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Secundum atrial septal defect (ASD) is one of the most common congenital heart
diseases (CHDs). This study aims to evaluate the feasibility and accuracy of automatic
detection of ASD in children based on color Doppler echocardiographic images using
convolutional neural networks. In this study, we propose a fully automatic detection
system for ASD, which includes three stages. The first stage is used to identify four
target echocardiographic views (that is, the subcostal view focusing on the atrium
septum, the apical four-chamber view, the low parasternal four-chamber view, and the
parasternal short-axis view). These four echocardiographic views are most useful for
the diagnosis of ASD clinically. The second stage aims to segment the target cardiac
structure and detect candidates for ASD. The third stage is to infer the final detection by
utilizing the segmentation and detection results of the second stage. The proposed
ASD detection system was developed and validated using a training set of 4,031
cases containing 370,057 echocardiographic images and an independent test set of
229 cases containing 203,619 images, of which 105 cases with ASD and 124 cases
with intact atrial septum. Experimental results showed that the proposed ASD detection
system achieved accuracy, recall, precision, specificity, and F1 score of 0.8833, 0.8545,
0.8577, 0.9136, and 0.8546, respectively on the image-level averages of the four most
clinically useful echocardiographic views. The proposed system can automatically and
accurately identify ASD, laying a good foundation for the subsequent artificial intelligence
diagnosis of CHDs.

Keywords: artificial intelligence, convolutional neural networks, automatic detection, secundum atrial septal
defect, echocardiogram
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INTRODUCTION

Congenital heart diseases (CHDs) are one of the most common
congenital birth defects. The incidence of CHD is about 0.9%
among the newborns born in China (1). Atrial septal defect
(ASD) is considered to be one of the most common CHDs,
and the estimated prevalence of ASD is 0.88 per 1,000 patients.
The most common type of ASD is the secundum ASD, which
accounts for approximately 80% of ASD (2).Echocardiography is
noninvasive, nonradioactive, and can comprehensively evaluate
the structure and function of the heart and blood vessels, and
is widely used in the diagnosis and treatment of cardiovascular
malformations. In China, because of the large pediatric
population, there is a huge demand for echocardiography
specialists for CHD diagnosis. Echocardiographic diagnosis
relies on the operator to collect video streams from different
perspectives and observe the morphology of organs and tissues
from multiple views. Accurate diagnosis is largely affected by
the operator’s personal technical skills. However, due to the long
training time to be an echocardiography expert, it is difficult to
diagnose CHDs accurately for most of primary hospitals lacking
experienced echocardiography experts. Therefore, there is an
urgent need to develop an automatic diagnostic system based
on echocardiographic analysis that can quickly and accurately
diagnose CHDs and assist echocardiography operators to reduce
misdiagnosis caused by artificial factors.

In recent years, with the development of artificial intelligence
(AI) technology, deep learning methods based on convolutional
neural networks (CNNs) have been applied to various medical
image analysis tasks, including lesion detection, organ
segmentation, and disease diagnosis. Recent studies have
shown that object detection technology can be used to detect
lesions of knee joint (3), thyroid (4), breast (5), pancreas (6), and
other diseases. However, there are very few reports on detection
of abnormal cardiac structures. The U-Net based architecture
has also been widely applied in many segmentation tasks, such as
liver (7, 8), lung (9), tumor segmentation (10, 11), and prostate
(12, 13). U-Net has also attracted many attentions in the field of
ultrasonic images such as segmentation of ovary (14), fetal head
(15), and breast (16). As for CHD diagnosis, it has also been
reported that AI-based automatic auscultation may improve the
accuracy of CHD screening (17). However, the application of
automatic auscultation in the diagnosis of CHD is limited since
it cannot accurately diagnose the type of CHDs, measure the
size of the defect, and, further evaluate hemodynamics (such as
shunt direction).

