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Abstract

A deterministic population dynamics model involving birth and death for a two-species sys-
tem, comprising a wild-type and more resistant species competing via logistic growth, is
subjected to two distinct stress environments designed to mimic those that would typically
be induced by temporal variation in the concentration of a drug (antibiotic or chemothera-
peutic) as it permeates through the population and is progressively degraded. Different
treatment regimes, involving single or periodical doses, are evaluated in terms of the mini-
mal population size (a measure of the extinction probability), and the population composition
(a measure of the selection pressure for resistance or tolerance during the treatment). We
show that there exist timescales over which the low-stress regime is as effective as the
high-stress regime, due to the competition between the two species. For multiple periodic
treatments, competition can ensure that the minimal population size is attained during the
first pulse when the high-stress regime is short, which implies that a single short pulse can
be more effective than a more protracted regime. Our results suggest that when the duration
of the high-stress environment is restricted, a treatment with one or multiple shorter pulses
can produce better outcomes than a single long treatment. If ecological competition is to be
exploited for treatments, it is crucial to determine these timescales, and estimate for the min-
imal population threshold that suffices for extinction. These parameters can be quantified by
experiment.

Author summary

The possibilities of lower antibiotic dosages and treatment times, as demanded by antibi-
otic stewardship programmes have been investigated with complex mathematical models
to account for, for example, the presence of an immune host. At the same time, microbial
experiments are getting better at mimicking real setups, such as those where the drug
gradually permeates in and out of the region with the infectious population. Our work sys-
tematically discusses an extremely simple and thus conceptually easy model for an infec-
tious two species system (one wild-type and one more resistant population), interacting
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via logistic growth, subject to low and high stress environments. In this model, well-
defined timescales exist during which the low stress environment is as efficient in reduc-
ing the population as the high stress environment. We explain which temporal patterns of
low and high stress, corresponding to sequences of drug treatments, lead to the best popu-
lation reduction for a variety of durations of high stress within a constant long low stress
environment. The complexity of the spectrum of best treatments merits further experi-
mental investigation, which could help clarify the relevant timescales. This could then give
useful feedback towards the more complex models of the medical community.

Introduction

Despite recent searches for new classes of antibiotics, based on efficient screening of uncul-
tured bacteria (or genomes) [1, 2], the decline in the rate of development of new types of anti-
biotic classes since the 1960s, and the concurring increase in drug-resistant organisms, is
disconcerting [3, 4]. Growing fears that the world may be re-entering the ‘prebiotic era’ [5] has
prompted the World Health Organisation to publish a global action plan in 2015.

This plan explicitly underlines the importance of optimising current treatment strategies.
This encompasses, for example, avoidance of the unwarranted prescription of antibiotics [6],
since their use confers a selective advantage on the resistant variant. Practices include the use
of redundant broad-spectrum antibiotics, or longer treatment durations than required to elim-
inate the infection [7, 8]. The optimal duration and intensity of treatments, with antibiotics or
drugs in general, are subjects of controversial debates, particularly for cases where one already
expects a mutant to be present initially [9, 10]. Of course, the ideal treatment should resolve
the tension between reducing the advantage enjoyed by the resistant bacteria by preserving the
other bacteria in the biome—best achieved by short, mild or specific application of antibiotics
—and conclusively eliminating the infection—best attained by long-term application of high
doses of antibiotics of assured effect [11].

In this work, we compare antibiotic treatments, which we refer to as pulses or pulse
sequences, with respect to their efficiency in reducing the population size of an infectious two-
species population, consisting of one wild-type and one more resistant species. In our model,
treatments with the same concentration profile and treatment length, but different numbers of
pulses, are compared with each other, e.g. two shorter pulses compared to one longer one. A
pulse sequence imposes different patterns of high or low stress on the bacteria, mimicking the
gradual infiltration of the infection site and the slow degradation of the drug. Such environ-
mental changes between high and low stress environments have previously been studied in the
context of phenotypically heterogeneous populations [12]. Much theoretical work has investi-
gated whether and how phenotypic switching can optimise the long-term fitness of the species
under periodic or stochastic environmental variation [13-18]. We focus on reducing the size
of a population in which the phenotypic switching rates are irrelevant apart from determining
the initial composition of the population prior to treatment.

Exploiting competition between species to reduce the evolution of
resistance?

To quantify pulse efficiency, we primarily study the minimal population size #,,;, of our two-
species system as a proxy for the extinction probability of the population. Antibiotic steward-
ship programmes suggest that for some diseases, such as pneumonia, the immune system can
clear the residual infection once the bacterial population size is sufficiently reduced [19, 20].
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Thus, the minimal population size may be a more relevant parameter than the exact extinction
probability itself. Additionally, the general behaviour of the deterministic system and its
observable #,,;, is more robust than the extinction probability in the stochastic model, as in
the latter, the precise form of stochastic noise, or the system size, would be important. The
total population minimum #,,;,, can still serve to gauge the latter, which scales as exp(#,,;)
[21].

