significance Profile (SP) [20], here G is
input network represented as a directed or undirected graph; K is
the maximum size of the network motif to be searched; P is the
confidence level; F is the frequency threshold; U is the uniqueness
threshold; and N is the number of random networks.

Fig. 5 presents a generic block diagram to discover network
motifs in an input network.

Various strategies used in the network motif discovery process
are discussed here. For example, the pattern growth approach is
used to generate all possible subgraphs. Enumeration or sampling
or mapping is used for subgraphs census. Canonical labelling or
symmetry breaking coupled with mapping is used for isomorphism
checking. Table 3 illustrates these strategies with reference to
various tools and algorithms.

4.1 Pattern growth strategy

Pattern growth strategy can be used to systematically generate all
possible size-k subgraphs starting with a base graph [44]. The base
graph is extended one step at a time by adding a node or an edge
and uses the extended subgraph to generate further variants. A tree
data structure is used for systematically performing these tasks.
Every node of the tree represents a subgraph. The subgraph
represented by a parent node is obtained by the extension of the
subgraph represented by the child node. A pattern growth tree built
for size-k subgraphs can be used to systematically enumerate all
appearances of size-k subgraphs present in the input network.

Restrictions are imposed in the extension process of the pattern
growth tree to confirm that each subgraph appears only once.
Flexible pattern finder (FPF) motif analysis and visualisation tool
(MAVisto) uses a pattern tree to generate higher-order patterns
from the generating parent of less number of edges [52]. Kavosh
built an implicit tree with restrictions to ensure that each subgraph
is enumerated only once, which leads to an improvement in both
time and memory [41]. MODA uses this strategy and reduces the
computational cost significantly [42]. Downward closure property
can be used for frequency measure F2 to prune branches that are
rooted in a node whose subgraph frequency fails to reach the
threshold. The MODET and MDET algorithms also use this
strategy.

4.2 Subgraph census: exhaustive search

Subgraph census is the process of enumerating all occurrences of
subgraphs by scanning the input network node-by-node or edge-
by-edge. Milo et al. [1] in 2002 discovered the network motifs by
performing an exhaustive recursive search. This method can find
all connected induced and non-induced subgraphs. Another exact
search algorithm is ESU [65] that generates size-k subgraphs
starting with a node and adds nodes one by one incrementally to
reach the required size. The algorithm maintains a list of candidate
nodes for future additions to the partially generated subgraph. This
list is dynamically updated by adding the nodes whose label is
higher than the nodes present in a partially constructed subgraph,
and they are adjacent to the nodes already in the subgraph. Full
enumeration algorithms are extremely time-consuming. They
require a large number of computations due to the exponential
increase of different isomorphic subgraphs with respect to motif
size and network size. It is also necessary to find the frequencies of
each different isomorphic subgraph in both the target network and
the randomised networks [19].

4.3 Subgraph census: sampling

Kashtan et al. [50] adopt a probabilistic approach to extract
subgraph samples from the input network and compute the
subgraph frequencies by taking an adequate number of random
samples. The sampling method is faster than full enumeration and
insensitive to the size of the input network [19], which make it
enable to discover larger motifs. It has been observed that closely
accurate results can be obtained by taking the right amount of
trials. However, there is a chance of missing some potential motifs
with non-zero probability.

4.3.1 Edge-sampling: An edge-sampling strategy [50] randomly
picks an edge from the target network and iteratively expands that
to a size-k subgraph by randomly selecting new edges adjacent to
the nodes already in the sample. When the size of the sample
subgraph reaches k, all the edges connecting its nodes in the input
network are added to get an induced subgraph. The MFinder tool
uses this strategy. This edge-sampling strategy is biased [18] as the
probability of sampling different size-k subgraphs is not uniform
even if they have the same topology. Also, there is a chance of
recounting the same subgraphs multiple times. This strategy

Fig. 5 Block diagram of network motif discovery process

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

175

assigns a probabilistic weight [18, 19] to each subgraph to
overcome this limitation. However, it leads to excessive memory
usage. This strategy can extract rare motifs with high probability
and relatively very less number of samples required for this process
(even with 5000 samples from a transcriptional network of
Escherichia coli (423,519), MFinder find the concentration of
motifs similar to the exact census). However, this strategy does not
scale well with large (size-8) motifs [54].

4.3.2 Node-sampling: The drawback of the edge-sampling
strategy is overcome in the node-sampling strategy [51, 53]. The
node-sampling is able to pick the size-k subgraph with a uniform
probability. This strategy probabilistically traverses the pattern
growth tree that guarantees that the size-k subgraph present at the
leaf nodes will be explored with equal probability. To avoid
redundant computation, it ensures that a particular subgraph will be
encountered exactly once. The FANMOD and MODA use the
node-sampling strategy as it is significantly efficient than edge-
sampling. Although this strategy is fast, it has limitations such as
the empirical calculation of probabilities. It avoids picking of
nodes that do not belong to a connected component and hence do
not identify a subgraph.

4.4 Subgraph census: mapping

The mapping strategy [16] takes a size-k query graph and maps it
onto the input network to find all instances of that graph. This
strategy is in contrast to enumerating the input network to find all
size-k subgraphs and then classifies them into embeddings of non-

isomorphic size-k candidate motifs. A mapping strategy allots a
rank to the nodes in the input network based on their degree
properties and then map them to the nodes in the candidate motif
[16] having similar characteristics. Grochow and Kellis [16]
proposed this strategy, and MODA [42] also adopt this strategy.
The unique feature of this strategy is to resolve the isomorphism
check issue partially by applying the mapping with symmetry
breaking [16]. The major limitation of this strategy is to generate
all variants of query graphs when its size exceeds 10, as the
computations become intractable [66].

4.5 Symmetry breaking

The symmetrical structure of a graph can be seen as self-
isomorphisms, which is also known as automorphisms. The set of
subgraphs satisfying the automorphisms requirement belong to the
same equivalence class. Each equivalence class can be represented
as a set of symmetry breaking conditions [16]. These symmetry
breaking conditions reduce the number of isomorphism checks
significantly. Grochow and Kellis proposed this strategy, which is
often used with a mapping strategy. Symmetry breaking conditions
for a six node symmetric graph is shown in Fig. 6.

4.6 Flexible pattern finder (FPF)

This strategy searches for a pattern in a pattern growth tree with
maximum frequency under a given frequency concept [52]. The
node of the pattern growth tree represents the patterns that are
supported by the input network. The root node is the simplest
possible pattern with two vertices connected with an edge. The

Table 3 Summary of strategies adopted by different tools and algorithms
Tools/algorithms Year of

publication
Strategy used Subgraph census Frequency

concept
Network type Isomorphism

checking
MFinder [48, 50] 2005 pattern growth exact census (enumeration)

and edge sampling
F1 undirected and

directed
NAUTY

MAVisto [44, 52] 2005 FPF exact census (enumeration) F1, F2, F3 undirected and
directed

NAUTY (canonical
labelling)

FANMOD [51, 53] 2005 pattern growth exact census (enumeration)
and node sampling

F1 undirected and
directed

NAUTY (canonical
labelling)

NeMoFinder [54] 2006 tree filtering search,
graph cousins

exact census (enumeration) F1 undirected NAUTY (canonical
labelling)

Grochow and Kellis
[16]

2007 Automorphisms
(NAUTY)

exact census(mapping) F1 undirected and
Directed

mapping with
symmetry-breaking

Kavosh [41] 2009 pattern growth exact census(enumeration) F1 undirected and
directed

NAUTY (canonical
labelling)

MODA [42] 2009 ET exact census(mapping),
sampling

F1 undirected mapping with
symmetry-breaking

G-tries [55] 2010 G-tries exact census(enumeration,
mapping)

F1 undirected NAUTY (canonical
labelling)

NetMODE [56] 2012 pattern growth exact census(enumeration) F1 undirected and
directed

stores all canonical
labels in memory

Acc-Motif [57] 2012 combinatorial
acceleration

exact census(enumeration) F1, F2 undirected and
directed

no isomorphism check

QuateXelero [58] 2013 quaternary tree exact census(enumeration) F1 undirected and
directed

NAUTY (canonical
labelling)

Elhesha–Kahveci
[59]

2016 pattern join exact census(enumeration) F2 undirected NAUTY (canonical
labelling)

ParaMODA [60] 2017 ET exact census(mapping) F1 undirected mapping without
symmetry-breaking

NemoMap [61] 2018 ET exact census(mapping) F1 undirected mapping with
symmetry-breaking

MOtif Discovery
using Expansion
Tree (MODET) [62]

2018 ET exact census(mapping) F1 undirected mapping with
symmetry-breaking

Motif discovery using
Dynamic Expansion
Tree (MDET) [63]

2019 DET exact census(mapping) F2 undirected mapping with
symmetry-breaking

pattern-join [64] 2019 pattern join exact census(enumeration) F2 undirected and
directed

NAUTY (canonical
labelling)

176 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

child node is obtained by adding an edge with the parent pattern.
For isomorphism checking, a canonical label is assigned as an
identity of each pattern, and it removes duplicity. The algorithm
does not extend a branch further if the frequency of the
corresponding pattern falls below the frequency of a pattern of
target size. If there is a nearly maximum frequent pattern of target
size discovered early in the search tree, then it discards the
intermediate size patterns before saturation. These criteria reduce
the search space significantly [44]. However, motif discovery not
only required the pattern with maximum frequency but also

required patterns with a frequency higher than the threshold value.
Pruning criteria can be applied for frequency concepts F2 and F3 to
reduce the search space by cutting the sub-trees rooted at a node
whose frequency is below a threshold. However, it cannot be
applied for the F1 measure. Fig. 7 illustrates the concept of a
pattern tree for directed subgraphs.

