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Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by
a high recurrence rate due to its limited response to existing therapeutic strategies such as
chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have
been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells
(GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their
unique self-renewal, differentiating capacity, and proliferative potential. They form a
heterogeneous population of cancer stem cells within the tumor and are further divided
into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic
features distinguish them from neural stem cells (NSCs) and differentiated GBM cells.
Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating
potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs’
stemness cannot be overemphasized. The mitochondrion, a regulator of cellular
physiological processes such as autophagy, cellular respiration, reactive oxygen
species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been
implicated in various malignancies (for instance, breast, lung, and prostate cancer).
Besides, the role of mitochondria in GBM has been extensively studied. For example,
when stressors, such as irradiation and hypoxia are present, GSCs utilize specific
cytoprotective mechanisms like the activation of mitochondrial stress pathways to
survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic
glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that
rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect,
which is characterized by increased tumor cell glycolysis and decreased mitochondrial
metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight
the importance of mitochondria in the maintenance of GSCs.
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INTRODUCTION

Glioblastoma (GBM) is the most common primary brain
malignancy and is characterized by a variable survival time
ranging from 4 to 16 months, depending on the status and the
type of therapy the patients receive. Unlike most other types of
malignancies, distant or extraneural metastasis of GBM is rare
(1). However, GBM remains one of the incurable primary brain
malignancies due to several factors. For instance, the absence of a
single targetable oncogenic pathway is one of the contributing
factors that further complicate the course of GBM treatment and
research. GBM resistance to temozolomide (TMZ), a principal
first-line chemotherapeutic agent, is mediated through several
pathways and mechanisms. These include, methylguanine-
DNA-methyltransferase (MGMT) (2, 3), long non-coding
RNAs such as lncRNA TP73-AS1 (4), increased angiogenesis
(5), resistance to apoptosis and apoptosis-inducing agents (6),
mitochondrial DNA mutation, and most importantly, the
presence of GBM initiating cells (GICs). According to Gimple
et al., GICs are a heterogeneous population of GBM cells formed
by the mutation of neural progenitor cells, immature neural stem
cells (NSCs), or mature cells such as neurons. GICs give rise to
glioblastoma stem-like tumor-initiating cells (GSLTICs) and
their smaller subpopulation, GSCs, which are known to be the
leading cause of GBM therapy resistance (7, 8). Interestingly, not
only GSCs but also other subpopulations of GBM cells (such as
GSLTICs) are capable of displaying stem cell properties (7). In
response to microenvironmental changes such as hypoxia, these
cells undergo a “state” transition and display phenotypic
adaptation resulting from intrinsic tumor plasticity. In
summary, plasticity imposed by microenvironment will
determine the fate of the original GSC. Plasticity may also be
responsible for reprogramming committed GBM progenitor cells
and differentiated GBM cells to dedifferentiate into GSCs (8). It is
noteworthy that the terms glioblastoma stem-like cells (GSLCs)
and GSCs are vaguely described and used interchangeably in
various reports. However, in our report, we introduce a three
compartment model comprising; a) GSCs that are quiescent,
self-renew slowly or infrequently and have the potential to
proliferate, whereas GSLCs are proliferating GSCs that can
self-renew under certain conditions, b) glioblastoma progenitor
cells that proliferate rapidly and are committed to differentiate,
and c) differentiated GBM cells. GSLCs are similar to progenitor
cells in that, they are dedicated to differentiate and proliferate.
Regarding metabolism, GSCs exhibit flexibility compared to
neural stem cells due to the presence of certain enzymes [like
pyruvate kinase isozyme 1 (PKM1) and pyruvate kinase isozyme
2 (PKM 2)] that enable GSCs to switch between glycolysis and
oxidative phosphorylation (9). Both mitochondrial function and
dysfunction play a significant role in GBM tumorigenesis, as
mitochondria modulate the maintenance of GBM stemness,
quiescence, and differentiation, whereas mitochondrial
impairment is essential in arbitrating GSCs’ resistance to
treatment. Previous studies during the last decades have not
been successful in resolving this issue. That said, understanding
the involvement of mitochondria in GSC quiescence might shed
some light on GBM pathophysiology. This review emphasizes
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the importance of mitochondria in maintaining GSC stemness,
quiescence, and metabolism. Also, we highlight the general
features of GSCs, GBM progenitor, and differentiated GBM cells.