Advances in the digitization, standardization, and storage of
echocardiograms have led to recent interest in the automatic
interpretation of echocardiograms based on deep learning.
Current research on echocardiographic analysis focused on
detecting abnormal ventricular function and locating ventricular
wall motion (18–20). Nevertheless, existing work of ventricular
segmentation (21), cardiac phase detection (22), ejection fraction
assessment (23), and other tasks still cannot meet the needs of
accurate diagnosis of CHDs. Standard view recognition based on
echocardiography is a prerequisite for clinical diagnosis of heart
diseases. Baumgartner et al. (24) proposed a two-dimensional

CNN containing six convolutional modules, which can recognize
12 standard views of fetal ultrasound with an average accuracy
of 0.69 and an average recall rate of 0.80. Sridar et al. (25)
used the pre-trained AlexNet to identify 14 views of fetuses and
achieved a precision of 0.76 and a recall of 0.75 on average.
Madani et al. (26) and Howard et al. (27) also trained CNN-based
models to classify 15 standard echocardiographic views with
reasonable results. However, these tasks used large networks with
high computational complexity to achieve high performance and
require high-standard hardware configurations, which may not
meet the real-time requirements of CHD diagnosis in practice.
Recent advances on CNNs have also led to rapid progress in
multiple standard view recognition for echocardiography (26,
28, 29), with an overall accuracy of 97 or 98%. However,
these works were for adults and may not be suitable for ASD
detection in children.

In this study, we proposed an automatic ASD detection
system which can perform image-level ASD detection based
on color Doppler echocardiographic images using CNNs. The
proposed automatic ASD detection system consists of four
modules, namely the standard view identification module, the
cardiac anatomy segmentation module, the ASD candidate
detection module and the detection refinement module. In
clinical diagnosis, due to the complexity of the heart structure and
the limitations of two-dimensional echocardiographic scanning
of ASDs, especially posterior inferior border defect detection,
clinicians need to examine the heart from different views.
In addition, some clinical signs can only be observed from
certain views. We used multiple sites (subxiphoid, apical, and
parasternal) and multiple views to simulate the diagnosis by
sonographers in real clinical scenarios instead of using a single
view. The standard view identification module is designed to
identify four clinical meaningful echocardiographic views (that
is, the subcostal view focusing on the atrium septum, the apical
four-chamber view, the low parasternal four-chamber view,
and the parasternal short-axis view) that are most useful for
diagnosing ASD. The cardiac anatomy segmentation module
aims to segment the left atrium (LA) and the right atrium
(RA) from the images of the four target standard views, since
ASD occurs in the septal area between LA and RA. The
ASD candidate detection module finds all ASD candidates, and
finally the detection refinement module applies deterministic
spatial analysis to further refine the ASD detection results
based on the information derived from the output of the
cardiac anatomy segmentation. The proposed ASD detection
system was developed and validated using a training set
of 4,031 cases containing 370,057 echocardiographic images
and an independent test set of 229 cases containing 203,619
images. Experimental results show the proposed system can
automatically and accurately detect ASD, paving the way for the
automatic diagnosis of CHD.

The main contributions of this study include: firstly, to
our knowledge, a fully automatic CNN-based ASD detection
system was proposed for the first time; secondly, we established
a data set consists of a training set of 370,057 images of
4,031 cases and a test set of 203,619 images of 229 cases,
that meets the requirements of ASD clinical diagnosis and is
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the largest dataset reported so far; thirdly, our standard view
identification model has achieved the state of the art recognition
performance with an the average accuracy of 0.9942 and F1
score of 0.9377 for the four target views of ASD diagnosis while
using a small network through knowledge distillation which
meet the real-time requirements of CHD diagnosis in practice;
fourthly, the newly introduced dense dual attention mechanism
in the cardiac anatomy segmentation can improve segmentation
performance by simultaneously aggregating context and location
information; and finally experimental results proved that the
proposed detection refinement module can effectively improve
the detection precision while keep the recall rate basically
unchanged.

