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D-85764 Neuherberg, Germany and 2Department of Genome-Oriented Bioinformatics, Wissenschaftszentrum
Weihenstephan, Technische Universität München, 85350 Freising, Germany

Received September 27, 2005; Revised November 15, 2005; Accepted December 5, 2005

ABSTRACT

The development of high-throughput technologies
has generated the need for bioinformatics
approaches to assess the biological relevance of
gene networks. Although several tools have been
proposed for analysing the enrichment of functional
categories in a set of genes, none of them is suitable
for evaluating the biological relevance of the gene
network. We propose a procedure and develop a
web-based resource (BIOREL) to estimate the
functional bias (biological relevance) of any given
genetic network by integrating different sources of
biological information. The weights of the edges in
the network may be either binary or continuous.
These essential features make our web tool unique
among many similar services. BIOREL provides
standardized estimations of the network biases
extracted from independent data. By the analyses of
real data we demonstrate that the potential applica-
tion of BIOREL ranges from various benchmarking
purposes to systematic analysis of the network
biology.

INTRODUCTION

The post-genomic era has introduced several high-throughput
methodologies. A wide range of possibilities was opened for
exploring the dynamics of biological processes. An exciting
prospective that emerged from high-throughput techniques is
extracting gene functional interactions in the context of gen-
etic networks. Recently, a massive amount of experimental
data was generated (1–8) and a number of computational
approaches (9–13) were proposed to infer gene networks.
Systematic exploration of the network biology, including sys-
tematic exploration of the biases introduced by gene associ-
ations in the network, is very important for understanding

perspectives and limitation of different high-throughput tech-
nologies and computational methods. Moreover, knowledge of
biases of different high-throughput technologies may allow the
user to select an optimal one that is most suitable (i.e. less
noisy, provides more relevant data) for the purposes of the
particular investigation, before running a possibly long experi-
mental study. Therefore, the development of tools for the
functional analysis of gene networks is currently of particular
interest.

A bias in the network related to some category can be
defined as an enrichment (compared with null hypotheses)
of associations in the network between genes sharing such
category. We understand the term ‘category’ in a very broad
sense. It relates to any gene property, such as functional cat-
egory, domain composition or sequence similarity to another
gene. The biologically unrelated characteristics such as gene
length or geometric distance between gene probes on the chip
(microarray technology) can be considered as category as well.
The strong network biases associated with such biologically
unrelated categories indicate shortcomings and limitations of
the technology used to extract networks (14). On the contrary,
the biological relevance can be defined as a bias related only to
gene biological activities/properties categories. If quantified,
the network biological relevance allows estimating the poten-
tial of high-throughput techniques to discover gene relations.

The information related to gene biological activities/
properties can be retrieved from heterogeneous widely distrib-
uted public databases, such as FunCat (15), GO (16), Swiss-
Prot (17), PFAM (18) and KEGG (19). Recently, a lot of tools
such as DAVID (20), GFINDer (21), GOToolBox (22),
FatiGO (23), GoMiner (24), MAPPFinder (25) and GOTM
(26) have been proposed that use gene annotations provided
through the Gene Ontology (GO) to detect the GO categories
more relevant for a given set of genes. All these publicly
available sources are focused towards the analysis of an
unordered gene set rather a gene network structure.

In this study, we propose a procedure and develop a web-
based resource (BIOREL) for evaluating the quantitative value
of the overall network bias (http://mips.gsf.de/proj/biorel).
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The weights of the edges in the network may be either binary
or continuous. To our knowledge, this is a first procedure
of this kind. In general, the network bias of any nature can
be evaluated by BIOREL. The web version integrates several
sources of information, which allow one to estimate
biologically related biases in the network. BIOREL provides
a standardized estimation of the network bias extracted from
independent data. The potential application of the BIOREL
system ranges from various benchmarking purposes to
systematic analysis of the network biology.

METHODS

A gene network structure can be formalized in matrix form.
Each element of a matrix quantifies the edge weight between a
corresponding pair of genes. Each column of the matrix
reflects the associations (edge weights) of a particular gene.
The whole gene network structure can be decomposed into
small sub networks (further referred to as elementary net-
works). For the purpose of our study we will decompose
the network so that each elementary network reflects associ-
ations of one particular gene. Therefore, the elementary
network is formalized mathematically as a vector, namely
the column of the corresponding network matrix.