4.7 Tree filtering search

This strategy is applicable for undirected networks only [54]. In
this process, repeated size-k trees are extracted, then they are used
to partition the input network. Subsequently, the graph join
operation is performed to compute the frequency of size-k
subgraphs. NemoFinder [54] uses this strategy. The input network
is naturally partitioned into a set of subgraphs by the repeated trees.
Hence, the problem of counting the subgraph frequency is reduced
to counting the number of subgraphs in the above set, which is
naturally downward closed. The graph cousins are used to facilitate
the candidate generation process and graph join operation.
However, generating cousins is ambiguous, and it may find several
redundant isomorphic subgraphs.

4.8 Expansion tree (ET)

The concept of ET was proposed by Omidi et al. [42]. The ET
plays a vital role by providing query graphs systematically from
minimally connected size-k trees to a complete graph. In this
strategy, at first, the frequency of size-k trees is computed in the
target network and then expands these trees edge by edge until a
complete graph such that there is no room for new edges. Hence
the frequency of other query graphs can be computed by mapping
them to the nodes of ET without using subgraph isomorphism. A
size-4 ET is shown in Fig. 8.

4.9 G-tries

A g-trie is a multiway tree that can store a set of graphs [55]. Each
node of the g-trie contains information about a single vertex of a
subgraph and its corresponding edges to the vertices of its ancestor
g-trie node. A path from the root node to the leaf node corresponds
to a single graph. Descendants of a g-trie node share a common
subgraph. A size-4 g-trie is shown in Fig. 9. Backtracking is used
to estimates the frequency of induced subgraphs in a target
network. This strategy takes advantage of the common substructure
of several different candidate subgraphs (all the descendants) that
leads to partial isomorphic match during the search process.

4.10 Combinatorial acceleration

Acc-Motif [57] uses this strategy to improve computational
complexity. This strategy assigns an integer variable to each
isomorphic pattern and increments it directly. It is not required to
perform any isomorphism check using NAUTY. Only size-3 and
size-4 network motifs are extracted using this strategy.

4.11 Quaternary tree

A quaternary tree represents the data structure of a rooted tree [58].
Each internal node of this tree can have a maximum of four
children. A node can have at most five neighbours; one among
them is the parent node, and the rest four are children. The edges of
the tree are labelled with a number or character, or any other
symbol. A labelled quaternary tree can be searched using a given
string that consists of the same set of symbols used for labelling
that tree. The search process is initiated at the root node. In each
step, a symbol is read from the input string, and the current pointer
moves to the child node of the corresponding symbol. If a child
does not exist corresponding to the symbol, then a new node is
created for that symbol, and the current pointer moves to that child
node. The search process terminates when the input string is read
completely. This strategy eliminates the number of NAUTY calls
significantly by using the tree data structure and hence improves
the performance. The QuateXelero algorithm [58] uses this
strategy.

Fig. 6 Symmetry breaking conditions that will break all the symmetries of
a six-node graph, courtesy of Grochow and Kellis [16]

Fig. 7 Example of a pattern tree (size-3 patterns are partially shown),
courtesy of Schreiber and Schwobbermeyer [44]

Fig. 8 ET of size-4 subgraph, courtesy of Omidi et al. [42]. At the first
level, there are non-isomorphic size-4 trees, and at each level, an edge is
added to the parent subgraph to form a child graph. All subgraphs are non-
isomorphic to prevent redundancy

Fig. 9 Tree representing a set of six graphs. Each tree node adds a new
vertex (in black) to the already existing ones in the ancestor nodes (white
vertices), courtesy of Ribeiro and Silva [55]

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

177

4.12 Pattern joining

This strategy is based on basic building patterns, and the graph
joins operations [59]. The basic building patterns act as a guide to
construct larger patterns through iterative pattern join operation.
The subgraphs of the current set of patterns are joined with the
subgraphs of the basic building patterns to construct larger patterns
iteratively. At the end of the iteration, the resulting set of patterns
becomes the current set of patterns for the next-join iteration. Two
subgraphs need to share at least one edge to participate in the join
operation. The joining of two such subgraphs either yields a pattern
that is isomorphic to one of the existing patterns or a new one.
Elhesha and Kahveci [59] and Patra and Mohapatra [64] use this
strategy.

5 Classification of network motif discovery tools
and algorithms
Network motif discovery tools and algorithms are broadly
classified into two categories; network-centric and motif-centric.
These algorithms are further classified into various subcategories
depending on the adopted strategy, such as sampling or exhaustive
census. A broad level classification tree is shown in Fig. 10.

5.1 Network-centric tools and algorithms

Network-centric tools and algorithms enumerate the entire network
and do the subgraph census to compute the frequency of the
subgraphs. The subgraphs that do not occur in the target network
are never encountered in this type of algorithm. Network-centric
algorithms can be further classified into exact census or sampling.
The exhaustive enumeration algorithms are extremely time-
consuming and costly as this process required for both the target
network and the randomised networks. Also, the number of
isomorphic subgraph types increases exponentially with the
increase of motif size. Algorithms that use the exact census are
MAVisto, NeMoFinder, Kavosh, G-trie, QuateXelero, Elhesha–
Kahveci, and Pattern-join.

Kashtan et al. [50] developed a probabilistic algorithm to
estimate subgraph frequencies by sampling subgraphs. The
sampling approach is fast as compared to full enumeration. The
runtime does not increase asymptotically with the increase of
subgraph size and network size. Hence the sampling method can
identify larger network motifs than exhaustive enumeration
methods. A major problem with Kashtan et al. method is that it has
bias sampling [42] as the subgraphs are not sampled with uniform
probability [18]. This problem is addressed by assigning a weight
to each subgraph with a value of 1/(sampling probability of the
subgraph) [18]. Algorithms that use the sampling approach are
MFinder and FANMOD. These algorithms also have the option to
perform exhaustive census in the input network.

5.2 Motif-centric tools and algorithms

Motif-centric tools and algorithms allow for a single specific query
graph to be examined [18] for a potential network motif. Grochow–
Kellis and MODA use this approach. These algorithms compute
the frequency of size-k query graphs directly by mapping them to
the input network. The NAUTY tool is used to generate all
possible size-k subgraphs. Motif-centric algorithms can be further
classified into exact census or sampling depending on the strategy
used for counting subgraph frequencies [20]. The sampling strategy
is used by MODA to speed up the overall network motif discovery
process. The efficiency of these algorithms is further improved by
mapping with symmetry breaking techniques. Other motif centric
algorithms are network motif mapping (NemoMap), ParaMODA,
MODET, and MDET. All of these algorithms use symmetry
breaking techniques except ParaMODA.

6 Review of network motif discovery tools and
algorithms
The first major contribution to network motif discovery is proposed
by Milo et al. [1]. Schreiber and Schwobbermeyer [44] propose
different frequency concepts for computing pattern frequency in a
FPF algorithm. Wernicke [65] proposed a specialised algorithm
ESU that could avoid redundancy in computation through proper
enumeration of network motifs. NeMoFinder is proposed by Chen
et al. [54] for finding mesoscale network motifs. Grochow and
Kellis [16] proposed the first motif centric algorithm, where
frequency counting is done on a specific isomorphic class. Kashani
et al. [41] brought a new network-centric algorithm named as
Kavosh to improve runtime efficiency. Omidi et al. is the second
motif centric algorithm proposed MODA [42], which is based on a
pattern growth methodology. G-trie [55] is a specialised data
structure developed in 2010 for finding network motifs in
undirected graphs. Network motif detection (NetMODE) [56] is a
network motif detection software package developed in 2012 to
improve runtime efficiency. Accelerated motif (Acc-Motif) [57] is
the first network motif discovery algorithm based on a
combinatorial approach. QuateXelero [58] is an efficient network
motif detection algorithm developed in 2013. A novel algorithm
proposed by Liang et al. [67] named as CoMoFinder to accurately
and efficiently identify composite network motifs in genome-scale
co-regulatory networks. Nikam and Chauhan [68] designed a new
algorithm using a suffix-graph data structure to retrieve the
subgraph efficiently that detects network motifs. Elhesha and
Kahveci [59] proposed a motif centric algorithm (Elhesha–
Kahveci) for finding disjoint network motifs in a target network.
ParaMODA [60] and NemoMap [61] improve upon the motif-
centric tool Grochow–Kellis and MODA [60]. Lin et al. [69]
present a novel study on network motif discovery using graphical
processing units (GPUs). Chen and Chen [70] published an
efficient sampling algorithm for network motif detection. Lin et al.
[69] in 2017 used GPUs to study network motifs. Hu and Shang
[71] in 2017 proposed a novel graph canonisation algorithm for
detecting network motifs from transcriptional regulation networks.
Luo et al. [72] in 2018 proposed an efficient network motif
discovery approach for co-regulatory networks. Patra and
Mohapatra [62] proposed an efficient and scalable motif centric
algorithm (MODET) based on a static ET. The space limitation of
MODET is removed by MDET [63] by using a dynamic ET
(DET). Fast and scalable network motif discovery is proposed by
Wang et al. [73] in 2009 for exploring higher-order network
organisations. Patra and Mohapatra [64] propose a network-centric
algorithm in 2019 using the pattern join method. Briefing of some
of the major network motif discovery tools and algorithms are
listed below.

MFinder: MFinder is the first motif discovery tool that
implements both the exact census and the sampling technique for
enumerating the subgraphs in the input network. The exact census
method is proposed by Milo et al. [1] in 2002, which is a recursive
backtracking search. Algorithm 1 (see Fig. 11) describes this
method with pseudocode. MFinder required a lot of space to
maintain the associated hash tables, and hence it is incapable of
finding large motifs.

Fig. 10 Classification tree of network motif discovery algorithms

178 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

Kashtan et al. [50] proposed a probabilistic approach for
sampling the subgraphs instead of exhaustive enumeration. They
have performed edge-sampling in the input network to find the
concentrations of induced subgraphs. The pseudocode of the
MFinder sampling algorithm is presented in Algorithm 2 (see

Fig. 12). Sampling makes this algorithm enable us to deal with
large networks and able to discover large network motifs that
cannot be enumerated using the exact census. MFinder can
accurately estimate the subgraph concentration in a network that
has a very low concentration. The execution time of the sampling
method is independent of network size. However, the sampling
method is biased because all the subgraphs may not have an equal
probability of being sampled [50]. This algorithm has tried to
overcome this problem by assigning a weight of W = 1/P to the
sampled subgraph, where P represents the sampling probability of
the subgraph. This method can successfully discover network
motifs up to size-6 using exact census and up to size-8 using
sampling.