Research History on Cancer Stem Cells
The history of cancer stem cell (CSC) research goes back to 1994
when leukemia initiating cells were identified (10). Identification of
CSCs was a major breakthrough that could explain highly recurrent
malignancies, such as GBM. Primarily, the extent to which
oncogenesis and metastasis involve CSCs is unknown; however,
as we learned more about CSCs in different types of malignancies
such as liver, colorectal, ovarian, and brain cancers (for example,
GBM), we realized how important these cells could be for an
effective targeted cancer therapy. CSCs, characterized by their
unique self-renewal and differentiating capacity, generate various
tumor cells with different genetic constitutions, such as new GSCs
and GBM neural progenitor cells that, in turn, give rise to the
differentiated cells. The ability to stay in the quiescent state (during
the G0 phase of the cell cycle) allows them to survive during the
intensive cancer treatment. Recent discoveries have attributed
glioblastoma resistance to the presence of cancer stem cells or so-
called glioblastoma stem cells (GSC). GSCs, which originate from
malignant transformation of neural stem cells (NSCs) of the
subventricular zone (SVZ) tissues and differentiated neural cells
such as astrocytes, maintain GBM tumor heterogeneity (11, 12).

General Features of GSCs
GSCs are distinguished from neural stem cells by their molecular,
genetic, metabolic, and dynamic features. Cancer stem-like cells
have fragmented mitochondria compared to differentiated GBM
cells, which possess tubular-shaped mitochondria (13, 14). Stem
cells are said to have fewer and less mature mitochondria that are
relatively inactive compared to those of differentiated cells,
resulting in decreased ROS generation and, thus, low ROS
levels required for the maintenance of stem cell quiescence and
self-renewal potential (15, 16). Previously, it was said that CSCs
might favor glycolysis as it regulates stemness and minimizes
ROS generation (17). However, recent studies suggest quiescent
CSCs depend largely on OXPHOS. This is also true for
differentiated non-proliferating GBM cells that cannot further
differentiate. On the other hand, proliferating CSCs utilize both
glycolytic and oxidative pathways. Depending on oxygenation,
nutrient availability and tumor microenvironment, proliferating
GSCs can transition between glycolytic and oxidative pathways
(7, 18, 19). CSCs utilize both glycolysis and OXPHOS since they
switch between quiescent and proliferation “states.” A study on
human TS1 GSLCs, upon acidic pH shift-induced quiescence,
demonstrated the remodeling of mitochondria from tubular to
donut shape to corroborate this. Similarly, placing the quiescent
cells in a less acidic environment induced the alteration of
mitochondria from donut to tubular shape (20). This study not
only implies that donut-shaped mitochondria might be a feature
of quiescent GSLCs but also suggests that mitochondria shape
and function is dependent on GSLCs microenvironment. The
influence of tumor microenvironment on CSCs has been
extensively discussed elsewhere (14). Other features of GSCs
and differentiated glioblastoma cells are shown in Figure 1.
February 2021 | Volume 11 | Article 582694