The networks that are extracted from biological knowledge
databases or from other reliable sources will be referred to as
reference networks. These networks represent current know-
ledge about gene functional associations. The gene network
whose biological relevance one should quantify will be
referred to as target networks.

To avoid the ambiguity we give strict definitions to
employed terms and concepts. We define the overall network
bias (relevance) score as the proportion of genes in the target
network with significantly biased associations. A gene is
defined to be biased if its associations in the network signi-
ficantly enriched with some categories (the null distribution is
estimated based on statistics from random networks). We
define the term ‘category’ as any principle to generate gene
pairwise similarity matrix (further referred as reference net-
work). For example, the category ‘metabolism’ [protein func-
tional classification category from FunCat (15)] generates
binary similarity matrix (a pair of genes that share this cat-
egory get similarity score 1 and 0 otherwise). The category
‘sequence similarity’ generates corresponding similarity mat-
rix (a pair of genes get similarity score proportional to their
sequence similarity). To quantify the bias introduced by asso-
ciations of individual gene, in the case when both target and
reference network are binary, one can use standard statistical
techniques (hypergeometric distribution). However, in other
cases (the weights of the edges in the target or reference
network are not binary) such techniques are inapplicable.
For this reason to quantify the bias of each gene we use
the regression analysis. The term ‘relevance’ we use only
in relation to bias related to FunCat (15) categories.

For each gene X from the target network the following
procedure is applied. The information from knowledge data-
bases is formalized in a reference matrix xi

k. The element xi
kof

the matrix quantifies the association of gene i (index i runs
over all genes from the target network) with gene X in the
reference network k (index k runs over all reference networks,

e.g. categories, selected for analysis). On the other hand, the
association of gene i with gene X in the target network is
formalized by the element yi. In the next step the vector y
is regressed against the matrix xi

k : yi ¼ akxi
k þ b0 þ ek. The

multiple correlation coefficient R is a quantitative measure
of correlation between the reference matrix and vector y.
The R-value is used to estimate the bias (related to employed
reference networks) introduced by associations of gene X in
the target network. The value of R can vary from 1 (perfect
match between target network and reference networks) to
0 (the absence of any correlation). The corresponding
P-value reflects the statistical significance of R and represents
the probability to get the same correlation between the
elementary target network and reference matrix by chance
assuming as a null hypothesis that both xi

k and yi were
generated randomly. In reality, this assumption is not true
and statistical significance of R should be estimated based
on statistics from random networks. For this purpose, random
vector z (random analogue of vector y, represents associations
of gene X in the random network) is generated and Rz (multiple
correlation coefficient between random target network
(vector z) and reference matrix) is estimated. The procedure
is repeated an appropriate number of times (in respect to
chosen significance level) to gain statistics of Rz-value for
random networks. Based on Rz statistics we estimate the sig-
nificance of R-value. Therefore, we classify the associations of
gene X as biased/nonbiased at given significance level. The
overall network bias is defined as the proportion of genes in the
network with significantly biased associations.

Two options are realized to generate the random networks.
In both cases, the topology of the target network is preserved
and only genes in the nodes are permutated. In the first case,
genes are permutated only from the target network. In the
second case, the permutation process involves the whole set
of genes from the analysed organism. The difference between
random models allows evaluating the bias introduced by the
target network set of genes.

Along with the bias of the target network the set of genes
with significantly biased associations is identified. For each
gene from the set of categories that make major contributions
in an explanation of its associations in the target network are
inferred. In other words these categories were significantly
over- or under-represented among gene associations in the
network. The overall statistics of such categories in the net-
work provides information on the kind of gene interactions
that prevail in the target network. This information can be used
as a basis for a deeper insight into the network biology/biases.

Knowledge modules and principles to extract
reference networks

The reference networks can be extracted from principally
different sources of biological knowledge. As a core of our
system, we employ the MIPS functional catalogue (27). Gene
sequence similarity, Gene Neighborhood, Protein/Protein
Interaction data (28) and InterPro domains data (29) were
employed as additional independent knowledge data sources.
Our system is very flexible in use. Each knowledge module can
be switched on/off depending on the purpose of the study.
There is an option, which allows the user to upload his/her
own knowledge modules in the specified format.
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Functional catalogue module (FunCat module)

The FunCat (27) is an annotation scheme for the functional
description of proteins. Taking into account the broad and
highly diverse spectrum of known protein functions, the
FunCat consists of 28 main functional categories (or branches)
that cover general fields, such as cellular transport, metabolism
and cellular communication/signal transduction. The main
branches exhibit a hierarchical, tree-like structure with up
to six levels of increasing specificity. In total, the FunCat
includes 1307 functional categories.