Limitation: MFinder uses the biased sampling strategy
developed by Wang and Bour [19]. All the enumerated subgraphs
are stored in memory, and the same subgraphs may be considered
repeatedly. The sampling technique does not consume less time
than the exact census for a network without hubs. The sampling
approach may not discover the complete set of network motifs. As
the sampling approach is biased, the same subgraphs may appear
multiple times that cause redundancy. MFinder is unable to deal
with large subgraphs due to the exponential sampling procedure
[50].

FPF (MAVisto): MAVisto [52] is based on a FPF algorithm
proposed by Schreiber and Schwobbermeyer [44]. This algorithm
exploits the downward closure property, which is applicable for
frequency concepts F2 and F3. The downward closure property
ensures that the frequency of subgraphs decreases monotonically
with respect to the increase of subgraph size. FPF is based on a
pattern tree that can hold different isomorphic patterns. The
structure of a pattern tree is explained in Section 4.6. The FPF
algorithm does not consider the infrequent subgraphs, and the
enumeration process terminated quickly by avoiding unnecessary
computation. FPF is most useful for frequency concepts F2 and F3
because pruning the branches of pattern tree using the downward
closure property of these frequencies [74] reduces the search space
significantly. Lookup table for isomorphic checking [52] makes
this algorithm fast for detecting motif of sizes 3–5. This method
can successfully discover network motifs up to size 7.

Limitation: MAVisto is inefficient in counting subgraph
frequency due to its complex approach and can only discover small
motifs of size up to 7. MAVisto is even slower than MFinder
because MFinder uses a sampling technique, whereas MAVisto
enumerates all possible subgraphs in a search space that increases
exponentially with respect to network size. Downward closure
property is not applicable to the F1 frequency concept.

ESU (FANMOD): FANMOD toll is implemented based on the
ESU algorithm. The ESU is an exact census algorithm which can
avoid symmetries and search all subgraphs only once [51, 53].
Algorithm 3 (see Fig. 13) describes ESU with pseudocode. The
canonical graph labelling algorithm NAUTY [15] is used by
FANMOD for subgraph classification [51]. FANMOD determines
the significance of subgraphs using an analytical approach called
DIRECT. Hence, it does not require the classical null-model of
random networks.

Wernicke [53] proposed an algorithm Random (RAND)-ESU
that provides a significant improvement over ESU. This is
implemented in the FANMOD [51] tool. RAND-ESU effectively
exploits an unbiased node sampling throughout the network and
assures counting subgraphs only once. FANMOD uses an unbiased
node sampling strategy instead of edge sampling, which makes
sure each subgraph counted only once. Similar to ESU, this
algorithm also starts with a root node and maintains a list of
possible neighbours for the extension. The FANMOD sampling
algorithm chooses each size-k subgraph with a certain probability
[53], and it assures that all the subgraphs are sampled with equal
probability. Unlike the Kashtan et al. algorithm, FANMOD is
unbiased [18, 19]. The RAND-ESU algorithm is described in
Algorithm 4 (see Fig. 14). This tool provides an option to take
either an exact census or a uniform sample. FANMOD is much
more efficient than exhaustive search algorithms due to counting of
every subgraph just once and can identify motifs up to size eight

Fig. 11 Algorithm 1: MFinder enumeration algorithm

Fig. 12 Algorithm 2: MFinder sampling algorithm

Fig. 13 Algorithm 3: ESU enumeration algorithm

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

179

[51] using sampling. This method can successfully discover
network motifs up to size 8 using the exact census.

Limitation: The memory usage of FANMOD increases
remarkably with the increase of subgraph size and network size
[41]. Hence, it can discover motifs up to size 8. For highly
concentrated subgraphs, the null-model of random networks is
faster than the DIRECT method. In addition to this, it is unable to
extract non-induced subgraphs.

NeMoFinder: NeMoFinder was proposed by Chen et al. [54]
based on the idea presented in SPanning tree based maximal graph

mINing (SPIN) [75], which first extracts frequent trees then
expands them into non-isomorphic graphs [17]. The frequent size-k
trees are used to divide the input network into a set of size-k
graphs. Frequent size-k subgraphs are generated by joining a
subgraph with its derivative subgraphs, also known as cousin
subgraphs. The new graph generated is an edge advanced in
comparison with its parent subgraph. The pseudocode of
NeMoFinder is shown in Algorithm 5 (see Fig. 15). NeMoFinder
searches the repeated trees using the same technique as SPIN [75];
then, these trees are extended to subgraphs at a very low-cost [54].
NeMoFinder can detect motifs up to size 13 with 20–100-fold
speed up as compared to the predecessor.

Limitation: NeMoFinder can detect motifs only in undirected
PPI networks. The generation of graph cousins is not simple, and it
is derived from a canonical representation of a graph which is not
closed under join operation. There is no precise method to derive
cousins from a graph, and joining a subgraph with its cousins leads
to redundancy in generating a particular subgraph more than once.

Grochow and Kellis: Grochow and Kellis [16] proposed the
first motif-centric algorithm for exhaustively enumerating
subgraphs in an input network. The frequency of a query graph is
exhaustively determined by mapping it into the input network. The
algorithm first computes a set of symmetry-breaking conditions for
each query graph. Then the branch-and-bound technique is applied
to find all possible mappings from the query graph to the input
network, which satisfies the required symmetry breaking
conditions. The mapping always begins from one representative of
each equivalence class. The symmetry-breaking conditions are
computed by finding automorphisms of a given graph using
McKay's tools [15, 76]. The symmetry-breaking conditions
eliminate the requirement of isomorphism check and hence reduce
the additional need of time and memory. Algorithm 6 (see Fig. 16)
presents the pseudocode for this algorithm. The algorithm has an
exponential speedup by pruning the search space using the
symmetry-breaking technique that eliminates repeated
isomorphism check. In addition to that, the subgraph hashing
technique significantly improves the performance of subgraph
isomorphism check [16]. Grochow–Kellis can find motifs up to
size 7 using the exact census and can map an undirected query
graph of size up to 31. The number of subgraphs encountered

Fig. 14 Algorithm 4: FANMOD sampling algorithm

Fig. 15 Algorithm 5: NeMoFinder algorithm

Fig. 16 Algorithm 6: Grochow enumeration algorithm

180 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

without symmetry-breaking is up to 100 times more than with
symmetry-breaking. Grochow–Kellis achieve an exponential
improvement in runtime over the two versions of Milo et al.
algorithm.

Limitation: Grochow–Kellis may process some subgraphs as
candidate motifs that might not be present in the input network. For
large motif size, it is impossible to generate all possible isomorphic
classes of query graphs.

Kavosh: Kavosh algorithm consists of four major parts such as
(i) enumeration, (ii) classification, (iii) random graph generation,
and (iv) motif identification [19, 41]. A tree data structure is used
to enumerate the presence of all size-k subgraphs in the input
network. Kavosh is based on pattern trees with added constraints.
The algorithm starts with a node that can be expanded to a size-k
subgraph, then that node is removed from the input network, and
the process repeated for remaining nodes [41]. To eliminate
redundant computations, each specific tree is constructed only once
[19]. Other constraints confirm that the numerical level of all the
children of a specific tree must be higher than the label of the root
node of the tree. NAUTY is used for isomorphism checking during
subgraph enumeration. Kavosh can detect motifs up to size 12, and
it is faster than MAVisto and MFinder. For specific networks, it is
also quicker than FANMOD.

Limitation: Kavosh becomes slower with the increase of motif
size due to the exponential growth of subgraph isomorphism
testing for subgraph classification.

MODA: MODA [42] uses the concept of the ET to compute the
frequency of query graphs. The algorithm starts by computing the
frequencies of the size-k subtree in the input network, and then
these subtrees are expanded by adding edges according to the
growth of the ET Tk. The structure of the ET is discussed in detail
in Section 4.8. For each graph size, a separate ET needs to be built.
The ET uses a static data structure that can be stored and retrieved
as required [19, 42]. Similar to Grochow and Kellis algorithm,
MODA also utilises symmetry-breaking conditions. MODA calls
the Grochow and Kellis algorithm in its first level of the ET to
compute the frequencies of size-k subtrees. To compute the
frequencies of subgraphs present at the higher levels, MODA uses
the mapping strategy and exploit the information content of parent
subgraphs. The pseudocode of MODA is detailed in Algorithm 7
(see Fig. 17). The mapping module store the computed mapping in
the memory and use this information to compute the frequency of
non-tree query graphs by taking O(1) steps. The pseudocode of
MODA is detailed in Algorithm 7 (Fig. 17). MODA also adopts the
sampling strategy to reduce the computational cost with the

expense of accuracy [19, 42]. This method can successfully
discover network motifs up to size 9 using the exact census and up
to size 10 using sampling. MODA outperforms existing algorithms
and able to extract both induced and non-induced subgraphs.

Limitation: MODA can discover network motifs only in
undirected networks. All possible size-k subgraphs need to be
stored in the ET. Hence the algorithm runs out of space to save the
ET for motif size beyond 10. Another drawback of this algorithm is
the requirement of huge memory to store the embeddings of the
parent subgraph.