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Iranmanesh et al. Mitochondria’s Role in the Maintenance of GSC
Molecular and Genetic Features of GSCs
GSCs’ surface molecular biomarkers include CD49f+, CD90+,
CD44+, CD36+, EGFR+, A2B5+, L1CAM+, and CD133+ (21).
Glycerol-3-phosphate dehydrogenase 1 (GPD1) is another
important marker that distinguishes GSCs from normal neural
stem cells and can be used as a prognostic factor. Following
chemotherapy, dormant GSCs, expressing GPD1 and mainly
located at the GBM tumor borders, can be activated (22). Neural
stem cells (NSCs) or transformed astrocytes might give rise to
GSCs following gaining access to stem-specific transcriptional
programs. GSCs are maintained through epigenetic regulators
and modify the gene expression in response to external cues (7).
Radiation enhances tumor recurrence due to tumor cell DNA
mutations conferred by radiation, thus, rendering the tumor cells
resistant to treatment. However, GSCs are not only able to
survive the extensive course of chemoradiotherapy but can also
promote radiotherapy resistance through the preferential
activation of DNA damage checkpoint response that, in turn,
promotes their DNA repair capacity. As shown in Figure 2, cell
cycle checkpoints are critical regulators of cell proliferation and
development. Quiescent GSCs express a higher amount of G0/
G1-phase regulatory molecules such as cyclin D1, cyclin D2, and
cyclin E) at the transcriptional and translational levels (23).
Certain genes, such as ectonucleotidase ENPP1 (ectonucleotide
Frontiers in Oncology | www.frontiersin.org 3
pyrophosphatase/phosphodiesterase 1), are overexpressed in
GSCs. Their function is usually related to stem cell feature
maintenance, cell cycle control, cell death, and potential to
proliferate (24).

Transcriptomic analyses of samples of recurrent and newly
diagnosed GBM have shown that GSCs, locating in different
regions of the tumor, are characterized by different degrees of
stemness and gene expression pattern; however, this intratumoral
heterogeneity is not random and depends on the intratumoral
architecture. Studies have shown that harvesting four samples
from a single tumor is sufficient to predict and optimize therapy
outcomes. It is important to note that post-operative
radiochemotherapy can further induce longitudinal changes in
gene expression of GSCs. On the other hand, the limitation of
performing biopsy after each round of therapy is another
challenge for studying these longitudinal mutational alterations.
These result in an increased resistance rate after each therapy
session (25–27).

Metabolic Features of GSCs
Metabolic alterations are evident in GSCs. Though rapidly
proliferating cells from GBM patients are glycolytic, only a small
fraction of these are GSCs which are quiescent and capable of self-
renewal (28). Self-renewing GSCs, similar to most other types of
FIGURE 1 | A summary of the features of glioblastoma stem cells (GSCs), glioblastoma (GBM) progenitor cells and differentiated glioblastoma stem cells.
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cancer stem cells, utilize both glycolytic and OXPHOS. To keep up
their increased proliferation, rapidly proliferating GBM cells
utilize glycolysis while quiescent GSCs depend on OXPHOS to
maintain their stemness. Unlike previous speculation, GSCs can
switch between different energy pathways and exhibit intermediate
metabolic features to adapt their metabolism according to the
different conditions such as environmental stressors such as
radiation. Moreover, quiescent GSCs exhibit lower glycolysis and
oxygen consumption and a much acidic extracellular space
compared to the differentiated GBM cells (18, 19).

Specific features of GSCs such as GSCs’ self-renewal and
decreased apoptosis are the hallmark of GBM resistance. Several
factors regulate GSC proliferation and survival. One of the
significant factors contributing to the increased tumorigenicity
of GSCs is their high capacity for self-renewal. Early studies of
mechanisms responsible for sustaining GSCs’ self-renewal
property highlighted the importance of SRY-box transcription
factor 2 (SOX2) gene expression. Commonly, SOX2 expression is
upregulated during neural development and is essential in
inducing pluripotency (29). However, its overexpression in
Frontiers in Oncology | www.frontiersin.org 4
GSCs is associated with increased tumorigenicity and resistance.
Further experiments on tumor‐initiating cells (TICs) showed that
SOX2 knockdown leads to decreased proliferation and self-
renewal capacity. Moreover, these studies showed that GSCs
share a similar mechanism with normal neural stem cells to
sustain their stemness (30).