Each of the functional categories is assigned to a unique
two-digit number. The upward context of the hierarchical
tree consists of the prefix of the preceding nodes, located in
the upper levels in the hierarchy. The levels of categories are
separated by dots, e.g. 01 metabolism is a representative of the
highest level, and 01.01.03.02.01 biosynthesis of glutamate
belongs to the most specific level of FunCat.

According to the total number of different functional cat-
egories (1307) one can extract the same number of different
networks. Each network corresponds to one category. The
extraction procedure is very simple. If two genes have the
same category then they are connected in the corresponding
network. The hierarchical tree-like structure of FunCat pre-
sumes a hierarchical organization of the extracted networks.
The networks generated by very specific categories (e.g.
01.01.03.02.01 biosynthesis of glutamate) are subnetworks
of the networks generated by corresponding unspecific ones
(e.g. 01 metabolism).

Sequence similarity (SS) module

The base information used by the module is a pairwise sim-
ilarity score between the amino acid sequences of two genes.
The FASTA pairwise scores were retrieved from the SIMAP
database (15). The input values were calculated as �log10

(E-value). Pairwise scores with E-value > 0.1 were excluded
from the analysis. The edge weight between two genes is
proportional to the similarity score.

There are several reasons to include sequence similarity
(SS) module to the BIOREL system. First of all it reflects
any bias in the network that can be attributed to the genes
sequence similarity. This module, for example, may be very
helpful for analyses of gene expression data to estimate unspe-
cific cross-hybridization effects. Any systematic bias towards
similarity in expression profiles of genes with similar
sequences will be detected.

InterPro domain (IPD) module

The core information used in this module is the protein domain
composition provided by the InterPro database (29). The num-
ber of different networks extracted by this module corresponds
to the number of domains. Each domain generates a network.
The extraction procedure creates an edge between two genes if
their proteins both have the corresponding domain. Any sys-
tematic bias in the network due to similar domain composition
of interacting genes will be estimated by this module.

Gene neighborhood (GNH) module

The base information used in this module is the physical dis-
tance between two genes on the chromosome. The weight of
the edge between two genes is inversely proportional to the

distance separating them physically on the chromosome. Two
options are implemented. The distance is measured in a
number of genes or in a number of nucleotides. Any systematic
bias in the gene interactions reflected in the network due to
gene neighborhood on the chromosome will be estimated by
this module.

Protein–protein interaction (PPI) module

There are several databases on PPI in yeast (28). Among them
most reliable information comes from manually curated cata-
logues of known protein complexes (28,30). In addition, data
from high-throughput experiments such as two hybrid experi-
ments (1), genetic interactions (31), etc. are available. In all
cases, the same network extraction procedure can be used. An
edge of the binary network is constructed if two proteins are
involved in an interaction according to the database record.
The BIOREL system as available in the web configuration
employs only manually curated catalogues of known protein
complexes.

User-defined knowledge modules

This option can be flexibly used for various purposes. New
sources of information considering genes from different bio-
logical perspectives may not yet have been included in our set
of knowledge modules. Thus, we allow the user to add new
knowledge for analysis. Second, the networks extracted from
high-throughput data (or in some other way) may be signific-
antly biased due to shortcomings of the technology or another
reason. Therefore, the user can evaluate any bias in his
network by uploading corresponding data.

RESULTS

Benchmarking BIOREL on synthetic data
(Saccharomyces cerevisiae)