MATERIALS AND METHODS

Participants
The subject of this retrospective study is color Doppler
echocardiographic images of pediatric patients undergoing ASD
examination at Shanghai Children’s Medical Center. The time
period for these examinations is from September 2018 to April
2021. These cases include patients diagnosed as positive and
negative. Among them, positive cases were diagnosed as ASD
with a diameter greater than 5 mm, and negative cases were
diagnosed as intact atrial septum.

Data Collection
The study has been approved by the Institutional Review Board of
Shanghai Children’s Medical Center (Approval No. SCMCIRB-
W2021058) and a patient exemption has been applied for. All
patients were examined with echocardiography using Philips
iE33, EPIQ 7C, and GE Vivid E95 ultrasound systems with S5-
1, S8-3, M5Sc, and 6S transducers. Standard imaging techniques
were used for two-dimensional, M-mode, and Color Doppler
echocardiography in accordance with the recommendations of
the American Society of Echocardiography (30). All data used in
this study were randomly selected cases from Shanghai Children’s
Medical Center’s PACS database and these cases were collected
by different doctors on different ultrasound machines. All data
were strictly desensitized to protect patient privacy. The original
data format of echocardiography was DICOM video stored in
the PACS database. In order to facilitate program processing,
DICOM video was divided frame-by-frame into a series of JPEG
images. The human heart is not a static organ, it is constantly
contracting and expanding. ASD size and shunts also vary
with the cardiac cycle. Therefore, we dynamically sample and
collect a series of image frames from different cardiac cycles.
Five junior clinicians were recruited to manually label the data,
including view types, outlines of cardiac structures, and ASD
diagnostic annotations. Diagnosis was made by analyzing the
heart using image segments from different views ( subcostal-,
apex-, parasternal-, and suprasternal views, etc.). All manually
annotated data were further reviewed and confirmed as the gold
standard by two senior clinicians. During systole, diastole, and
torsion of the heartbeat, the position of the atrial septum changes
to some extent. The atrial septum may be blurred (especially in

TABLE 1 | Summary of the training and validation data sets.

Training set Validation set

Number Number Number Number

of cases of images of cases of images

Standard view identification 3,409 247,750 96 102,904

Cardiac anatomy segmentation 237 7,500 101 2,185

Atrial septal defect detection 150 8,355 38 1,363

the subxiphoid view) due to motion artifacts. In this study, images
with motion blur were excluded after expert review.

Training/Validation Dataset
A total of 4,031 cases (370,057 images) were used as the training
set of the standard view recognition module, the cardiac anatomy
segmentation module and the ASD detection module. Since our
training set is large enough to adequately represent the data
distribution, we sample and collect image frames using fewer
cardiac cycles for each case. The dataset was randomly divided
into training and validation sets and selectively annotated as
shown in Table 1. Since the data are collected from a real
clinical practice, the view distribution is basically the same as the
daily diagnosis.

Test Dataset
Additional 105 ASD patients (32 male, median age of 1.80 years)
and 124 normal controls with intact atrial septum (45 male,
median age of 2.09 years) were enrolled as an independent test
data set for the final ASD detection evaluation (Table 2). In order
to thoroughly test the performance of the model, we sampled
and collected image frames with more cardiac cycles for each
case. As a result, a total of 203,619 echocardiography images
were included (92,616 images in the ASD group and 111,003
images in the normal group). Table 2 shows the view distribution
as well as clinical characteristics of the two groups of the test
dataset. According to the recognition results of the standard view
identification module, the data of the four target standard views
were used to evaluate the performance of ASD detection. As
shown in Table 2, there are a total of 40,264 images, including
18,338 images from ASD patients and 21,926 images from a
normal control groups.

Proposed Method
We propose a three-stage ASD detection system, which includes
four modules, namely, standard view identification, cardiac
anatomy segmentation, ASD detection, and detection refinement,
as shown in Figure 1. The first stage is the identification of
standard view module, aiming to extract four target standard
views, namely, the subcostal view focusing on the atrium septum
(subAS), the apical four-chamber view (A4C), the low parasternal
four-chamber view (LPS4C), and the sax-basal view, from frames
of dynamic videos. The second stage includes cardiac anatomy
segmentation and ASD detection modules. The former is to
segment the target cardiac anatomy, and the latter is to detect
candidate ASDs. The input of these two modules is the image
of the target standard view extracted in the first stage. The third
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TABLE 2 | Clinical characteristic and view distribution comparisons between the ASD group and the normal group of the test data set.