G-tries: In 2010, Ribeiro and Silva proposed a novel data
structure for storing a collection of sub-graphs, called a g-trie [55].
G-trie data structure is a prefix tree, i.e. built based on common
substructures of subgraphs and support partial isomorphic match
for several different candidate subgraphs at a given time [21]. This
data structure stores the subgraphs according to their structures and
finds their occurrences in the input network. For the network motif
discovery, this data structure is built only for the subgraphs present
in the input network. The constructed tree is reused for the
computation of subgraph frequencies in the random network,
which significantly improves the computational efficiency. The
detailed construction of a g-trie is explained in Section 4.9. After
constructing a g-trie, the counting takes place. A backtracking
technique is used to count subgraph frequencies, which is similar to
the technique employed by other motif-centric approaches such as
MODA and Grochow and Kellis algorithms. This algorithm takes
advantage of common substructures, which ensures a partial
isomorphic match for several different candidates subgraphs at a
given time [21]. The sharing of common substructures in a g-trie
reduces the memory requirement of the prefix tree significantly. It
also uses the symmetry-breaking strategy to eliminate the over
counting of subgraphs. The random networks are searched only for
the subgraphs that are present in the input network. G-trie is able to
identify network motifs up to size 9 faster than FANMOD [51] and
Grochow–Kellis [16].

Limitation: The prefix tree requires a vast storage space when
the motif size and network size increases. This algorithm also
wastes a substantial amount of time for searching the subgraphs
that end up not existing in the network. This algorithm is
completely infeasible for large motif size and applicable only for
undirected networks.

NetMODE: NetMODE [56] is the first method that performs
subgraph isomorphism check without NAUTY [77]. NetMODE
has a pre-treatment phase to store size-k (k ≤ 5) subgraph in
memory that avoids the use of NAUTY. The reconstruction
conjecture for directed graphs is used for motif size 6. To extend
the motif size further (k ≥ 7), in its preprocessing phase, it stores
only the canonical labels of the subgraphs that are likely to be
encountered in the future. The rest are saved in an auxiliary file.
NetMODE minimises the time taken for canonical labelling and
performs up to about 30 times faster than its predecessors when
k ≤ 5 and up to about 20 times faster when k = 6.

Limitation: To avoid NAUTY, the algorithm has to use a
considerable amount of memory in its preprocessing phase. It is not
scalable and can only detect network motifs up to size 6.

Acc-Motif: Combinatorial techniques are used in Acc-Motif for
accelerating the motif discovery process [57]. Acc-Motif uses
independent algorithms for counting isomorphic subgraphs of sizes
3, 4, and 5. Acc-Motif achieves significant speedup over
FANMOD for motif sizes 3 and 4.

Limitation: Acc-Motif is incapable of dealing with motif size
beyond 5 using combinatorial techniques.

QuateXelero: In 2013, Khakabimamaghani et al. proposed a
fast network motif detection technique called QuateXelero.
QuateXelero uses a quaternary tree data structure to performs
partial classification of enumerated subgraphs before calling
NAUTY. This algorithm reduces the number of calls to NAUTY
for isomorphism check to improve the performance [58]. The
QuateXelero algorithm is derived from the ESU (FANMOD) motif
detection algorithm and uses a quaternary tree data structure. The
functionality of the quaternary tree is explained in Section 4.11.
This quaternary tree is used to classify the enumerated subgraphs.
This method can successfully discover network motifs up to size

Fig. 17 Algorithm 7: MODA enumeration algorithm

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

181

12 using the exact census. The computational time of QuateXelero
is much less than Kavosh for all networks. However, it uses a
massive amount of memory as compared to Kavosh. QuateXelero
is much faster than g-tries for subgraph census on the original
network, but the census in random networks is slow for large
motifs.

Limitation: QuateXelero consumes a large amount of memory
to construct the quaternary tree for detecting large motifs in the
input network.

Elhesha and Kahveci: Elhesha and Kahveci [59] developed a
scalable algorithm to discover large disjoint network motifs. This
method uses basic building patterns to generate large patterns
through iterative join operation. Any patterns with four or more
edges can be generated by joining the parent patterns with the basic
building patterns. This method first finds the instances of basic
building patterns. It then iteratively increases the size of the
patterns by joining the instances of the current set of patterns with
the instances of basic building patterns. In each step of the join
operation, non-overlapping instances of network motifs are
obtained by solving the maximum independent set problem, which
is known to be NP-complete. This cost is reduced by algebraically
computing the overlapping instances. Algorithm 8 (see Fig. 18)
presents the pseudocode of this method. This method can
successfully discover network motifs up to size 15 using the exact
census. This method is accurate and faster than Substructure
Discovery (SUBDUE) and Frequent SubGraph mining (FSG) .

Limitation: This algorithm is applied only for undirected
networks. The runtime of this algorithm is not compared with state-
of-art algorithms.

ParaMODA: ParaMODA improves upon the motif-centric tool
Grochow–Kellis and MODA [60]. The discovered motif instances
can be saved in the disk for future analysis. This method can
successfully discover network motifs up to size 7 using the exact
census. ParaMODA is much faster than benchmark algorithms for
specific query graphs. For all test cases, ParaMODA performs
better than Grochow–Kellis and MODA.

Limitation: This algorithm is applied only for undirected
networks. The speedup achieved in runtime depends upon the
structure of the query graph.

NemoMap: Grochow–Kellis and MODA are extended to
implement NemoMap algorithm [61]. This method can
successfully discover network motifs up to size 7 using the exact
census. NemoMap is faster than its predecessor for complex
networks due to the better node selection process in symmetry-
breaking technique. NemoMap outperforms Grochow–Kellis and
ParaMODA in all cases except simple patterns.

Limitation: This algorithm is applied only for undirected
networks. Grochow–Kellis is better than NemoMap for simple
query graphs with high symmetry.

MODET: MODET is based on a pattern growth approach that
uses an ET [62]. Each node of ET represents a size-k query graph.
The frequency of a particular query graph is computed in a bottom-
up approach starting from the root node. The root node of ET
represents a size-3 tree whose frequency can be calculated
explicitly from the input network. For motif size k, the ET first
extended by adding vertices to the parent node to reach a size-k
tree, and then the edges are added to achieve a complete graph of
size-k. The embeddings of the corresponding nodes are computed
from the embeddings of their parent node using a tree census and
graph census procedure, respectively. This algorithm outperforms
most of the benchmark algorithms.

Limitation: This algorithm uses a static ET that needs
unbearable storage when motif size exceeds 10.

MDET: MDET uses a DET in place of a static ET and
overcomes the space limitation of the MODET [63]. The growth of
DET is controlled by pruning criteria applicable to the F2 measure.
MDET can discover large network motifs up to size-15 faster than
benchmark algorithms.

Limitation: Although the DET required less storage than a static
tree, the memory requirement cannot be satisfied when the motif
size exceeds 15.

Pattern-join: This algorithm uses a set of basic building patterns
and applies pattern-join operations iteratively to discover non-
overlapping motif instances of large patterns [64]. The exponential
growth of the number of patterns with the increase of motif size is
controlled by the downward closure property of F2 and F3
measures. This method outperforms the benchmark algorithms and
able to discover network motifs up to size-15 on the transcription
network and PPI network.

Limitation: The pattern-join algorithm can only find edge-
disjoint embeddings, and this algorithm is not applicable for F1
frequency measure. It consumes a lot of space for storing the
embeddings of the parent pattern for large motifs, which restricts
its usage for further increase in motif size.

7 Dataset and result analysis
There is a wide range of network datasets available for evaluating
the network motif discovery tools and algorithms. The biological
network plays a vital role in this field. Other relevant datasets
include social networks, electronic circuits, food web, dictionary,
power grid network, computer network, and WWW network. A
single dataset may be used by some algorithms, whereas some
other algorithms may use a wide variety of datasets. However,
almost every tool and algorithms use at least one biological
network dataset.

Results taken from various tools and algorithms are presented
here. Data is analysed based on the number of network motifs
detected and the capacity of algorithms to discover the most
abundant motif in reasonable running time. Runtime and memory
comparison done by various tools and algorithms are analysed.
Some experimental results taken from the literature can be seen in
Figs. 19–26 and Tables 4–13. Owing to differences in numbers of
generated random networks, computational environment, and
different datasets, each figure and table should be examined
separately.

MFinder was evaluated on six different networks: the
transcription network of E. coli (424 nodes and 519 edges) and
Saccharomyces cerevisiae (685 nodes, 1052 vertices), the neural

Fig. 18 Algorithm 8: Elhesha–Kahveci algorithm

182 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

network of Caenorhabditis elegans (252 nodes, 509 edges),
electronic circuits (10,383 nodes, 14,240 edges), WWW network
(325,729 nodes, 1,460,000 edges), and food web of birds, fishes,
and invertebrates (83 nodes, 391 edges) [1]. Network motifs found
in various networks are shown in Table 4. The sampling method of
MFinder is significantly faster than the exhaustive enumeration
method. It is able to estimate the subgraph concentration at very
high accuracy even for subgraphs that have low concentration. The
MFinder can detect motifs up to size 7 [1].

The FPF algorithm in MAVisto [44] was tested only on a
transcription network of S. cerevisiae (62 nodes, 93 edges). The
performance of MAVisto was not compared with other tools and
algorithms. MAVisto can detect network motifs up to size 7.

The RAND-ESU algorithm in FANMOD [53] was evaluated on
four different networks: the transcription network of E. coli (423
nodes, 519 edges), the transcription network of S. cerevisiae yeast
(688 nodes, 1079 vertices), the neural network of C. elegans (306

Fig. 19 Number of network motifs found in the PPI network of S.
cerevisiae varying motif size (courtesy of Chen et al. [54])

Fig. 20 Comparison of computational times to find network motifs of
varying sizes in a PPI network of S. cerevisiae (courtesy of Chen et al.
[54])

Fig. 21 Comparison of runtimes for different network motif sizes for the
Grochow–Kellis algorithm and two versions of Milo et al. algorithm [1] in
the PPI network of S. cerevisiae (courtesy of Grochow and Kellis [16])

Fig. 22 Comparison of the runtime of MODA, MFinder, Grochow–Kellis,
FPF, and FANMOD by varying subgraph sizes 3–9 in an E. coli
transcription network (courtesy of Omidi et al. [42])

Fig. 23 Number of unique motif topologies found in PPI networks of six
different species for motif sizes 5, 10, and 15 by Motif Discovery (MD)
(Elhesha and Kahveci) and SUBDUE (courtesy of Elhesha and Kahveci
[59])

Fig. 24 Runtime of MODET compared with MFinder, ESU, Grochow–
Kellis, and MODA for the PPI network of S. cerevisiae (courtesy of Patra
and Mohapatra [62])

Fig. 25 Runtime of MDET compared with MODA, Elhesha–Kahveci, and
FANMOD on the PPI network of S. cerevisiae (courtesy of Patra and
Mohapatra [63])

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

183

nodes, 2345 edges), and the food web of the Ythan estuary (135
nodes, 597 edges). The number of subgraphs and the number of
respective subgraph classes that occur in various networks are
shown in Table 5. RAND-ESU is much faster than edge sampling
algorithm for subgraph sizes ≥5.