To benchmark the potential of BIOREL, we initially assessed
the data with known and varied biases. For this purpose, we
generated synthetic target gene networks with built-in bias
related to FunCat (15) categories and evaluated them by
BIOREL. The FunCat module was used to generate reference
networks (see Methods). The edge weights in the synthetic
gene networks were generated such that they follow two
normal distributions: EdgeWeight1 � N1(E1,SD1) and Edge-
Weight2 � N2(E2,SD2) where E1 and E2 correspond to the two
means and SD1 and SD2 correspond to the standard deviations.
We used the first distribution to generate the edge weights
between gene pairs sharing the same FunCat category. In
the current context, only these relations were considered as
‘relevant associations’. The second distribution was used
to generate the edge weights for all other gene pairs. We
name these relations as ‘irrelevant associations’. Several
synthetic networks corresponding to different values of
normal distributions parameters were generated. Parameters
E1 and E2 (E1 > E2) were fixed and parameters SD1 ¼
SD2 ¼ SD ¼ a(E1 � E2) were varied (a ¼ 0.2, 0.5, 1, 1.2,
1.4, 1.5, 2, 3). In the generated networks, the signal-to-noise
ratio was controlled by the value I ¼ (E1 � E2)/SD ¼ 1/a.
The difference between edge weights of relevant/irrelevant
associations ranged (Figure 1) from complete separation
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(a < 0.5, I > 2) to almost inseparable (a > 2, I < 0.5). In the
completely separable case (i) the weight for any relevant asso-
ciation is greater than for any irrelevant association. For the
partially separable case (ii) there are some irrelevant edges
with weights greater than some relevant ones. The proportion
of such edges depends on parameter a. For the inseparable
case (iii) there is no difference between the edge weights of
relevant/irrelevant associations in the synthetic network. Thus,
the built-in bias in the generated data varied from maximal
possible to zero.

The bias of each generated dataset was assessed by
BIOREL. In Figure 2, the bias score is plotted against the
value of parameter a.

At low noise levels (a < 0.5, I > 2) the relevance score
converges approximately to 0.7. This value is the share of
annotated genes for S.cerevisiae genome in FunCat and rep-
resents the maximal possible bias (all annotated genes had
significantly biased associations in the corresponding syn-
thetic network). From Figure 2 we can also derive that if the
relevance score of the network is >0.5 then we expect the value
of a to be <1. The relevance score between 0.1 and 0.4 means
that 1 < a < 2. For a > 2 (I < 0.5) we expect no difference
between relevant/irrelevant edge weights and, therefore, no
bias is found in the data.

The results clearly demonstrate that BIOREL correctly
ranks the datasets according to the value of built-in bias.
Thus, it can be used for systematic benchmarking purposes
to evaluate the potential of various data sources to reveal

biological relations between genes as well as to detect
systematic biases related to the limitations and shortcomings
of high-throughput methodologies.

Analyses of high-throughput technologies for
inferring PPI

At the moment there are two major alternative methodologies
to discover PPIs on the whole genome scale. Without taking
into acount minor technological variations they can be clas-
sified as yeast two-hybrid systems and mass spectrometric
protein complex identification (MS-PCI). Previous compar-
ison of the MS-PCI dataset with interactions reported in the
literature revealed an average 3-fold higher success rate in the
detection of known complexes compared with large-scale two-
hybrid studies (2). In this example, we systematically bench-
marked the biological relevance and biases of gene networks
extracted from independent sources of PPI data.

PPI two-hybrid data

We analysed gene networks extracted from PPI data yielded in
two-hybrid high-throughput experiments for S.cerevisiae gen-
ome. We analysed two publicly available datasets produced by
different groups. It is widely accepted that interactions, which
are detected simultaneously by independent experimental
groups are more reliable. We investigated the bias of the
overlapped network constructed from interaction pairs that
were detected in both analysed sets. The details of the bench-
mark procedure can be found in Table 1.

The PPI data of (1) contain information about 4549 putative
two-hybrid interactions among 3276 genes (referred to as Ito).
The PPI data of (3) contain information about 957 putative
interactions involving 1004 genes (referred to as Uetz). The
overlapped network contained 343 interactions involving 268
genes. The standard output of the BIOREL system for all three
cases is available on the web site (see Examples section). The
bias score at the significance level (P < 0.01) for (1) and (3)
networks was 10 and 18%, respectively, while the overlapped
network bias was �30% (Table 1). These results suggest that
the increased bias detected is reflective of the likely increased
reliability in the overlapped network. If this is true, then the
BIOREL analysis of the PPI networks not only supports the
view that the intersection of both datasets is more reliable but
also provides a quantitative estimation of the effect.

Along with biological relevance we evaluated the bias in
PPI data related to sequence similarity or partial similarity
(domains) of interacting proteins. For this reason we repeated
the evaluation with only two knowledge modules: SS and IPD

(a)  α < 0.5 (b)  0.5< α < 2 (c)  α > 2 

E1E2

Figure 1. Statistical model used to generate synthetic data. The edge weight is increasing along horizontal axis and the probability (density) to generate such weight
for relevant (left curve on each plot)/irrelevant (right curve on each plot) association in the synthetic network is shown.
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Figure 2. The bias score (computed by BIOREL) in the synthetic data is plotted
against parametera. The bias score is a proportion of genes in the network with
significantly (P < 0.01) biased associations.
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(see Methods). We found a strong bias in the data. At the
significance level (P < 0.01) the bias score for (1), (3) and
the overlapped network was 5, 10 and 15%, respectively.
These results partially reflect the higher than expected number
of interacting pairs of paralogous proteins in PPI networks
previously reported in (4).