ASD group (n = 105) Normal group (n = 124) p-Value/total

Age (years) 1.80 (0.04–14.46) 2.09 (0.11–14.61) p = 0.25

Female/male 73/32 79/45 p = 0.40

Weight (kg) 11.00 (3.45–52.00) 12.50 (4.30–50.00) p = 0.082

Height (cm) 80.00 (45.00–162.00) 90.00 (51.00–152.00) p = 0.073

Size of ASD (mm) 12.1 ± 5.2 /

Associated cardiac conditions PDA (n = 2) Small PDA (n = 3)

VSD (n = 11) VSD (n = 6)

PS (n = 4) Post PDA occlusion (n = 4)

subAS (ASD detection/total) (n) 7,503/8,079 8,498/8,790 16,001/16,869

A4C (ASD detection/total) (n) 2,942/3,078 3,840/4,003 6,782/7,081

LPS4C (ASD detection/total) (n) 4,410/4,798 4,714/5,159 9,124/9,957

Sax-basal (ASD detection/total) (n) 3,483/4,245 4,874/5,689 8,357/9,934

Other (n) 72,416 87,362 159,778

Total (n) 92,616 111,003 203,619

ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patent ductus arteriosus; PS, pulmonary stenosis; subAS, subcostal atrium septum; A4C, apical four-
chamber; LPS4C, low parasternal four-chamber.

FIGURE 1 | The pipeline of the proposed automatic ASD detection system. In practice, the two stages of cardiac anatomy segmentation and atrial septal defect
candidate detection can be run in parallel.

stage is the detection refinement module, which combines the
results of the second stage to obtain refined detection results.

Standard View Identification
Standard echocardiographic view recognition is a prerequisite
for clinical diagnosis of heart disease. Our standard view
identification model is based on our previous work (31), where
we recognized 24 classes of standard views with high accuracy.
Since the purpose of this study is to detect ASD, we only focus
on four target views (i.e., subAS, A4C, LPS4C, and sax-basal)
and refer to all other views as “other.” As shown in Figure 2,
a knowledge distillation (32) method was applied to train the
standard view identification model, in which we applied ResNet-
34 (33) as the student model and ResNeSt-200 (34) as the teacher
model. We first trained a ResNeSt-200 network with a large
amount of parameters, and then transferred the “knowledge” to
a ResNet-34 network with a small amount of parameters through
knowledge distillation. By minimizing the Kullback–Leibler
divergence between the probability distributions of teacher
and student models, knowledge transfer was achieved through
joint training. During the training process, data augmentation
methods were also applied, including horizontal random flip,
vertical random flip, and polar coordinate rotation. It needs

to be noted that the teacher model was only used during the
training phase, and the small student model ResNet34 was
used for inference.

Cardiac Anatomy Segmentation
This module is designed to segment the LA and the RA
from the images of the four target standard views. As shown
in Figure 3, a new encoder-decoder network called Dense
Dual Attention U-Net is proposed as the atrium segmentor.
The encoder gradually extracts features from the input image
to obtain a high-dimensional representation of the image.
The decoder reconstructs the image according to the high
dimensional feature representation, and then outputs the
segmentation mask. Jumping out of the tradition of U-Net
(35), the hierarchical output features of the encoder are input
to the decoder one by one through the “skip connection”
mechanism for feature fusion. The convolutional layers of Dense
Dual Attention U-Net adopts “dense connection” (36), and
the encoder also uses “dual attention” (37), which are spatial-
based and channel-based attentions, respectively. The dense
dual attention mechanism introduced in the U-Net architecture
can improve segmentation performance by simultaneously
aggregating context and location information.
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FIGURE 2 | Standard view identification through knowledge distillation. The pre-training teacher–student based on KL (Kullback–Leibler) loss realizes knowledge
transfer through joint training. Then the student is fine-tuned on training data based on CE (cross entropy) loss to complete the training process of knowledge
distillation.