Before introducing our model in detail, we jump ahead and summarise the essential result
of our work in Fig 1, which we discuss later in more detail. Fig 1 shows the value of the mini-
mal total population size in the configuration space of drug concentration profiles, spanned by
the width of the pulse (or duration of its high stress environment) on the x-axis and the form
of the pulse on the y-axis, which will be explained later. Practically, these two properties of a
pulse—its high stress duration and its form—are likely constrained: a very long duration of the
high stress environment or stronger drug might be detrimental for patients due to, for exam-
ple, a destructive impact on the gut microbiome [22, 23]. Similarly, some pulse forms, such as
those where the highest possible drug concentration suddenly drops to zero at the pathogen
location at the end of the pulse (here denoted by temporal skewness s = 1), may not be realistic
for clinical treatments. However, since we do not want to make any assumptions on which
parts of the configuration space should be accessible, we examine our system for all possible
combinations of pulse form and durations of the high stress environments.

The colour code (symbols) signifies which of the four possible pulse sequences sketched on
the right of Fig 1 most effectively reduces the population size. Fig 1 clearly shows that in our
simple model setup, different pulse sequences are favourable in different regions of configura-
tion space. The aim of this work is to outline phenomenologically which pulse sequence yields
the lowest minimal population for which part of configuration space in Fig 1, and might there-
fore be most likely to drive the species to extinction. The best pulse sequence at any one point
of Fig 1 tends to be the one that maximally exploits the competition between the more resistant
and wild-type species, represented by logistic growth in our model. The simplicity of our
approach makes explicit why some references might argue for more moderate treatments
involving e. g. shorter or lower drug concentrations, but also what the limitation of models
and observables are and hence why such moderate treatments may not work in real setups. We
also examine how the population composition (a measure of how strongly the more resistant
species dominates the population) evolves, should such a pulse sequence not lead to achieving
extinction. Finally, we highlight the need for microbial experiments in such temporally varying
drug gradients, in order to evaluate the applicability of simple models to real systems.

Materials and methods
Deterministic model for two-species birth-death process

The simplest model that can be used to study the effect of the temporal concentration profile
on a heterogeneous population (1) consists of two phenotypically different species, a suscepti-
ble “wild type” species (w), and a more tolerant or resistant species (). Its increased resistance
comes at the cost of a reduced fitness in the drug-free environment, which is reflected in a
smaller growth rate. As in previous works [24, 25], we assume that the drug is bacteriostatic,
that is, it only affects growth, such that growth of each species ceases as soon as its minimum
inhibitory concentration (MIC) is exceeded.

Thus, in this deterministic population dynamics model for the birth-death process,
sketched in the inset of Fig 2, the growth rate of each species 17 € {r, w} is given by ¢,(¢, n(t)) =
O[MIC,, — c()]A, (1 — n(1)), where n(t) = w(t) + r(t) is the total number of species at time ¢
expressed in terms of a carrying capacity, which does not require specification as it serves
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Fig 1. Comparison of the lowest population minimum n,;;, for drug treatment sequences of constant
overall duration 7 = 60 providing the same total exposure to high stress t,and low stress -,
distributed over different numbers of identically-shaped pulses N. Parameters 7 and t, (x-axis), both
given in units of growth rate, together with the skewness s, describing how t,is positioned within z, (y-axis),
determine a drug pulse (sketched on the right). The colour code signifies the optimal N-pulse sequence for a
certain choice of parameters f,and s, and the shade indicates the value of the n,;,. The coloured lines mark
the skewnesses that give local minima for fixed ¢, corresponding to an optimal onset time for the respective
number of pulses. In the non-blue regions a sequence of pulses is more effective than a single pulse, either
because onset times are closer to the optimum value for higher number of pulses compared to one pulse (top
left corner) or because the minimum n, is reached in the last pulse of every sequence (bottom right corner;
region surrounded by the black line).

https://doi.org/10.1371/journal.pcbi.1005747.9001

merely as a unit for the population size. The Heaviside-Theta step function © implies that the
growth rate is only non-zero when the drug concentration is lower than the MIC of the corre-
sponding species. The index 17 € {r, w} refers to the type of species (resistant or wild-type), and
Ay is its growth rate. The more resistant species has a lower basal growth rate in the drug-free
environment, i.e., A, = A,, — ki= A — k, where k > 0 can be interpreted as a cost that the resistant
species incurs for being more resistant. The logistic growth assumed in this model introduces
competition between the wild-type and the resistant species for limited space and/or resources,
and places an upper bound on the population size. We also include a constant death rate & for
both species, meaning that a species decays at rate § when c(¢)>MIC,: For these higher concen-
trations, growth of species 7 is inhibited and, since switching is negligible, the species can only
die. All rates and times in this work are given in units of A.