NeMoFinder was evaluated on two real-time datasets of S.
cerevisiae taken from the Uetz dataset and MIPS CYGD dataset
[54]. The number of network motifs that can be found by
NeMoFinder and other competitive algorithms is shown in Fig. 19.
Run-time comparison of NeMoFinder with FPF and MFinder is

Fig. 26 Runtime of pattern-join compared with MFinder, ESU, Grochow–Kellis, and MODA on a real network of S. cerevisiae (courtesy of Patra and
Mohapatra [64])

Table 4 Network motifs in biological and technological networks; each table entry contains the number of subgraphs (z-score).
z-score is determined by comparing with 1000 randomised networks (Courtesy of Milo et al. [1])
Network Feed-forward loop Bi-fan Bi-parallel Three chain
E. coli 40(10) 203(13) — —
S. cerevisiae 70 (14) 1812 (41) — —
C. elegans 125 (3.7) 127 (5.3) 227 (20) —
food of web — — 1357 (23) 1182 (7.2)
electronic circuit 424 (285) 1040 (1200) 480 (335) —

Table 5 Number of subgraphs and respective subgraph classes detected by FANMOD by varying subgraph sizes from 3 to 6
(Courtesy of Wernicke [53])
Network Subgraphs Subgraphs’ classes

3 4 5 6 3 4 5 6
E. coli 5206 83,893 1,433,502 22,532,584 4 17 83 390
S. cerevisiae 13,150 183,174 2,508,149 32,883,898 7 33 173 888
C. elegans 47,332 1,394,259 43,256,069 1,309,307,357 13 197 7071 286,375
food of web 9487 169,733 2,908,118 45,889,039 8 57 629 9339

Table 6 Total number of subgraphs of different sizes in different networks detected by Kavosh (courtesy of Kashani et al. [41])
Network 3 4 5 6 8 10
E. coli 2590 12,896 80,724 558,080 29,294,103 1,529,707,241
S. cerevisiae 13,150 183,174 2,508,149 32,883,898 5,184,710,063 700,928,564,818
social 488 2183 10,599 52,156 1,224,376 26,429,201
electronics 1121 4316 19,675 97,038 2,572,125 71,614,362

Table 7 Number of non-isomorphic subgraphs of different sizes in different networks detected by Kavosh (courtesy of Kashani
et al. [41])
Network 3 4 5 6 7 8 9 10
E. coli 12 83 590 3884 23,587 136,569 768,121 4,223,040
S. cerevisiae 7 34 174 888 4809 27,003 183,307 1,083,282
social 13 108 773 5062 30,217 165,958 854,023 4,161,577
electronics 4 13 49 199 907 433 20,692 96,483

Table 8 Performance comparisons between Kavosh, FANMOD, MAVisto, and MFinder using the E. coli network, times are in
seconds (courtesy of Kashani et al. [41])
Method 3 4 5 6 7 8 9 10
Kavosh 0.30 1.84 14.91 141.98 1374 13,174 121,110 1,120,560
FANMOD 0.81 2.53 15.71 132.24 1206 9256 — —
MAVisto 13,532 — — — — — — —
MFinder 31 297 23,671.8 — — — — —

184 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

shown in Fig. 20. NeMoFinder can detect motifs up to size 13 with
20–100-fold speed up as compared to the predecessor.

Grochow–Kellis algorithm was evaluated on the PPI network of
S. cerevisiae (1379 nodes, 2493 edges) and the transcription
network of S. cerevisiae (685 nodes, 1052 edges) [16]. This
algorithm introduces the mapping of query graphs with symmetry-
breaking conditions. The number of subgraphs encountered
without symmetry-breaking is up to 100 times more than with
symmetry-breaking. The runtime comparison of the Grochow–
Kellis algorithm with two versions of Milo et al. algorithm is
shown in Fig. 21. Grochow–Kellis achieve an exponential
improvement in runtime over the two versions of Milo et al.
algorithm.

Kavosh was evaluated on four different networks: the metabolic
pathway of E. coli (672 nodes, 1276 edges), the transcription
network of S. cereviciae (688 nodes, 1079 edges), the real social
network (67 nodes, 182 edges) and the electronic network (97
nodes, 189 edges) [41]. Kavosh performance was compared with
MFinder, MAVisto, and FANMOD. The total number of subgraphs
and the number of non-isomorphic subgraphs of different sizes in
different networks detected by Kavosh are shown in Tables 6 and
7, respectively. The runtime comparison of Kavosh with
FANMOD, MAVisto, and MFinder for E. coli and S. cerevisiae
network is shown in Tables 8 and 9, respectively. Performance of
Kavosh is comparable to FANMOD, but it outperforms other tools.

MODA was tested only on the transcription network of E. coli
(423 nodes and 519 edges) [42]. MODA was assessed for its

Table 9 Performance comparisons between Kavosh, FANMOD, MAVisto, and MFinder using the S. cerevisiae network, times
are in seconds (courtesy of Kashani et al. [41])
Method 3 4 5 6 7 8 9 10
Kavosh 1.35 34.59 1004 20,213 746,386 17,111,178 3 × 108 7 × 109

FANMOD 2.20 41.41 1111 24,292 926,745 18,851,135 — —
MAVisto 15,784 — — — — — — —
MFinder 32 306 33,548 — — — — —

Table 10 Runtime comparison of G-trie with FANMOD and Grochow–Kellis on the social network, PPI network and electronic
circuits. Runtime is measured in seconds (courtesy of Ribeiro et al. [55])
Network Motif size No. of subgraphs Census on original network Average census on random networks

FANMOD Grochow–Kellis G-trie FANMOD Grochow–Kellis G-trie
social 3 2 0.31 0.11 0.02 0.35 0.11 0.02

4 6 7.78 1.37 0.56 13.27 1.86 0.57
5 21 208.30 31.85 14.88 531.65 62.66 22.11

yeast 3 2 0.47 0.33 0.02 0.57 0.35 0.02
4 6 10.07 2.04 0.36 12.90 2.25 0.41
5 21 268.51 34.10 12.73 400.13 47.16 14.98

circuit 6 33 0.49 0.41 0.03 0.55 0.24 0.03
7 89 3.28 3.73 0.22 3.53 1.34 0.17
8 293 17.78 48.00 1.52 21.42 7.91 1.06

Table 11 Memory limitation of QuateXelero (courtesy of Khakabimamaghani et al. [58])
Network Motif size Algorithm Stopping reason
S. cerevisiae 9 G-tries long run time (close to 11 days)

10 QuateXelero long run time (about 26 days)
social 12 G-tries memory

12 QuateXelero memory
E. coli 12 G-tries memory

11 QuateXelero memory
electronic 12 G-tries core dumped

13 QuateXelero memory

Table 12 Number of significant motifs for six different PPI networks (courtesy of Patra and Mohapatra [62])
Motif size Hhv8 Hhv1 E. coli H. pylori R. norvegicus S. cerevisiae
5 16 20 7 15 15 21
6 59 70 16 62 69 110
7 181 212 38 354 381 612
8 1450 1508 91 2649 2450 3487
9 7101 12,351 235 15,382 8101 19,151
10 31,836 50,274 565 58,905 41,836 90,240

Table 13 Number of significant motifs for six different PPI networks (courtesy of Patra and Mohapatra [63])
Motif size Hhv8 Hhv1 E. coli H. pylori R. norvegicus S. cerevisiae
5 10 9 11 9 8 10
10 5368 4219 5718 3241 2816 4065
15 8152 7529 8418 6719 5245 7916

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

185

computational time for enumerating subgraph appearances. Its
runtime was compared with Grochow–Kellis, MFinder, FANMOD,
and MAVisto for subgraphs of sizes 3–9 as shown in Fig. 22.
MODA can discover network motifs by both exact census and
sampling of subgraphs.

G-trie was evaluated on a variety of networks: the dolphins
social network (62 nodes, 159 edges), the electronic circuit (252
nodes, 399 edges), the social network (1000 nodes, 7770 edges),
the PPI network of yeast (2361 nodes, 6646 edges), and the power
grid network (4941 nodes, 6594 edges) [55]. Runtime comparison
of g-trie with FANMOD and Grochow–Kellis for electronic
circuits, social network, and PPI network of yeast is shown in
Table 10. G-trie outperforms FANMOD and Grochow–Kellis for
all networks. G-trie can detect motifs up to size 9 in efficient
running times.

NetMODE was tested on four different networks: the social
network (67 nodes, 182 vertices), the metabolic pathway of E. coli
(672 nodes, 1276 vertices), the transcription network of S.
cerevisiae yeast (688 nodes, 1079 edges), and the complete
directed graph (50 vertices, 2540 vertices) [56]. The runtime of
NetMODE is compared with Kavosh and FANMOD on social
network (4-node) and transcription network of S. cerevisiae yeast
(6-node) under various switching methods [56]. NetMODE
achieves better runtime performance for both the yeast and social
networks.

Acc-Motif was evaluated on various networks selected from Uri
Alon's datasets and Pajek datasets [57]. The runtime of Acc-Motif
is compared with FANMOD to count isomorphic patterns of sizes
3 and 4 in a processed graph. Acc-Motif achieves significant
speedup over FANMOD for motif sizes 3 and 4.