FIGURE 3 | Dense Dual Attention U-Net based segmentor for cardiac anatomy segmentation. The second, third, and fourth layers of the encoder apply the dense
blocks, containing 2, 4, and 8 dense layers, respectively, with a growth rate of 32. The dual attention module includes a position attention module and a channel
attention module, respectively. The two modules process the input in parallel, and the two outputs are fused by addition.

Atrial Septal Defect Candidate Detection
This module aims to detect ASD candidates from the images
of the four target standard views and mark the detected
ASD candidates with confidence values. In this study, a fully
convolutional single-stage object detector, known as FCOS (38)
is applied as the ASD detector. As shown in Figure 4, FCOS
has two output heads. The classification head outputs the class

probability of the detected ASD candidate, i.e., the confidence
of the detected ASD candidate, and the regression head outputs
the coordinates of the candidate ASD area. The size of ASD
varies greatly. The detection of large ASD relies on a large
receptive field while the detection of small ASD relies on a high-
resolution feature map. The feature pyramid network (FPN) (39)
module in FCOS can handle this problem. In addition, FCOS
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FIGURE 4 | FCOS detector for atrial septal defects. FCOS consists of three parts, including the backbone (CNN), neck (FPN), task-special heads (classification,
centerness, and regression).

has achieved a good balance between detection accuracy and
computational complexity, meeting the real-time requirements of
the proposed system.

Detection Refinement
The basic rule of ASD diagnosis is that ASD occurs in the septum
area between LA and RA. Theoretically, the ASD candidates
detected by the FCOS detector may appear in any area of the
image. Therefore, detection refinement is necessary to filtered
out false positives detected. Based on the outputs of the cardiac
anatomy segmentation, the septum area can be extracted through
deterministic spatial analysis. More specifically, we first need
to find the smallest convex hull of LA and RA, and then the
difference between the convex hull and the area of LA and RA is
the septum area. As shown in Figure 5, considering the decision
margin, morphological dilation techniques can be used to expand
the septum area. Finally, ASD candidates detected outside the
septum area are regarded as false positives and filtered, as shown
in Figure 6.

Environment Configuration
All codes were implemented using Python 3.7 and Pytorch 1.4.0.
The experiment was conducted on a workstation platform with
8 NVIDIA TITANRTX GPUs, 24 GB GPU memory, 256 G
RAM, and 80 Intel(R) Xeon(R) Gold 6248 CPU @ 2.50 GHz,
using Ubuntu 16.04.

RESULTS

Performance Evaluation
We use Accuracy, Recall, Precision, Specificity, and F1 Score
to evaluate the performance of view identification and ASD

detection and apply Dice Similarity Coefficient (DSC) as
the performance evaluation metric for cardiac anatomical
segmentation. They are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Recall = Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

F1 Score = 2 ×
Precision × Recall
Precision+ Recall

(5)

DSC =
2 × |A ∩ B|
|A| + |B|

(6)

Among them, TP, FP, TN, and FN are the counts of true positive,
false positive, true negative, and false negative, respectively.
TP and TN represent the positives and negatives of correct
predictions with respect to the ground truth. FP and FN represent
positives and negatives of incorrect predictions with respect to
the ground truth. F1 score is the harmonic average of Precision
and Recall with a value ranged in (0–1). The higher value, the
better the model performance. A is defined as the ground truth
area, and B is defined as the segmented area.

The receiver operating characteristic (ROC) curve is plotted
by using 1-Specificity as the X-axis and Sensitivity as the Y-axis.
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FIGURE 5 | Atrial septal region extraction. (A) Segmented left and right atria, (B) convex hull embracing segmented left and right atria, (C) region differences
between (A) and (B), (D) morphologically dilated atrial septum.