The time evolution of the population can be studied in terms of the differential equations

w(t) = [0, (t,n(t)) — 6 — u,Jw(t) + p,r(t)

2(f) = (1)
7(6) = u,w(t) + [¢,(t,n(t)) — 6 — p]r(?)

since for sufficiently large populations stochastic fluctuations can be neglected. The two
species are coupled via the competition from logistic growth, as well as via the switching rates
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Fig 2. Top: Inset: Schematic of the two-species model: wild-type wand resistant rgrow logistically at rates A,
or A, decay at rate o and switch between states at rates u,, or u,, respectively. Main figure: Time-dependent
antibiotic pulse shape with the three parameters 7, t,, and the skewness s as before. During f, the antibiotic
concentration ¢(f) > MIC, of the more resistant species ((high) environment), while during the entire treatment
duration , ¢(f) > MIC,, ((low) and (high) environment). Initially, the system is in the stress-free environment
(free). Bottom: Dynamical landscapes in population phase space corresponding to these three different
environments in antibiotic concentration: (high) environment, with one attractive fixed point (red dot) at n=0;
(low) environment, with a saddle point at n= 0 and an attractive fixed point on the r axis; (free) environment:
with unstable fixed point at n = 0 and stable fixed point close to the waxis, (W{;., /), Which we use as the

(free)
initial configuration.

https://doi.org/10.1371/journal.pcbi.1005747.9002

Uy and p,. Phenotypically more resistant states can be characterised by a reduced growth rate,
or complete growth arrest, often known as tolerance or persistence [26-28] (for a recent
review, see Ref. [29]). Provided that y,, , < &, which is the case for both mutation and pheno-
typic switching, our choice of p,, = 107° A and , = 0 does not qualitatively affect the results.

For this entire work, we used exemplary values of § = 0.1A and k = 0.1A, where L =1, i. e.
we used A as the basic unit of time. We investigate several other combinations of costs and
death rates, in particular combinations with the same death rate, but a smaller and larger cost,
in S1 Text. There, we show that our results and general statements are still valid for these cases.
We chose the values of 6 = 0.1 and k = 0.1 since this combination allowed us to show the com-
plete and most general picture of possible best pulse shapes in Fig 1. A smaller (yet also biologi-
cally possible) fitness cost would not have contained all different scenarios. We ask the reader
to refer to S1 Text for more details.
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Antibiotic pulse form determined by skewness and pulse width

Since in our model the only relevant information about the antibiotic concentration is whether
it is above or below the MIC of the corresponding species, any pulse sequence is fully deter-
mined by the temporal arrangement of low-stress (low) and high-stress (high) environments.
In these (low) and (high) environments, the antibiotic concentration is low, MIC,, < ¢(t) <
MIC,, or high, c(t) > MIC,, respectively (sketched for a single pulse in the top panel of Fig 2).
Before the pulse sequence, the system is in the drug-free environment (free), where the concen-
tration of the antibiotic c(t) is less than either MIC, c(t) < MIC,, . We assume that the (free)
environment appears only before, but not during, a pulse sequence. Thus, the (free) environ-
ment determines the initial condition of the population, which we take to be at its fixed point,
(w(t = 0),7(t =0)) = (W(s,): ") )» Shown as the purple dot near the w-axis of the phase
space panel (free) of Fig 2.

The change in population size and composition in each of these environments is character-
ised by the flow field in phase space (w, r), shown in the three lower panels of Fig 2. In the
(low) environment, the population flows towards the more resistant species (high r and low
w), while in the (high) environment, it flows towards the origin, meaning that both species die
out exponentially.

Thus, the effect of a single pulse on the population crucially depends on the times spent by
the system in the (low) and (high) environments. A single pulse involves a single (connected)
environment of (high) antibiotic exposure, with (Jow) environment potentially preceding or
succeeding this (high) environment. In reality, the duration of these (low) environments will
depend on the experimental setup or host. A pulse sequence is composed of a succession of
identical single pulses. We refer to the total time of the pulse as 7, and the time during which
the system is in the (high) environment as t,. The time periods during which the system is in
the (low) environment (initially) before ¢, and (finally) after ¢, are denoted by ¢! and %),
respectively. As this would overparameterise the pulse, we combine the latter two time scales
into a skewness parameter s = (¢l — t9)) /(1 — t ), signifying how t, is positioned within .
Skewness s = — 1 (s = 1) thus denotes a pulse which starts (ends) with the (high) environment,
while skewness s = 0 denotes a symmetric pulse.