We also investigated whether or not there is a bias that
relates to the length of interacting proteins. For this purpose,
we construct a corresponding reference network. The edge of
the network between two genes was proportional to the rel-
ative difference between the lengths of two corresponding
proteins. Thus, we test the hypothesis that two interacting
genes in PPI data have approximately equal length. There
was no such bias detected in the data.

PPI MS-PCI data

The MS-PCI technology does not directly measure PPIs.
Rather, the protein composition of purified (putative) protein
complexes is determined. Not all proteins involved in a com-
plex necessarily physically interact. Nevertheless, we assume
that there is ‘functional association’ between every pair of
proteins in such a complex. If a complex of 10 proteins is
purified, we suppose that there are 10(10 � 1)/2 ¼ 45 pair-
wise interactions.

We analysed two dataset yielded by MS-PCI technology.
The PPI data from (2) contain information �30 000 pairwise
interactions among �1350 genes (referred to as Gavin). The
PPI data from (5) contain information �30 000 pairwise inter-
actions among �1570 genes (referred to as Ho). We tested the
same spectrum of biases by BIOREL as we did for PPI two
hybrid data. The results are summarized in the Table 2.

The BIOREL results suggest that the bias in MS-PCI data
related to the associations between functionally similar genes
is substantially higher than for PPI two-hybrid data. Therefore,
as expected, the MS-PCI technology is preferable for the iden-
tification of functional relations between genes. At the same
time, we would like to point out to extremely significant
sequence similarity bias related to MS-PCI data and the pres-
ence of slight bias related to the length of sequences of inter-
acting proteins. AASAs been already mentioned this bias
reflects the higher than expected number of interacting pairs
of paralogous proteins in PPI networks (4).

Microarray expression data

Among other high-throughput methodologies microarray tech-
nology became a routine in many laboratories. Many expres-
sion datasets were generated by various microarray platforms.
A number of complex network extracting procedures have
been employed. However, there is no common understanding

of the limitation and reliability of expression data. For
instance, normalization artifacts or unspecific cross-
hybridization effects may cause a systematic bias. The quality
of different publicly available datasets produced by different
generations of microarray chips and by different laboratories
varies considerably. Thus, a systematic evaluation of the rel-
evance and biases of genetic networks extracted from different
expression datasets is an essential need.

In this example, we assessed using BIOREL expression data
from S.cerevisiae generated by different platforms (oligonuc-
leotide, spotted cDNA arrays). An abundance of cDNA data is
publicly available from Stanford Microarray Database (SMD).
We downloaded two datasets (referred to as Gasch and
Spellman) related to studies of (6,7). These datasets were
widely used in studies, which proposed new methods for
extracting gene functional associations from expression
data. The last analysed set (referred to as Causton) was gen-
erated by Affymetrix platform (8).

A variety of methods were proposed to extract gene func-
tional networks from expression data. Most of them consider
gene expression profiles as vectors in multidimensional space
and attempt to explore geometrical relations between them.
The Pearson correlation coefficient reflects the linear statist-
ical relation and reciprocal geometric position in a vector
space between two expression profiles. The correlation matrix
collects such information for all pairs of genes and was a
primary data source used for many network extraction meth-
ods. To benchmark relevance and biases of expression data we
analysed the relevance and biases of information from the
correlation (Pearson) matrix.

For each expression dataset, we apply the same benchmark
procedure. Initially, we preselect four sets of the 1000, 2000,
3000 and 4000 most highly expressed genes (average value
across available measurements). For the selected genes, the
Pearson correlation coefficient was computed. Absolute cor-
relation values <0.5 were considered as insignificant and
ignored. The weight of an edge in the network between two
genes was proportional to the absolute value of correlation
(>0.5).