FIGURE 6 | Atrial septal defect detection refinement. (A) Input image with a target view, (B) detected ASD candidates, (C) segmentation result of cardiac anatomy,
(D) extraction of atrial septal region based on (C), (E) final refined result of ASD detection.
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TABLE 3 | Performance results of standard view identification.

View Accuracy Recall Precision Specificity F1 score

subAS (95% CI) 0.9965 (0.9962–0.9969) 0.9485 (0.9452–0.9519) 0.9985 (0.9979–0.9991) 0.9999 (0.9998–0.9999) 0.9729 (0.9729–0.9729)

A4C (95% CI) 0.9975 (0.9972–0.9978) 0.9444 (0.9391–0.9497) 0.9788 (0.9754–0.9822) 0.9993 (0.9991–0.9994) 0.9613 (0.9613–0.9613)

LPS4C (95% CI) 0.9908 (0.9902–0.9914) 0.9163 (0.9109–0.9218) 0.8971 (0.8912–0.9031) 0.9946 (0.9943–0.9949) 0.9066 (0.9066–0.9067)

Sax-basal (95% CI) 0.9919 (0.9913–0.9924) 0.8413 (0.8341–0.8484) 0.9908 (0.9887–0.9928) 0.9996 (0.9995–0.9997) 0.9099 (0.9099–0.9099)

Mean 0.9942 0.9126 0.9663 0.9983 0.9377

subAS, subcostal atrium septum; A4C, apical four-chamber; LPS4C, low parasternal four-chamber.

The area under the curve (AUC) is calculated based on the
trapezoidal method to measure the detection performance. The
best confidence cut-off point is determined according to the
Youden Index defined as follows:

Youden Index = Sensitivity + Specificit − 1 (7)

Performance of Standard View
Identification
The performance of the standard view recognition was evaluated
on 203,619 echocardiographic images in the test data set. As
shown in Table 3, our standard view identification model
achieved excellent performance. For the four target views (i.e.,
subAS, A4C, LPS4C, and PSAX), the averages of accuracy, recall,
precision, specificity, and F1 score were 0.9942, 0.9126, 0.9663,
0.9983, and 0.9377, respectively. The parameters of our model
are about 21.3 M, which is less than 1/3 of the parameters
of the teacher ResNeSt-200 model (approximately 70.2 M). In
terms of computational complexity, the FLOPs of our model is
about 3.7 G, which is only 1/5 of the FLOPs of ResNeSt-200
(about 13.48 G). Through knowledge distillation, it significantly
reduced the computational cost while maintained the precision
of network classification.

Performance of Cardiac Anatomy
Segmentation
The performance of the cardiac anatomical segmentation was
evaluated on 101 cases with 2,185 echocardiographic images
in the validation data set. In this study, we categorized the
verification data into four groups. More specifically, data
containing only LA and RA was considered as A2C; data
containing LA, RA, left ventricle, and right ventricle was regarded
as A2C-V2C; data containing atrium and left ventricle was
classified as A2C-LV; and data containing LA, RA, and right
ventricle was categorized as A2C-RV. The number distribution
of each group and the corresponding segmentation results were
shown in Table 4, where we only focused on the segmentation
results of the LA and the RA. Table 5 also demonstrated
the ablation experimental results of the proposed Dense Dual
Attention U-Net, which incorporated two additional modules,
namely the Dense block and the Dual Attention modules. As
shown in Table 5, both the Dense block and the Dual Attention
had positive impacts on the segmentation performance of the
U-Net. Figure 7 also demonstrated some of the example results
of cardiac anatomical segmentation with high, medium and
low performance.

Performance of Atrial Septal Defect
Detection
The ROC Curve of the ASD detection model on the four target
echocardiographic views was illustrated in Figure 8. The AUC
of subAS was the highest, reaching 0.8965, and the AUCs of
the other three views were roughly at the same level, indicating
that the model had a stronger ASD detection ability in the view
of subAS. In this study, the optimal cut-point was determined
by calculating the maximum value of Youden Index. According
to the analysis of AUC curves, the optimal cut-point was 0.95.
Therefore, cases that are not detected or have a confidence level
lower than 0.95 were considered as negatives and cases with
a confidence level greater than or equal to 0.95 were regarded
as positives. Figure 9 also showed example successful and
failure cases of ASD detection. The ASD detection performances
of before and after the detection refinement were compared
in Table 6. The average values of Accuracy, Recall, Precision,
Specificity, and F1 Score for image-level ASD detection before

TABLE 4 | Performance results of cardiac anatomy segmentation.