QuateXelero was evaluated on six networks of different types:
the transcription network of S. cerevisiae (688 nodes, 1079 edges),
the metabolic pathway of E. coli (672 nodes, 1275 edges), the PPI
network of the budding yeast (2361 nodes, 6646 edges), the real
social network (67 nodes, 182 edges), the dolphins’ social network
(62 nodes, 159 edges) and the electronic circuit (252 nodes, 399
edges) [58]. The performance of QuateXelero is compared with
Kavosh and g-tries on various networks above with different motif
size ranges for the target network and random networks. The
processing time of QuateXelero is better than Kavosh. However, it
uses a massive amount of memory compared with Kavosh.
QuateXelero is much faster than g-tries for a census on the original
network, but the census in random networks is slow for large
motifs. Memory limitation and impractical running time of
QuateXelero and g-tries on various networks are shown in
Table 11.

Elhesha–Kahveci algorithm was evaluated on real PPI networks
of seven organisms taken from the MINT database: human herpes
virus 8 (Hhv8; 48 nodes, 82 edges), Campylobacter jejuni (109
nodes 117 edges), Treponema pallidum (108 nodes 173 edges),
Rattus norvegicus (535 nodes, 643 edges), Helicobacter pylori
(717 nodes, 1472 edges), E. coli (616 nodes, 1561 edges), and
Plasmodium falciparum (1221 nodes, 2577 edges) [59]. The
number of unique motif topologies found by Elhesha–Kahveci in
PPI networks of different species for motif sizes 5, 10, and 15 is
compared with SUBDUE [78], as shown in Fig. 23. Runtime of
Elhesha–Kahveci is compared with FSG [66] by varying motif
sizes from 7 to 9 for various PPI networks. Elhesha–Kahveci was
able to detect large network motifs with high frequency on dense
input networks while SUBDUE was unable to achieve that result.
For large motifs, Elhesha–Kahveci is much faster than FSG.

The runtime of ParaMODA is compared with Grochow–Kellis
and MODA on the PPI network of E. coli and S. cerevisiae by
varying motif sizes from 3 to 7 [60]. For all test cases, ParaMODA
performs better than Grochow–Kellis and MODA. The runtime of
NemoMap is compared with Grochow–Kellis and ParaMODA on
the PPI network of Homo sapiens, E. coli, and S. cerevisiae by
varying motif sizes from 4 to 7 [61]. NemoMap outperforms
Grochow–Kellis and ParaMODA in all cases except simple
patterns.

MODET was evaluated on real PPI networks of six organisms
taken from the MINT database: Hhv8 (92 nodes, 170 edges), Hhv1
(176 nodes, 353 edges), E. coli (402 nodes, 727 edges), H. pylori

(738 nodes, 1643 edges), R. norvegicus (1825 nodes, 3471 edges),
and S. cerevisiae (3187 nodes, 9171 edges) [62]. The number of
network motifs found in the above networks for motif sizes 5–10 is
shown in Table 12. The runtime of MODET is compared with
MFinder, ESU, Grochow–Kellis, and MODA for the PPI network
of Hhv8, E. coli, and S. cerevisiae. The result of the S. cerevisiae
network is shown in Fig. 24. MODET is significantly faster than
state-of-art algorithms.

MDET was also evaluated on real PPI networks of six
organisms taken from the MINT database [63]. The number of
network motifs found in the above networks for motif sizes 5, 10,
and 15 is shown in Table 13. The runtime of MDET is compared
with FANMOD, Elhesha–Kahveci, and MODA for the PPI
network of Hhv8, E. coli, and S. cerevisiae. The result of the S.
cerevisiae network is shown in Fig. 25 MDET is significantly
faster than most of the existing motif finding algorithms, and the
use of DET eliminates the memory limitation of the static ET.

The pattern-join algorithm is tested on the transcription
regulatory network of E. coli (116 Transcription Factors (TFs) and
423 operons, 578 interactions), PPI network of S. cerevisiae (858
proteins, 1815 interactions) and Hhv8 (92 proteins, 170
interactions) [64]. The runtime of pattern-join is compared with
MFinder, ESU, Grochow–Kellis, and MODA for the above
networks. The result obtained from the E. coli network is shown in
Fig. 26. Pattern-join outperforms most of the existing algorithms
for all the above networks.

Some of the parameters to analyse the above tolls and
algorithms are discussed below.

Accuracy: All exact census algorithms detect 100% of the
available network motifs up to their size limit through exhaustive
recursive search. However, the sampling algorithms are able to
identify relatively large motifs by compromising accuracy. Exact
census algorithms are MAVisto, NeMoFinder, Grochow–Kellis,
Kavosh, g-tries, NetMODE, Acc-Motif, QuateXelero, Elhesha–
Kahveci, ParaMODA, NemoMap, MODET, MDET, and Pattern-
join etc. Accuracy of the algorithms that follow sampling
approaches such as MFinder, FANMOD, and MODA is <100%.
MFinder produces biased results, whereas FANMOD is less biased
than MFinder. The sampling strategy of MODA is also biased, and
hence accuracy cannot meet 100%.

Runtime efficiency: The efficiency of network motif discovery
algorithms can be measured in terms of runtime. Usually, runtime
depends on the size of the network motif and the size of the input
network. However, the strategy of the algorithms plays a vital role
in deciding runtime. For example, the sampling strategy used by
MFinder and FANMOD is faster than their respective exhaustive
enumeration. Runtime efficiency of the existing algorithms can be
analysed from their relative performance. For example,
NeMoFinder achieves 20–100-fold speed up over FPF and
MFinder. Grochow–Kellis attain an exponential improvement in
runtime over MFinder. Runtime efficiency of Kavosh is
comparable to FANMOD, but it outperforms MFinder and
MAVisto. Runtime efficiency of MODA is better than Grochow–
Kellis, MFinder, and MAVisto. G-tries outperforms FANMOD and
Grochow–Kellis over runtime. NetMODE shows better runtime
performance than Kavosh and FANMOD. Acc-Motif attains a
significant speedup over FANMOD. QuateXelero is better than
Kavosh and g-tries in terms of runtime. Elhesha–Kahveci is much
faster than FSG. ParaMODA performs better than Grochow–Kellis
and MODA. NemoMap outperforms Grochow–Kellis and
ParaMODA. MODET is faster than MFinder, ESU, Grochow–
Kellis, and MODA. MDET is significantly faster than MODA and
Elhesha–Kahveci. Pattern-join outperforms MFinder, ESU,
Grochow–Kellis, and MODA.

Computing store: The computing store increases exponentially
with respect to motif size and network size. The memory
requirement also depends on the strategy used by the tools and
algorithm. MFinder required a large space to maintain the
associated hash tables. Algorithms that run out of space before
running out of time are MODA, MODET, Elhesha–Kahveci etc.
The memory requirement for the data structure used to store the
subgraphs in MODA, g-tries, QuateXelero, and MODET becomes
impractical for motif size beyond their limit. A relative comparison

186 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

among the algorithms is helpful for the analysis. For example,
Kavosh mentioned that its memory usage is considerably less than
FANMOD. Enormous memory requirements of NetMODE to store
parent patterns slow down the kernel. ParaMODA frequently runs
out of memory and crashes. MODET runs out of space to save
more than a size-10 ET. MDET overcomes the space limitation of
MODET significantly.

Scalability: The scalability of a motif discovery algorithm is
measured with respect to motif detection capability and the size of
the input network. Some algorithms are scalable with respect to
both network-size and motif-size, such as NeMoFinder, Kavosh,
Elhesha–Kahveci, MDET and pattern-join. Grochow–Kellis and
QuateXelero have limited scalability. MODA, g-tries, and MODET
are scalable only with respect to network size. MFinder and
FANMOD have limited scalability only with respect to network
size. Some algorithms are not at all scalable such as NetMODE,
Acc-Motif, ParaMODA, and NemoMap.

Table 14 presents the motif detection capability of the above
tools and algorithms.

Each of the above algorithms has merits and demerits with
respect to specific criteria. For example, Acc-Motif is the best tool
for small motifs size in the range of 3–5. FANMOD is an excellent
tool for motif size up to 8 because of its runtime efficiency.
However, it does not apply to large motifs. MODA and MODET
are superior for undirected graphs up to size 10. For directed
graphs, QuateXelero gives the best runtime efficiency up to motif
size 12. Elhesha–Kahveci or MDET can be used for undirected
graphs and non-overlapping motif instances up to size 15.

8 Conclusions and future work
Advancement in science and technology produces a massive
volume of real networks in various fields. The analysis of these
networks gives an insight into the corresponding systems and
organisms. The overrepresented subgraphs in these networks,
which are statistically significant, are called network motifs.
Network motifs are the building blocks of networks and are often
biologically significant, which makes the identification of the
motifs extremely important. Network motif discovery has proved
to be a computationally challenging task. There exist many tools
and algorithms to discover network motifs. However, motif
discovery capabilities can be improved further with new
developments.

The network motif discovery problem mainly includes subgraph
isomorphism check, random graphs generation, subgraph
frequency counting in the networks by sampling strategy, or exact
census. Each of these factors has challenges and possibilities that
can be listed below:

i. The exponential increase of computational resources with
respect to both graph and motif size for enumerating subgraphs
prohibits tools and algorithms from dealing with large motifs.

ii. Solving an NP-complete problem for the subgraph
isomorphism check is highly expensive.

iii. Determine the statistical significance of a candidate motif
required repeated computations in a sufficient number of
randomised networks.

iv. The challenges mentioned above increase further due to the
continuous growth of real-world networks.