Results
Minimal population

We compared pulse sequences of up to N = 4 pulses (same ¢, and s) for constant treatment
time 7 for all possible skewnesses s and durations ¢,. Thus, a single pulse with 7= 60 and
given t, and s is compared with a sequence of N identical pulses, each defined by 7 = 60/N
and tV) =t /N and s. (Further values of 7 are discussed in S1 Text). The retention of the
same skewness within a sequence is motivated by the fact that we assume that the rate of
increase or decrease in concentration is primarily determined by the host system of the bacte-
ria. In this comparison, the ‘best’ pulse sequence for given (t,, s) is defined as the one that
yields the lowest population minimum #,,;, and so has the highest likelihood of eliminating
the pathogen. In situations where the entire configuration space is accessible, the maximal ¢,
yields the overall lowest population minimum, independent of skewness s. Since practically
the maximal duration ¢, acceptable for treatments may be limited, it is important to know
which pulse sequence is best for each (¢,, s), such that we can provide intuition on any situa-
tion and parameter choice that may arise. The colour (and corresponding symbols) in Fig 1
show the best pulse sequences (i.e. the best N), and the shade indicates the value of n,;, (dark
denotes high values).
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We found that a single pulse is most effective over a large range of parameters (blue in Fig
1). In particular, for each duration in the (high) environment t,, the lowest minimum across all
skewnesses is obtained by a single pulse (blue line). This means that in practical situations
which allow all different pulse skewnesses, a single pulse with a skewness on the blue line
would give the lowest minimum. If, however, the possible pulse skewness is limited due to the
host setup, a single pulse may not be the best choice. For ease of comparison, Fig 3 a shows
Nmin fOr just a single pulse of constant treatment time 7 = 60, with the white line marking the
lowest minimum (the blue line in Fig 1). In the next paragraph we focus on a single pulse in
order to understand which pulse parameters (s, t,) yield this lowest minimum.

Optimal 7\ determines lowest possible population minimum. We found that this low-
est minimum always occurs for pulses with a constant initial time in the (low) environment,

£, which we refer to as t, = ¢

w,optimal*

Fig 3b-3d depict the behaviour of the total population in
the (low) and (high) environment, with the (high) environment marked by the light red back-
ground. For along t?, i.e. a late onset of the (high) environment, the dynamics of the total pop-
ulation n(t) (black) and the more resistant species r(t) (red) are shown in Fig 3b. Initially n(#)
decays exponentially, as the dominating wild-type species dies off. Due to the competition for
resources, modelled by logistic growth, r can grow appreciably only once w is sufficiently
small. If £/ is long enough, r grows up to the fixed point of the (low) environment (see flow in
Fig 2). In order to avoid the regrowth of the population, which is then dominated by r, the
(high) environment should be initiated at the time where r starts dominating and #» is minimal

(Fig 3c). This optimal t, = 1 depends on the system parameters, and corresponds to

w,optimal

t, == 15 for our choice of parameters.

a) 1

o
3

o
=)

skewness s

1
o
3

10 40 50 60

\ A

Fig 3. Which value of s gives the lowest population minimum for fixed £,? a) Lowest population
minimum np, for a single pulse with constant = = 60 for all possible pulse shape parameters t,and s. The
optimal skewness s, = 2t,/(r — t) — 1 which gives the smallest n,;, for each t,is marked in white, while the gray
(dashed) line marks the skewness 1 — 2t /(t — t,), where nmin has dropped to its smallest value across t,.
The constant contours (dotted lines) serve as guides to the eye. b-d) Explaining t, (c, cf. b) and t™™ (d), the
timescales for which the (high) environment is not more effective than the (low) environment. In b) ) is longer
than t,: the population (black) starts growing during the (low) environment, even though the wild type (blue
dotted) decays, as the more resistant species (red) is not affected by the antibiotic. In ¢), t) = t, and so the
total population keeps decaying. d) If t) =t and the pulse ends there, a minimal nis achieved, while for

t) > tinal n grows again.

https://doi.org/10.1371/journal.pchi.1005747.9003
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The population can also decay further after the (high) environment (Fig 3d). Analogously
(@ 0
tot 3

w,optimal? w,optimal

dominate in the (low) environment at the end of the pulse. This then depends on ¢, and "

there exists an optimal ™™ = , marking the time after which r begins to

The grey dashed line in Fig 3a marks the skewness corresponding to ™™ (¢ = 0) such that
thnal + ¢ = 1. For negative s, this line indicates where 7,,;, saturates as a function of t,, such
that a larger ¢, does not yield any drastic changes in 7,,,;,. This means that due to the competi-
tive growth, the (high) environment (#,) can always be shorter than (low) environment (1)
while still having essentially the same effect as if ¢, = 7. A longer duration of (high) antibiotic
stress is thus not necessarily more effective in reducing the bacterial population, while poten-
tially being disadvantageous for the host.

For a survey of the dependence of both t, and ¢
S1 Text.

For pulse sequences, the global population minimum can occur during any pulse.
When comparing pulse sequences with different N (number of pulses), it is important to note
that every pulse produces a local population minimum, and the global population minimum
can occur during any of these pulses (see green cross in Fig 4a—4c). In the following, we outline
heuristically during which pulse the global minimum is likely to occur, and thus which n,;,
(from which pulse) should be compared to the 71,,;, from the single pulse, or the other
sequences. In practice, predicting which pulse leads to the lowest minimum and hence the

on the system parameters, please refer to

highest extinction probability may well be important for treatment: if a later pulse leads to a
much larger population reduction than the first, longer treatments with antibiotics are proba-
bly beneficial, while if the opposite holds true, the continuation of the treatment may be super-
fluous or even deleterious.