Number of
images

Left atrium
(DSC)

Right atrium
(DSC)

Mean
(DSC)

A2C 993 0.8960 0.9089 0.9025

A2C-V2C 731 0.8987 0.9239 0.9113

A2C-LV 31 0.8908 0.8816 0.8862

A2C-RV 430 0.8638 0.9171 0.8905

Total/mean 2,185 0.8873 0.9079 0.8976

A2C, image containing left and right atria only; A2C-V2C, image containing left
and right atria and left and right ventricles; A2C-LV, image containing left and right
atria and only left ventricle; A2C-RV, image containing left and right atria and only
right ventricle.

TABLE 5 | Performance of U-Net with different modules.

U-Net U-Net w/dense
block

U-Net w/dual
attention

Dense dual
attention U-Net

A2C 0.8860 0.8969 0.8973 0.9025

A2C-V2C 0.8889 0.9044 0.9018 0.9113

A2C-LV 0.8814 0.8837 0.8716 0.8862

A2C-RV 0.8548 0.8932 0.8705 0.8905

Mean 0.8778 0.8945 0.8853 0.8976

A2C, image containing left and right atria only; A2C-V2C, image containing left and
right atria and left and right ventricles; A2C-LV, image containing left and right atria
and only left ventricle; A2C-RV, image containing left and right atria and only right
ventricle.
Numbers in bold font indicate better performance in each category.
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FIGURE 7 | Example segmentation results of cardiac anatomy. (A) High precision segmentation of DSC 0.9517; (B) medium precision segmentation of DSC 0.9115;
(C) poor segmentation performance of DSC 0.7347.

FIGURE 8 | Receiver operating characteristic curves of ASD detection on four target echocardiographic views.

the detection refinement were 0.8699, 0.8608, 0.8208, 0.8744,
and 0.8397, respectively, while the average values of Accuracy,
Recall, Precision, Specificity, and F1 Score for image-level ASD
detection after the detection refinement were 0.8833, 0.8545,
0.8577, 0.9136, and 0.8546, respectively. It can be seen that
Accuracy, Precision, Specificity, and F1 Score have increased by
1.34, 3.69, 3.92, and 1.49%, respectively, while the recall rate

has been reduced by only 0.63%. The p-values of the t-test
indicated statistically significant differences in ASD detection
before and after the refinement module for all performance
metrics in all other views except the LPS4C view. As for view
LPS4C, the differences in ASD detection before and after the
refinement module were statistically significant in terms of recall,
precision, and specificity, but not in terms of accuracy and F1
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FIGURE 9 | Examples of success and failure cases. (A) ASD detected in the subAS view: bright red shows the transeptal flow with left-to-right shunt, (B) ASD
detected in the A4C view: dark red in the center of the atrial septum indicates the occurrence of left-to-right shunt flow, (C) ASD detected in the LPS4C view: blue
regions represent the transeptal flow with right-to-left shunt, (D) ASD detected in the PSAX view: bright red shows the transeptal flow with left-to-right shunt.
(E) ASD detection of false positive, due to the confusion of similar structures and the failure of the cardiac anatomy segmentation stage; (F) ASD detection of true
negative, due to the low confidence (0.9432 < 0.95).

score. In addition, a preliminary case-level study has also been
conducted where a threshold of 0.6 was used based on a prior
from experienced physicians. As shown in Table 6, the average
values of Accuracy, Recall, Precision, Specificity, and F1 Score
for case-level ASD detection before the detection refinement were
0.9888, 0.8381, 0.8786, 0.9214, and 0.9072, respectively, while the
average values of Accuracy, Recall, Precision, Specificity, and F1
Score for case-level ASD detection after the detection refinement
were 0.9897, 0.9143, 0.9318, 0.9563, and 0.9505, respectively.
A thorough grid-search based approach can be performed to
find the optimal threshold in future studies when larger test
sets are available.