In this study, the state-of-art strategies for discovering network
motifs are discussed with their strengths and limitations. The
algorithms are explained with pseudocode and classified based on
their principles or approaches. Algorithms are primarily classified
as sampling algorithms and exact census algorithms. The sampling
strategies are used to accelerate the enumeration process by
compromising accuracy. Motif-centric methods such as Grochow–
Kellis and MODA are faster than others for small query graphs.
However, network-centric approaches are preferable as the size of
the motif increases. The major algorithms in the literature are
MFinder, MAVisto, FANMOD, Nemofinder, Grochow–Kellis,
Kavosh, MODA, QuateXelero, Elhesha–Kahveci, MODET, and
MDET. Results of various experimental runs carried out using
different network motif discovery tools have helped to determine
which tools are more efficient and useful. Furthermore, these
comparisons help to highlight which algorithmic methods improve
tool performance.

Most of the algorithms that exist in the literature can find motifs
in the single-digit range. Hence efficient and scalable algorithms
are required to discover large motifs. There is a continuous
improvement in network motif discovery tools and algorithms
throughout the years. However, there is a scope for further
improvements in this field. The following research topics can be
studied in detail for the future development of network motif
discovery.

i. Small motifs are the constituents of large motifs; hence the
small motifs can be used as a seed to search the large motifs.
This idea can be used to design scalable algorithms for
discovering large motifs.

ii. The number of redundant computations in the random
networks can be reduced significantly by limiting the subgraph
census only to a small set of potential motifs. Efficient data
structures need to be developed to track the candidate motifs.

iii. Colour coding techniques can be applied to quickly find
network motifs in the input network as well as random
networks.

Table 14 Motif detection capability of the network motif discovery tools and algorithms
Tools/algorithms Size of the largest motif found Census type Network type
MFinder [1] 8 sampling directed
MAVisto [44] 7 exact-census directed
FANMOD [53] 8 sampling directed
NeMoFinder [54] 13 exact-census undirected
Grochow and Kellis [16] 7 exact-census directed
Kavosh [41] 12 exact-census directed
MODA [42] 10 sampling undirected
G-tries [55] 9 exact-census undirected
NetMODE [56] 6 exact-census directed
Acc-Motif [57] 5 exact-census directed
QuateXelero [58] 12 exact-census directed
Elhesha–Kahveci [59] 15 exact-census undirected
ParaMODA [60] 7 exact-census undirected
NemoMap [61] 7 exact-census undirected
MODET [62] 10 exact-census undirected
MDET [63] 15 exact-census undirected
pattern-join [64] 15 exact-census directed

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

187

iv. Hybrid algorithms can be proposed by combining the efficient
parts of two or more algorithms.

v. Polynomial-time algorithms do exist for subgraph
isomorphism check for special patterns. These distinctive
patterns can be prioritised in the motif discovery process.

vi. Parallel algorithms can be implemented to decrease the
runtime. Some existing algorithms have exploited only coarse
grain parallelism. Efficient fine-grained parallelism is perhaps
the most crucial improvement needed currently for network
motif discovery that could simultaneously analyse different
parts of the network, thus reducing the execution time and
enabling our reach to larger motifs and networks.

vii
.

The future version of the tools most includes a user-friendly
interface for better visualisation and analysis.

vii
i.

The tools and algorithms most support a wide variety of input/
output formats.

ix. Web tools are more convenient to use in comparison with
installing the tool locally because the tools may require some
resources which are not available in the local machine.

9 Acknowledgments
The authors acknowledge the Bioinformatics Lab of IIIT
Bhubaneswar for providing computational resources. This lab is
established under the FIST project, Department of Science and
Technology, Government of India.

10 References
[1] Milo, R., Shen-Orr, S., Itzkovitz, S., et al.: ‘Network motifs: simple building

blocks of complex networks’, Science, 2002, 298, (5594), pp. 824–827
[2] Alon, U.: ‘Network motifs: theory and experimental approaches’, Nat. Rev.

Genet., 2007, 8, (6), pp. 450–461
[3] Albert, I., Albert, R.: ‘Conserved network motifs allow protein–protein

interaction prediction’, Bioinformatics, 2004, 20, (18), pp. 3346–3352
[4] Qin, G., Gao, L.: ‘An algorithm for network motif discovery in biological

networks’, Int. J. Data Mining Bioinf., 2012, 6, (1), pp. 1–16
[5] Shen-Orr, S.S., Milo, R., Mangan, S., et al.: ‘Network motifs in the

transcriptional regulation network of Escherichia coli’, Nat. Genet., 2002, 31,
(1), pp. 64–68

[6] Dobrin, R., Beg, Q.K., Barabási, A.L., et al.: ‘Aggregation of topological
motifs in the Escherichia coli transcriptional regulatory network’, BMC
Bioinformatics, 2004, 5, (1), p. 10

[7] Mazurie, A., Bottani, S., Vergassola, M.: ‘An evolutionary and functional
assessment of regulatory network motifs’, Genome Biol., 2005, 6, (4), p. R35

[8] Leung, H.C., Chin, F.Y.: ‘An efficient motif discovery algorithm with
unknown motif length and number of binding sites’, Int. J. Data Mining
Bioinf., 2006, 1, (2), pp. 201–215

[9] Kautz, H., Selman, B., Shah, M.: ‘Referral web: combining social networks
and collaborative filtering’, Commun. ACM, 1997, 40, (3), pp. 63–65

[10] Kondoh, M.: ‘Building trophic modules into a persistent food web’, Proc.
Natl. Acad. Sci., 2008, 105, (43), pp. 16631–16635

[11] Sporns, O., Kötter, R.: ‘Motifs in brain networks’, PLoS Biol., 2004, 2, (11),
p. e369

[12] Itzkovitz, S., Levitt, R., Kashtan, N., et al.: ‘Coarse-graining and self-
dissimilarity of complex networks’, Phys. Rev. E, 2005, 71, (1), p. 016127

[13] Valverde, S., Solé, R.V.: ‘Network motifs in computational graphs: a case
study in software architecture’, Phys. Rev. E, 2005, 72, (2), p. 026107

[14] Junker, B.H., Schreiber, F.: ‘Analysis of biological networks’, vol. 2 (Wiley
Online Library, Australia, 2008)

[15] McKay, B.: ‘Practical graph isomorphism’, Congr. Numer., 1981, 30, pp. 45–
87

[16] Grochow, J.A., Kellis, M.: ‘Network motif discovery using subgraph
enumeration and symmetry-breaking’, Res. Comput. Mol. Biol., 2007, 4453,
pp. 92–106

[17] Ciriello, G., Guerra, C.: ‘A review on models and algorithms for motif
discovery in protein–protein interaction networks’, Brief Funct. Genomic
Proteomic., 2008, 7, (2), pp. 147–156

[18] Ribeiro, P., Silva, F., Kaiser, M.: ‘Strategies for network motifs discovery’.
2009 Fifth IEEE Int. Conf. on e-Science, Oxford, UK, 2009, pp. 80–87

[19] Wong, E.A., Baur, B.: ‘On network tools for network motif finding: a survey
study’, Online, 2010, Corpus ID: 11914375, available on https://
www.semanticscholar.org/paper/On-Network-Tools-for-Network-Motif-
Finding-:-A-Wong-Baur/13315ee09ee5f7ce54bd0e9e6d6d5cb1d20fc4f9

[20] Wong, E., Baur, B., Quader, S., et al.: ‘Biological network motif detection:
principles and practice’, Brief. Bioinf., 2011, 13, (2), pp. 202–215

[21] Masoudi-Nejad, A., Schreiber, F., Kashani, Z.R.M.: ‘Building blocks of
biological networks: a review on major network motif discovery algorithms’,
IET Syst. Biol., 2012, 6, (5), pp. 164–174

[22] Tran, N.T., Mohan, S., Xu, Z., et al.: ‘Current innovations and future
challenges of networkmotif detection’, Brief. Bioinf., 2014, 16, (3), pp. 497–
525

[23] Kavurucu, Y.: ‘A comparative study on network motif discovery algorithms’,
Int. J. Data Mining Bioinf., 2015, 11, (2), pp. 180–204

[24] Salari, M.A., Tashk, J., Bobarshad, H., et al.: ‘A review of motif discovery
algorithms as the main units of the complex networks’

[25] Vazquez, A., Dobrin, R., Sergi, D., et al.: ‘The topological relationship
between the large-scale attributes and local interaction patterns of complex
networks’, Proc. Natl. Acad. Sci., 2004, 101, (52), pp. 17940–17945

[26] Lizier, J.T., Atay, F.M., Jost, J.: ‘Information storage, loop motifs, and
clustered structure in complex networks’, Phys. Revi. E, 2012, 86, (2), p.
026110

[27] Chen, J., Hsu, W., Lee, M.L., et al.: ‘Labeling network motifs in protein
interactomes for protein function prediction’. 2007 IEEE 23rd Int. Conf. on
Data Engineering, Istanbul, Turkey, 2007, pp. 546–555

[28] Tsang, J., Zhu, J., Van Oudenaarden, A.: ‘MicroRNA-mediated feedback and
feedforward loops are recurrent network motifs in mammals’, Mol. Cell,
2007, 26, (5), pp. 753–767

[29] Milo, R., Itzkovitz, S., Kashtan, N., et al.: ‘Superfamilies of evolved and
designed networks’, Science, 2004, 303, (5663), pp. 1538–1542

[30] Pržulj, N., Corneil, D.G., Jurisica, I.: ‘Modeling interactome: scale-free or
geometric?’, Bioinformatics, 2004, 20, (18), pp. 3508–3515

[31] Gupta, R., Fayaz, S.M., Singh, S.: ‘Identification of gene network motifs for
cancer disease diagnosis’. IEEE Distributed Computing, VLSI, Electrical
Circuits and Robotics (DISCOVER), Mangalore, India, 2016, pp. 179–184

[32] McGee, S.R., Tibiche, C., Trifiro, M., et al.: ‘Network analysis reveals a
signaling regulatory loop in PIK3CA-mutated breast cancer predicting
survival outcome’, Genomics Proteomics Bioinf., 2017, 15, (2), pp. 121–129

[33] Mullen, J., Cockell, S.J., Tipney, H., et al.: ‘Mining integrated semantic
networks for drug repositioning opportunities’, PeerJ, 2016, 4, p. e1558