The population minimum attained during a pulse depends both on the total population
size n at the beginning of the pulse, and on the effective duration of population decay. Later
pulses in a sequence can in principle have a lower starting population # than the initial pulse, if
w has already decayed and r not yet grown substantially (see section Population Composition).

aLn,r . b)
NN

d) 1% pulse
AN, I ti?

2" pulse e .

Fig 4. a-c) For a sequence of three pulses, the global population minimum can occur during any of the
pulses, depending on the pulse parameters (a: t,.=6, s=0, b: t,.=30, s=0, c: {,=45, s=-0.2; =60 for all).
The local minimum (within one pulse) is marked with a light green dot, the global minimum is marked with a
green cross. In a, the value of nat the minima (green dots) increases successively, such that global minimum
occurs during the first pulse. This is because 7 - t.is large. For b and c, - t.decreases, implying that the
global minimum shifts into the second and third pulse, respectively. Panels d-e show that for s= -1, the
minimum is attained in the second pulse (d), unless t?) is so long that the population can regrow ton =r;,, (€).

https://doi.org/10.1371/journal.pchi.1005747.9004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005747  September 28, 2017 8/17


https://doi.org/10.1371/journal.pcbi.1005747.g004
https://doi.org/10.1371/journal.pcbi.1005747

©'PLOS

COMPUTATIONAL

BIOLOGY

Exploiting ecology in drug sequences

However, the effective duration during which the population decays shortens from pulse to
pulse, simply because w decreases: for example, we already saw that in a single pulse, the popu-
lation can decay for ¢, + £, or t*™ + ¢ for s =1and s = —1. Both of these time periods of popula-
tion decay are longer than t,, the effective duration of decay in a pulse late in the sequence,
where the population is entirely dominated by .

Heuristically, the global minimum occurs during later pulses of the sequence for small 7 - ¢,
(Fig 4c), corresponding to short periods per pulse spent in the (low) environment. This is
because, in this case, the population # is small, as r cannot have grown drastically, and is addi-
tionally depleted during long stretches of ¢,. Conversely, for small ¢, (Fig 4a) the treatment is
most efficient in the first pulse, as r progressively takes over the population in the (low) envi-
ronment of each succeeding pulse. Thus, in the top left corner of Fig 1, we compare the min-
ima from earlier pulses or the first pulse in each sequence, while in the bottom right corner, it
is the later minima in the sequence that need to be compared.

For t, < T and high s, higher N pulse sequences do better, in fact already in the first
pulse. With this in mind, we are now able to discuss the different features and regions of
Fig 1.

First, we focus on the coloured sectors in the top left corner of Fig 1, corresponding to the
region of parameter space where the best pulse sequence consists of two or three pulses. We
found that in the part of the slice where the global minimum occurs in the first pulse (e.g. the
red slice), the minimal population 7,,,;, can assume a minimum for each duration of the (high)
environment t,, similar to the blue line for the single pulse. This minimum arises because the
initial (low) environment, with duration ¢, can be exploited to maximise population decay in
longer pulse sequences as well. In order to know how long this (low) environment lasts for the
first pulse of a longer sequence, we need to note that the first pulse in a two pulse sequence is
only half as long as the full pulse for the single pulse. Thus, all relevant time scales need to be
rescaled by N, i.e. the full pulse duration of a first pulse in a N-pulse sequence is 7™’ = 7/N, the
duration of the (high) environment is t™) = ¢, /N, and the durations in the initial and final
(low) environment are t /) = /) /N, where t"//-(Y) denotes the time ¢//) in one pulse of a
N-pulse sequence. Then, the skewness at these minima for fixed ¢,, marked by the red (dashed)
and light-blue (dotted) lines in Fig 1, is given by s = 2Nt /(t — t,) — 1 for N pulses. As a
result of this multiplication by N compared to the optimal skewnesses for a single pulse,
the lines marking the lowest population minimum within a region are shifted upwards for
higher N sequences. (We remark on the side that the reason for why the red region does
not extend all the way up to s = 1 is that a single pulse with a long tV) > ¢, + ¢t will yield a
lower n,,;, just by decreasing r (because the single pulse makes the population decay for at
least t,, whereas the initial pulse in the N-pulse sequence only decreases the population for
t,+t™) =t +1t /N). This also applies to higher 7 > 60, such as shown in the S1 Text).