DISCUSSION

In this study, we proposed a CNN-based ASD detection system,
which consists of three stages. In the first stage, four target
standard views are extracted from the echocardiographic video
frames. In the second stage, the cardiac anatomy and ASD
candidates are obtained, separately. Finally, the third stage
combines the two results of the second stage to refine and obtain
the final ASD detection result. In practice, the cardiac anatomy
segmentation and ASD candidate detection in the second stage
can be run in parallel to meet the real-time requirements of CHD
diagnosis. In our study, the floating point operations per second
(FLOPs) of the ResNet-34 standard view identification module,
the Dense Dual Attention U-Net, and the FCOS ASD detector
were about 3.7 G, 130.28, and 219.25 G, respectively.

The proposed ASD detection system was developed using a
training set of 4,031 cases containing 370,057 echocardiograms.
The experimental results on an independent test set of 229 cases
showed that the proposed system can accurately identify ASD in
color Doppler echocardiographic images, which provides a good
preparation for subsequent AI-based CHD diagnosis. Ideally, we
should conduct additional ablation studies on the impact of each
module on the final ASD detection. However, currently, due to
the huge cost of data labeling, currently, our independent test
data only has ASD labels for each image without segmentation
ground truth. Therefore, we take this as one of the limitations
and future work. As for the standard view identification module,
since the overall accuracy of 0.9942 is high enough, the impact of
failure cases of this module should be negligible.

Based on our clinical experience, small defects may close
spontaneously in childhood, while large defects may cause
hemodynamic abnormalities and clinical symptoms if they are
not repaired in time. In addition, the hemodynamics of long-
term left-to-right shunt significantly increase the possibility of
late clinical complications, including functional decline, atrial
arrhythmia, and pulmonary hypertension. Therefore, in this
study, we have selected cases with a defect size of more than
5 mm as our research object. Theses cases may have abnormal
hemodynamics and require surgery or transcatheter closure.

The F1 Score of ASD detection for images of the A4C
view is relatively low compared to images of the other three
views. Atrial septum is a relatively thin structure, especially in
the fossa ovalis area. According to clinical expertise, subcostal,
and the parasternal views are particularly useful for ASD
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diagnosis, because in these views, the septum is aligned almost
perpendicular to the ultrasound beam. The thin area of the
atrial septum and the color shunt flow can be particularly well
resolved in these views. On the other hand, because the atrial
septum is aligned parallel to the ultrasound beam in the A4C
view, it is challenging to diagnose ASD with certainty in this
view. Therefore, our experimental results are consistent with
clinical practice.

Our model was trained and tested based on the Asian children.
Although there is no literature evidence for differences in ASD by
ethnicity, we may evaluate our model performance of different
ethnic groups as one of the possible future studies. The acoustic
window degenerates with age, especially in the subcostal view. It
is not clear whether the proposed method can detect small ASD
in adults, which will be further explored in future studies.

In our study, we found that ASD shunt blood flow was
not present in every frame of the cardiac cycle due to the
contraction, relaxation and torsion of the heartbeat. Image-level
detection is the basis for case-level diagnosis. This research was
the first attempt to identify ASD in children at the image level.
A preliminary case-level study has also been conducted where
a threshold of 0.6 was used based on a prior from experienced
physicians. A thorough grid-search based approach can be
performed to find the optimal threshold value in future studies
when larger test sets are available. In addition, future research
may also be to discover hidden patterns embedded in the cardiac
cycle and to design case-level diagnostic models for ASD. It is well
known that echocardiography cannot avoid the influence of color
noise and the system performance largely depends on the quality
of the original images. How to integrate the proposed system into
the actual clinical diagnosis of ASD will be another direction of
future research.
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