We estimated the biological relevance of the expression
networks as well as functional bias, which can be attributed
to unspecific cross-hybridization. For this reason, we estim-
ated the network relevance twice by different sets of know-
ledge modules. First, we used FunCat module. Thus, we
evaluated the network bias due to associations between
genes related to the same functional groups. In the second
run, we used sequence similarity and domain (reflects strong
partial sequence similarity) modules only. Therefore, the net-
work bias due to associations between genes sharing strong
sequence similarity was estimated. The bias value can serve as

Table 1. BIOREL evaluation of PPI two hybrid data

Experiment Network bias tested by BIOREL Bias scorea

BIOREL modules Ito Uetz Overlapped, Ito+Uetz

1 Interacting proteins share the same function FunCat module 0.1 0.18 0.30
2 Interacting proteins share sequence similarity

(or partial similarity)
Sequence Similarity and InterPro Domain modules 0.05 0.10 0.15

3 Interacting proteins have the same length Gene length module �0.01b �0.01b �0.01b

aThe bias score is a proportion of genes in the network with significantly (P < 0.01) biased associations.
bThe biases were not found to be significant compared with random networks.

PAGE 5 OF 8 Nucleic Acids Research, 2006, Vol. 34, No. 1 e6



an indicator of unspecific cross-hybridization effects (the
cross-hybridization between probes related to different
genes that share sequence similarity).

The results are summarized in the Table 3. A brief analysis
of the table indicates that the relevance of the gene networks
inferred from Affymetrix expression data with the threshold
0.5 is remarkably higher than the relevance of the gene net-
works inferred from cDNA data with the same threshold value.
At the same time the bias attributed to sequence similarity is
almost equal in all networks however slightly lower for Affy-
metrix data. Therefore, the rate of co-expressed genes which
simultaneously share the same function and strong sequence
similarity is approximately twice as high for cDNA data com-
pared with Affymetrix data. The 2-folds bias clearly points out
that the unspecific cross-hybridization effect is higher for
cDNA platform. The result is easily explained by the technical
differences between two technologies: cDNA chips use full-
length gene transcripts attached to the slide while Affymetrix
use several oligonucleotides. Among many other reasons
that may explain this effect we point out that the conditions
of hybridization (due to the technological differences) for
one probe are more stringent for Affymetrix than for cDNA
platforms.

Gene neighborhood networks

In the next example using BIOREL we estimated the relevance
of gene networks extracted based on gene neighborhood
information for different model organisms. The principle to
construct the neighborhood network was very simple. The
weight of the edge between two genes was inversely propor-
tional to the number of genes separating them physically on
the chromosome. The weight of the edge between two

consecutive genes was set to 1. The weight of the edge
between genes separated only by 1 gene was set to 0.5, by
two genes 0.33 and so on [the edge weight equal to 1/(n + 1),
where n is a number of separating genes]. We estimated the
functional bias of such networks for eight model organisms:
Arabidopsis thaliana, Bacillus subtilis, Helicobacter pylori,
Listeria monocytogenes, Listeria innocua, Thermoplasma
acidophilum, Saccharomyces cerevisiae and Neurospora
crassa. The standard output of the BIOREL system for all
cases is available at the web site (see Examples section).
As it was expected (see Table 4) the functional bias of neigh-
borhood network for bacteria species was much stronger
(�20%) than the functional bias for eukaryotes [4–7%, except
A.thaliana (20%)].

The statistical analyses of categories enriched in the net-
work for bacteria and eukaryotes species reveal the principal
difference in the roots of both effects. The number of cases for
eukaryotes when sequence similarity was only one category,
which explains the associations of genes classified as relevant
was strikingly higher (�80% of cases) than for bacteria spe-
cies (�15–20% of cases) where in most cases (�70% of cases)
the associations were mainly explained by FunCat categories.
Thus, the functional bias of the neighborhood network for
eukaryotes mainly can be attributed to gene duplication events
while for bacteria the neighborhood network bias is accounted
for the operon genome structure as genes within the same
operon does not necessarily share strong sequence similarity
but are involved in the same biological function.