In the bottom right corner of Fig 1, marked with a thin black line, the last pulse in the
sequence yields the lowest minimum. This region is located at negative s, indicating that now

the time spent in the final (low) environment, /)™

,is important. Indeed, this can be seen
clearly by considering a sequence of two pulses with s = -1, such as sketched in Fig 4d and 4e:
the lack of an initial (low) environment can mean that a second pulse is better, because

the population could in principle decay for a consistent run of the (high) and (low) environ-
ments of the first pulse, and (high) environment of the second pulse, which together corre-
sponds to a time of t™) + )™ 4 V) (Fig 4d). Indeed, for the second minimum not to be
lower, the time in the (low) environment at the end of a pulse of the N-pulse sequence, t/)"™),

needs to be long enough for r to have grown up to r{;,,, before the onset of the second (high)

low)

environment of duration ¢V (Fig 4¢). We note that such a long effective time of population
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decay is not possible for s = 1, where the second pulse would begin with a second (low) envi-
ronment, during which r can regrow. A more detailed argument, with an estimate for the ¢, at
which the second pulse provides a lower minimum (i.e. the beginning of the thin black line),
is given in S1 Text. For increasing t,, the lowest minimum shifts to even higher N, so pulse
sequences with increasing N perform better. In addition, the regime where N > 1 pulse
sequences yield lower minima increases along the s-axis, until at ¢, = 7 all pulse sequences cor-
respond to the same pulse and the minimum is equal across all skewnesses.

Fig 1 also shows regions marked with a white line, where the lowest minimum occurs in an
intermediate pulse in the sequence. We do not discuss this further here, but note for complete-
ness that had we included longer pulse sequences, these regions would have split up further
and shown that longer pulse sequences would give even lower minima in an intermediate
pulse. For a better overview of the behaviour of regions where an intermediate pulse does best,
we refer to Figs A and B in S1 Text. The exact position of this region varies, if higher N pulse
sequences are included, for different choices of fitness costs, death rate, and switching rate,
and for different 7. Thus, a detailed analysis is not worthwhile, especially as the differences in
the numerical values between the lowest minimum of a higher N-sequence, and the first mini-
mum of a shorter sequence, are at least two magnitudes lower than the absolute value of 71,,;,,
there.

Population composition

In the previous section, we learnt which pulse sequences yield the maximal relative reduction
in population size for which regions in (¢,, s)-space. This minimal population #,,;, served as a
proxy for gauging when extinction would most likely occur in a setting where an immune
response can destroy the population when it is already small. Now, we would like to address a
complementary question: in the event that extinction does not occur, whether because #,,;,
was too high, or the population was small for too short, what is the effect of such a “failed’ pulse
on the bacterial population? We already saw that the composition of the population shifts
more towards r with each pulse. In terms of real treatments, it might often be better not to pur-
sue treatments which, if unsuccessful, entail a high risk of creating a fully resistant population.
In order to evaluate the pulsed treatments associated with the most effective population reduc-
tions based on Fig 1, we now focus on the population composition, quantified by the ratio of
resistant to wild-type species, r/w, at the end of the best pulse within the best sequence. Evalu-
ating r/w at the end of the pulse that yields the global minimum is motivated by the fact that
the treatment can be stopped after, but not during, an individual pulse. Fig 5b shows the
dependence of r/w on the pulse configuration, which can be best understood by first consider-
ing how the population evolves in (w, r) phase space during the different pulse sequences.

In Fig 5a, we show trajectories for three pulse sequences, consisting of a single, two, or three
pulses respectively, with 7= 60 and ¢, = 10. The qualitative behaviour of the phase space trajec-
tory is independent of skewness (in Fig 5a, s = 0.9, the corresponding trajectories for s = —0.5,
s=0.2and s = 0.5 can be found in Fig D in S1 Text). The colour of the trajectory darkens pro-
gressively with every pulse in the sequence. The trajectory starts at the (free) fixed point close
to the w-axis beyond the limits of Fig 5a, and evolves towards the r-axis. Within each sequence,
r/w steadily increases from pulse to pulse, as r progressively takes over the population during
the (low) regimes. Thus, in the top left corner of Fig 5b, where the first pulse of the sequence
yields the lowest minimum, r/w is comparatively smaller (lighter shading). Indeed, the higher
the N of the best sequence, the lower the ratio in Fig 5b, provided the global minimum is
reached in the first pulse (such as in the red region in Fig 1). The region marked with the white
line in Fig 1, where intermediate pulses (and not the first pulse) in the sequence yielded the
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Fig 5. Panel a) Phase space (w, r) trajectories for parameters 7= 60, t.= 10, s = 0.9 and different numbers of
pulses. The trajectories start from the fixed point of the antibiotic-free environment (W, /(i) )» With 7w
increasing with every pulse. Here, the sequence with three pulses gives the lowest minimum [see also Fig 1].
The cross marks the end of the best pulse within each sequence. Panel b) Ratio 7w at the end of the best
pulse of the best sequence from Fig 1. For fixed t, #wis best (smallest) in the regions where the first pulse in a
high N pulse sequence yields the lowest ny,;, (top left corner, also in Fig 1). Similarly to Fig 3, the white line
marks the skewness corresponding to the lowest minimum for each {,, with the absolute value of the ratio
dropping drastically at the red dot, shown in ¢). Panel c) Dependence of w on t,along the white line in b). The
ratio is approximately constant for ¢. < 30 and then suddenly drops to the same value that it would also show at
=1

https://doi.org/10.1371/journal.pchi.1005747.g005

lowest global minimum, also shows up clearly as darker in Fig 5b. Here, r has grown more
than for a single pulse, as more pulses were applied before the population minimum was
reached.