[34] Li, L., Wang, Z., He, P., et al.: ‘Construction and analysis of functional
networks in the gut microbiome of type 2 diabetes patients’, Genomics
Proteomics Bioinf., 2016, 14, (5), pp. 314–324

[35] Chen, L., Qu, X., Cao, M., et al.: ‘Identification of breast cancer patients
based on human signaling network motifs’, Sci. Rep., 2013, 3, p. 3368

[36] Wu, S.F., Qian, W.Y., Zhang, J.W., et al.: ‘Network motifs in the
transcriptional regulation network of cervical carcinoma cells respond to
EGF’, Arch. Gynecol. Obstet., 2013, 287, (4), pp. 771–777

[37] Turkett, W., Fulp, E., Lever, C., et al.: ‘Graph mining of motif profiles for
computer network activity inference’. Ninth Workshop on Mining and
Learning with Graphs, San Diego, CA, USA, 2011

[38] Allan, E.G.Jr., Turkett, W.H., Fulp, E.W.: ‘Using network motifs to identify
application protocols’. GLOBECOM 2009-2009 IEEE Global
Telecommunications Conf., Honolulu, HI, USA, 2009, pp. 1–7

[39] Przytycka, T.M.: ‘An important connection between network motifs and
parsimony models’. Annual Int. Conf. on Research in Computational
Molecular Biology, Venice, Italy, 2006, pp. 321–335

[40] Patra, S., Mohapatra, A.: ‘Clustering of proteins in interaction networks based
on motif features’. 2018 Int. Conf. on Bioinformatics and Systems Biology
(BSB), Allahabad, India, 2018, pp. 141–146

[41] Kashani, Z., Ahrabian, H., Elahi, E., et al.: ‘Kavosh: a new algorithm for
finding network motifs’, BMC Bioinf., 2009, 10, (1), p. 318

[42] Omidi, S., Schreiber, F., Masoudi-Nejad, A.: ‘MODA: an efficient algorithm
for network motif discovery in biological networks’, Genes Genet. Syst.,
2009, 84, (5), pp. 385–395

[43] Kuramochi, M., Karypis, G.: ‘Finding frequent patterns in a large sparse
graph’. Proc. 2004 SIAM Int. Conf. on Data Mining, Kingston, ON, Canada,
2004, pp. 345–356

[44] Schreiber, F., Schwobbermeyer, H.: ‘Frequency concepts and pattern
detection for the analysis of motifs in networks’, Trans. Comput. Syst. Biol.
III, 2005, 3737, pp. 89–104

[45] Barabasi, A.L., Oltvai, Z.N.: ‘Network biology: understanding the cell's
functional organization’, Nat. Rev. Genet., 2004, 5, (2), pp. 101–113

[46] Milo, R., Kashtan, N., Itzkovitz, S., et al.: ‘On the uniform generation of
random graphs with prescribed degree sequences’, arXiv preprint cond-mat/
0312028, 2003

[47] Barabási, A.L., Albert, R.: ‘Emergence of scaling in random networks’,
Science, 1999, 286, (5439), pp. 509–512

[48] Kashtan, N., Itzkovitz, S., Milo, R., et al.: ‘Network motif detection tool
MFinder tool guide’, Weizmann Institute of Science: Departments of
Molecular Cell Biology and Computer Science and Applied Mathematics,
Rehovot, Israel (2002–2005), 2005

[49] Milo, R., Kashtan, N., Itzkovitz, S., et al.: ‘On the uniform generation of
random graphs with prescribed degree sequences’, arXiv:condmatstat-mech,
2004

[50] Kashtan, N., Itzkovitz, S., Milo, R., et al.: ‘Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs’,
Bioinformatics, 2004, 20, (11), pp. 1746–1758

[51] Wernicke, S., Rasche, F.: ‘FANMOD: a tool for fast network motif detection’,
Bioinformatics, 2006, 22, (9), pp. 1152–1153

[52] Schreiber, F., Schwöbbermeyer, H.: ‘MAVisto: a tool for the exploration of
network motifs’, Bioinformatics, 2005, 21, (17), pp. 3572–3574

[53] Wernicke, S.: ‘A faster algorithm for detecting network motifs’, Algorithms
Bioinf., 2005, 3692, pp. 165–177

[54] Chen, J., Hsu, W., Lee, M.L., et al.: ‘Nemofinder: dissecting genome-wide
protein-protein interactions with meso-scale network motifs’. Proc. 12th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, New
York, NY, USA, 2006, pp. 106–115

[55] Ribeiro, P., Silva, F.: ‘G-tries: an efficient data structure for discovering
network motifs’. Proc. 2010 ACM Symp. on Applied Computing, New York,
NY, USA, 2010, pp. 1559–1566

[56] Li, X., Stones, D.S., Wang, H., et al.: ‘NetMODE: network motif detection
without NAUTY’, PLOS One, 2012, 7, (12), p. e50093

[57] Meira, L.A., Maximo, V.R., Fazenda, A.L., et al.: ‘Accelerated motif
detection using combinatorial techniques’. 2012 Eighth Int. Conf. on Signal

188 IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

https://www.semanticscholar.org/paper/On-Network-Tools-for-Network-Motif-Finding-:-A-Wong-Baur/13315ee09ee5f7ce54bd0e9e6d6d5cb1d20fc4f9
https://www.semanticscholar.org/paper/On-Network-Tools-for-Network-Motif-Finding-:-A-Wong-Baur/13315ee09ee5f7ce54bd0e9e6d6d5cb1d20fc4f9
https://www.semanticscholar.org/paper/On-Network-Tools-for-Network-Motif-Finding-:-A-Wong-Baur/13315ee09ee5f7ce54bd0e9e6d6d5cb1d20fc4f9

Image Technology and Internet Based Systems, Naples, Italy, 2012, pp. 744–
753

[58] Khakabimamaghani, S., Sharafuddin, I., Dichter, N., et al.: ‘QuateXelero: an
accelerated exact network motif detection algorithm’, PLOS One, 2013, 8,
(7), p. e68073

[59] Elhesha, R., Kahveci, T.: ‘Identification of large disjoint motifs in biological
networks’, BMC Bioinf., 2016, 17, p. 408

[60] Mbadiwe, S., Kim, W.: ‘ParaMODA: improving motif-centric subgraph
pattern search in PPI networks’. 2017 IEEE Int. Conf. on Bioinformatics and
Biomedicine (BIBM), Kansas City, MO, USA, 2017, pp. 1723–1730

[61] Huynh, T., Mbadiwe, S., Kim, W.: ‘Nemomap: improved motif-centric
network motif discovery algorithm’, Adv. Sci. Technol. Eng. Syst. J., 2018, 3,
(5), pp. 186–199

[62] Patra, S., Mohapatra, A.: ‘Motif discovery in biological network using
expansion tree’, J. Bioinf. Comput. Biol., 2018, 16, (6), pp. 1850024–1850024

[63] Patra, S., Mohapatra, A.: ‘Application of dynamic expansion tree for finding
large network motifs in biological networks’, PeerJ, 2019, 7, p. e6917

[64] Patra, S., Mohapatra, A.: ‘Disjoint motif discovery in biological network
using pattern join method’, IET Syst. Biol., 2019, 13, (5), pp. 213–224

[65] Wernicke, S.: ‘Efficient detection of network motifs’, IEEE/ACM Trans.
Comput. Biol. Bioinf., 2006, 3, (4), pp. 347–359

[66] Kuramochi, M., Karypis, G.: ‘An efficient algorithm for discovering frequent
subgraphs’, IEEE Trans. Knowl. Data Eng., 2004, 16, (9), pp. 1038–1051

[67] Liang, C., Li, Y., Luo, J., et al.: ‘A novel motif-discovery algorithm to
identify co-regulatory motifs in large transcription factor and microrna co-
regulatory networks in human’, Bioinformatics, 2015, 31, (14), pp. 2348–
2355

[68] Nikam, R., Chauhan, U.: ‘Suffix graph-an efficient approach for network
motif mining’, J. Data Min. Genomics Proteomics, 2016, 7, (3), pp. 2153–
2156

[69] Lin, W., Xiao, X., Xie, X., et al.: ‘Network motif discovery: a GPU
approach’, IEEE Trans. Knowl. Data Eng., 2017, 29, (3), pp. 513–528

[70] Chen, Y., Chen, Y.: ‘An efficient sampling algorithm for network motif
detection’, J. Comput. Graph. Stat., 2018, 27, (3), pp. 503–515

[71] Hu, J., Shang, X.: ‘Detection of network motif based on a novel graph
canonization algorithm from transcriptional regulation networks’, Molecules,
2017, 22, (12), p. 2194

[72] Luo, J., Ding, L., Liang, C., et al.: ‘An efficient network motif discovery
approach for co-regulatory networks’, IEEE Access, 2018, 6, pp. 14151–
14158

[73] Wang, T., Peng, J., Peng, Q., et al.: ‘FSM: fast and scalable network motif
discovery for exploring higher-order network organizations’, Methods, 2020,
173, pp. 83–93

[74] Kuramochi, M., Karypis, G.: ‘Finding frequent patterns in a large sparse
graph’, Data Min. Knowl. Discov., 2005, 11, (3), pp. 243–271

[75] Huan, J., Wang, W., Prins, J., et al.: ‘SPIN: mining maximal frequent
subgraphs from graph databases’. Proc. Tenth ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, New York, NY, USA, 2004, pp.
581–586

[76] McKay, B.D.: ‘Isomorph-free exhaustive generation’, J. Algorithms, 1998, 26,
(2), pp. 306–324

[77] McKay, B.D., Piperno, A.: ‘Practical graph isomorphism, II’, J. Symb.
Comput., 2014, 60, pp. 94–112

[78] Holder, L.B., Cook, D.J., Djoko, S., et al.: ‘Substructure discovery in the
subdue system’. KDD Workshop, Washington, DC, USA, 1994, pp. 169–180

IET Syst. Biol., 2020, Vol. 14 Iss. 4, pp. 171-189
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

189