We would like to point out that the functional bias of gene
neighborhood network for bacteria species is less than the
share of genes in the genome expected to be organized in
operon structures (50–80%). The gene neighborhood network
as it was constructed in the example reflects operon structure

Table 3. BIOREL evaluation of expression datasets

Dataset Platform and
number of
measurements

Biological
relevance
(functional bias scorea)

Sequence similarity
bias scorea

Bias scores
ratio

Number of
selected genes

Gasch cDNA, 53 0.24 0.08 3.0 1000
Gasch cDNA, 53 0.21 0.07 3.0 2000
Gasch cDNA, 53 0.18 0.07 2.6 3000
Gasch cDNA, 53 0.19 0.08 2.4 4000
Spellman cDNA, 148 0.16 0.07 2.3 1000
Spellman cDNA, 148 0.20 0.09 2.2 2000
Spellman cDNA, 148 0.18 0.08 2.3 3000
Spellman cDNA, 148 0.17 0.08 2.1 4000
Causton Affy, 45 0.35 0.06 6.0 1000
Causton Affy, 45 0.43 0.06 7.1 2000
Causton Affy, 45 0.52 0.07 7.5 3000
Causton Affy, 45 0.50 0.06 8.3 4000

aThe bias score is a proportion of genes in the network with significantly (P < 0.01) biased associations.

Table 2. BIOREL evaluation of PPI MS-PCI data

Experiment Network bias tested by BIOREL BIOREL modules Bias scorea

Gavin Ho

1 Interacting proteins share the same function FunCat module 0.64 0.29
2 Interacting proteins share sequence similarity

(or partial similarity)
Sequence Similarity and InterPro Domain modules 0.19 0.09

3 Interacting proteins have the same length Gene length module �0.04 �0.02

aThe bias score is a proportion of genes in the network with significantly (P < 0.01) biased associations.
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only partially. For instance, genes at the operon boarders func-
tionally unrelated but are connected in the gene neighborhood
network. On the other hand, functionally related operons are
sometimes separated physically on the chromosome and thus a
lot of relevant edges are absent in the gene neighborhood
network.

BIOREL web server

Using the BIOREL web server (http://mips.gsf.de/proj/biorel),
the typical analysis steps are (i) upload the gene network
structure, (ii) select the knowledge modules that should be
used for bias evaluation and (iii) receive output results.

The BIOREL output file consists of three sections. The first
section contains information on the uploaded network (the
number of genes and nonzero edges). The second section
reports the functional bias of the supplied network at different
significance levels. This information is summarized in a table
and a graph. The third section specifies in the table format the
genes with significantly biased associations in the network
along with the categories, which mostly explain these associ-
ations. Therefore, the user gets systematic information about
the bias of the supplied network. Currently, the BIOREL pro-
vides tools for analysis of eight genomes, including H.pylori,
L.innocua, L.monocytogenes, B.subtilis, T.acidophilum,
A.thaliana, N.crassa and S.cerevisiae. The functional annota-
tion data for these genomes are described in (15,27,32,33).

It has been shown in the above examples that BIOREL
system can help the user in analysis of the genetic network
at least in two ways: it identifies the quantitative value of the
network biological (technical) relevance (biases) as well as
supplies detailed information about functional associations of
each gene (along with functional categories, which play major
role in explanation of gene interactions in the network). It is
obvious that a reliable classification of the genes for any set of
genes submitted to BIOREL analysis is a prerequisite for the
accuracy of the relevance factor.

DISCUSSION

The development of high-throughput technologies has gener-
ated the need for bioinformatics approaches to assess the bio-
logical relevance of gene network structures. Although several
tools have been proposed for analysing the enrichment of
functional categories in a list of genes, none of them is applic-
able for evaluating the biological relevance of any specific
gene network. Such evaluation is related to the analysis of
the functional bias introduced by the gene associations in the

network. Unlike most similar services on the web the BIOREL
is able to analyse not just a list of genes but a network
structure. The weights of the edges in the network may be
either binary or continuous. This essential feature makes our
web tool unique among many similar services.

A systematic way to integrate different and biologically
independent sources of information is particularly useful for
the interpretation of genetic network. It can lead to a better
understanding of the biological nature of the associations in
the network. The examples shown above demonstrate the
potential of BIOREL. As one can see it can be successfully
used for variety of goals and supply statistical basis for inter-
esting biological conclusions.

The BIOREL is the first system on the web, which auto-
matically infers the biological relevance of any genetic net-
work for several model organisms. The potential application of
the BIOREL system ranges from various benchmarking pur-
poses to systematic analysis of the network biology. BIOREL
can be flexibly extended to incorporate any other type of
information relevant for functional interaction such as literat-
ure data, protein complex information and the like.

At the end we would like to summarize that BIOREL can be
used for several goals:

(i) To discover new information and generate new hypotheses
in a completely automated mode. An interpretation of the
hypotheses can provide new knowledge. Examples of such
analyses were considered in the article.

(ii) To guide a high-throughput experiment, as demonstrated by
the PPI data example.
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