Thus, in our model, when both population reduction and composition are considered,
pulse sequences where the minimum is attained in the first pulse are generally more effective
than a single long pulse: maintaining the (Jow) regime in the first pulse for around t, keeps r/w
as well as n,,,;, small. This argument suggests that treating with this first pulse only achieves the
best result, and additionally comes with a shorter total treatment duration 7 and a shorter ¢,.
We would like to note that even if the population does not die out during this short treatment,
multiple pulses of this form could be added in order to give the immune system more opportu-
nities to eliminate the infection. These additional pulses would not drastically change r/w com-
pared to the composition obtained after the single long pulse of 7 = 60. This can be seen also in
Fig 5a, where for all pulse sequences the population composition is similar at the end of the
entire sequence.

Single pulse ratio for optimal skewness drastically drops to a low value at ¢, < 7.

Finally, we wish to make an observation concerning the population composition following a
single pulse, which dominates Fig 5b. Focusing on the dependence of the minimal 71,,;,, on ¢,
(white lines in Figs 3 and 5b, blue line in Fig 1), we see that the population composition along
this line drops drastically at a certain ¢, < 7, as shown in Fig 5¢ (marked with a red dot). This
means that also in terms of keeping the resistant species at bay, it is not necessary to impose
the (high) environment for the entire duration of the pulse sequence.
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Caveat: Fixing total antibiotic load, rather than 7, might reduce dependence on pulse
form. So far, we have considered a constant drug expose time 7, corresponding to the entire
treatment duration, which is also the quantity minimised in antibiotic stewardship programs.
Alternatively, it could be important for medical applications to compare different pulses which
keep the total load of antibiotic applied constant. Since our model does not incorporate any
information relating to the antibiotic concentration, this question cannot be adequately

addressed. Nevertheless, to a first approximation, 7 + at, might be a meaningful proxy for this
MIC, —MIC,,
MIC,,

total load, where a quantifies how MIC,, relates to MIC,: o0 =

In order to gauge the effect of applying a constant drug load, we fixed o = 1 for simplicity,
and show both population minima and composition for constant f,,, = 7 + t, for a single pulse
in S1 Text. Suffice it to say here that both quantities depend primarily on ¢,, and only weakly
on the skewness of the pulse. This is due to the fact that for s = 1, a constant ,,, exploits the
optimal #, while for s = -1, the optimal ¢! is used. Since these quantities are not very different
for our choice of parameters, constant £y, effectively means that even though the skewness is
different, the pulse will involve approximately the same 7 and ¢, for s = 1 and s = —1. A definite
conclusion as to the effect of the form of the pulse on population reduction and composition
for fixed antibiotic load is not possible within the scope of this work, and would in any case
require a different model.

Discussion
Experimental relevance

Experiments with microbes can help investigate minimal antibiotic dosages and treatment
times in a well-controlled test tube setup, where the impact of certain treatments on the micro-
bial species itself can be studied without interfering effects, for example from the immune sys-
tem. Such microbial experiments have, for example, helped suggest drug combinations or
treatment regimens which could retard the development of antibiotic resistance [30-33].
Increasingly, these experiments try to incorporate practically important aspects of heterogene-
ities in the environment [34], such as drug concentration gradients. These gradients can
enhance the development of bacterial resistance relative to spatially homogeneous systems [24,
25, 35, 36], as the more resistant species can successfully compete with a faster growing, but
more susceptible wild-type species. Not enhancing the selective advantage of the more resis-
tant species, in the context of temporal heterogeneities in drug levels, including the duration,
frequency and even the concentration profile during a single antibiotic pulse, as studied also in
this work, is also important in real treatments [7, 37], and is thus within the limits of current
experiments.

Our model makes two drastic simplifications compared to real microbial species. First, we
study only two species, instead of a series of possible phenotypically or genotypically different
species. Typically, the evolutionary pathway that leads to a fully resistant species involves a
variety of intermediate mutants, even when the mutational paths are constrained [38]. Since
the fitness benefit diminishes with each successive mutation in a series [39, 40], we assumed
that the strongest effect is conferred by the first mutation, and neglected all higher order
mutants. For phenotypic switches, it is reasonable to consider only two species, corresponding
to, for example, the expression or repression of a protein [41, 42]. Thus, our model should be
applicable to experimental systems, while in real patients, different types of tolerant or persister
cells might be involved [43], or even interact [44].

The second simplification concerns how these two species are affected by the antibiotic. In
our model, we assume that the antibiotic is bacteriostatic, i.e. only affects the growth of the
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species [24, 25]. We also assume that the growth rate of each species falls abruptly to zero
when the antibiotic concentration is higher than their respective minimum inhibitory concen-
tration (MIC) (see e.g. [45]). The experimental situation is more complex: cessation of growth
is not instantaneous, the space occupied by a dead cell may not immediately become available
[42], and the general use of the MIC as an indicator for slow growth is questionable [46]. How-
ever, an abrupt change in growth rate at MIC has been verified experimentally for E. coli and
chloramphenicol. [25]. Additionally, our analysis is based on large numbers rather than extinc-
tion events which would be model specific; thus, small changes in the model (such as reduced
but non-zero growth rate) should still give qualitatively similar results.

Evaluating the effect of different pulse sequences should be possible within a microfluidics
setup, where, for example, periodically fluctuating environments have already been investi-
gated for E. coli and tetracycline [42]. We expect that one should be able to observe that the
(low) environment of drug concentration can be exploited in order to increase extinction pro-
babilty for a (high) environment that is present for as short as possible, with the treatment time
being constant. How long this duration of the (low) environment is for best exploitation would
be sensitive to the growth rate of the more resistant species, which for tetracycline could be
generated using a specific promoter, namely the agn43 promotor [42, 47, 48]. Just as shown in
Fig 1, we expect higher N pulse sequences to do better when this duration is optimal for them,
but not for the longer pulse. In addition, further study of E. coli in combination with other
antibiotics and more resistant strains should also show this, in addition to being more realistic
than our simple model.

Summary and outlook. We studied the effect of a temporal pattern of antibiotic exposure,
modelled as alternating periods of high and low stress, on a two-species bacterial population.
Our results imply that, in fighting bacterial infections, one can make use of the competition
between more and less resistant species. We showed that it is not necessary to impose the high
stress regime for the entire duration of the treatment in order to obtain the best possible popu-
lation depletion and composition. In the context of real infections, where a slow increase or
decay of the drug concentration in the environment might be inevitable, it can be reassuring
to know that the transient (low) stress regime need not be deleterious, and can indeed be
exploited. However, if the low stress environment is maintained for too long, with this time-
scale depending on the fitness of the more resistant strain, the latter will start to grow and
eventually dominate.

If the duration of the high stress environment must be minimised (for example, due to its
negative impact on other species in the biome), our model suggests that it is beneficial to split
the treatment into several individual pulses, such that the total time spent in the (low) environ-
ment is equally distributed among the pulses (and hence shorter per pulse in the sequence
than during a single application). In addition, multiple short treatments tend to be more effec-
tive when the absolute time spent in the high stress environment needs to be short. For very
long treatment times, on the other hand, a single long application is more efficient. We expect
these main results to be robust against a variety of practically relevant changes in the model,
such as a break between treatment times, or a decreasing cost in the growth rate for the more
resistant species.

Current medical research argues that more moderate treatments may be beneficial, if
mutants are already present in a host. The conventional view has tended to assume that long
and aggressive treatments are best at eradicating the infection and reducing the probability of
evolving resistance [9]. In order to address this problem of infections in a host, mathematical
and computational models for immunocompetent host have been introduced [49], or it has
been suggested that an absolute population threshold can be used as a measure for extinction
[50]. Following the latter suggestion, we have tried in this work to gauge the effect of the
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immune system by understanding how the population can be reduced, but not driven to abso-
lute extinction. Within the limits of our model, our results might support the more moderate
approach. Other research focusing on ecological competition between species of different lev-
els of resistance [51, 52] gave similar insights: on the population level, long and aggressive
treatments reduce the probability of generating mutants, while more moderate treatments can
exploit the inter-species competition [51]. From a physical perspective, it would be interesting
to see how this more moderate approach can be reconciled with the physics of small numbers:
when extinction is a rare event, the more traditional view supporting aggressive treatments
might well be favoured. Either way, in the light of this current debate [53], it is important to
determine the relevant timescales of growth of the different species in presence or absence of
the drug [54], and how the species are coupled, in order to make models more realistic.

In order to obtain estimates of such timescales, it is important to use the knowledge
obtained from well-controlled microbial model experiments on bacterial populations both in
isolated and host environments (such as, for example, C. elegans culture [55, 56]). These exper-
iments provide an ideal set-up for addressing these bigger questions, as they permit both small
and large numbers of species to be studied and the environmental conditions can be precisely
monitored.

Supporting information

S1 Text. Contains analogous figures to Fig 1 for a variety of costs and different 7, and a
detailed discussion of the possible values for , and ™' and which minimum within a
sequence might be the lowest minimum. It includes phase trajectories for different values of
skewness s, and a brief discussion of how n.,;, and the population composition would be
affected if the the total antibiotic load 7 + t, is fixed.

(PDF)
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