GBM Tumor Constitution and the
Surrounding Tumor Microenvironment
The hierarchical model proposed for GBM involves the progression
from stem cell populations to more differentiated progeny (31).
Single-cell RNA-seq (scRNAseq) studies of IDH mutant gliomas
have shown glioblastoma trilineage hierarchy, including progenitor,
neuronal, and astro-mesenchymal cancer cells, among which the
progenitor cancer cells have the highest proliferative and lowest
differentiated properties (32). Furthermore, in IDH wild type GBM
cells, proliferating GSCs, referred to as “progenitor GSCs” display a
more rapid growth rate and a higher chemoresistance property.
Previously, several pathways, such as EZH2, FOXM1, and Wnt,
associated with GSC self-renewal and tumorigenicity, have been
FIGURE 2 | An overview of the pathways that mediate quiescence in glioblastoma stem cells (GSCs). Mitochondria play a significant role in critical cellular processes
such as cell cycle control, cell metabolism, regulation of calcium homeostasis, and reactive oxygen species (ROS) generation. Like most other types of cancer stem
cells, GSCs utilize mitochondria oxidative phosphorylation (OXPHOS) to keep up their increased proliferation, resistance, and stemness. Mitochondrial dysfunction
enhances tumorigenesis through different pathways such as loss of cell cycle control, intracellular calcium dyshomeostasis, increased transition of GSCs into the
quiescent state, and decreased apoptosis.
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identified. Recently, another critical pathway, the E2F4 pathway, has
been identified by Couturier and colleagues. E2F gene family plays a
key role as a cell cycle regulator and is critical for GSC progenitor
cells. The inhibition of E2F4 is negatively correlated with GSC
progenitor proliferation (33). In addition to the previously
mentioned pathways, mitochondrial dynamics is crucial in
regulating postmitotic cell fate. Iwata and colleagues showed that
shortly after mitosis of neural stem cells, daughter cells that undergo
and displays mitochondrial fusion maintain their self-renewal
property, and those with mitochondrial fission differentiate into
neurons (34). However, further studies are required to determine
whether a similar mechanism exists in different GSC lineages.

As in normal tissues, quiescent and active CSCs coexist in the
tumor bulk (35).GSCs consist of a small subpopulation of stem-
like cells conferring tumor recurrence (36). Normal neural stem
cells (NSCs) of the brain are located in the subventricular zone and
hippocampus (37). Since GSCs’ surrounding microenvironment
has to fit their need to maintain their stemness, intratumoral GSCs
reside in specific locations such as perivascular, hypoxic, and
necrotic niches. The perivascular niches can provide essential
signals (such as Wnts) necessary for GSC maintenance, growth,
and invasion (38–40).

Along with GSLCs and differentiated glioblastoma cells, other
types of cells such as neural precursor cells (NPCS), astrocytes,
neurons, macrophages, microglia, and endothelial cells as well as
vascular components and extracellular matrix (ECM) are
contributing to the intratumoral heterogeneity (41). Cellular
components of the tumor communicate with each other and
distant cells through extracellular vesicles (EVs). These EVs can
also alter tumor growth, resistance, and death (42).

Role of Mitochondria in GBM
Tumorigenesis and Metastasis
Mitochondria, known to be responsible for cellular respiration,
generation of oxidative radicals and their central role in apoptosis,
DNA repair, autophagy, and cell cycle control, have recently been
the focus of attention for the role of their genome in cancer
development. The proposed role of mitochondria in tumorigenesis
and metastasis has been studied in several types of malignancies,
such as breast, lung, and prostate cancer. Mitochondrial
dysfunction is associated with altered metabolism and can lead
to enhanced tumorigenesis and metastasis. A broad study on
mitochondrial cancer genome has shown that hypermutation,
variations in structure and copy- number, and somatic transfer
of mtDNA into the nuclear genome are associated with increased
risk of cancer development and growth, and metastasis (43).
Studies have shown that autophagy plays a critical role in the
process of tumor cell survival, growth, and resistance. Different
cancer therapeutic agents exert different regulatory effects on
autophagy, leading to activation or inhibition of cytoprotective
or cytotoxic autophagy. Moreover, in some types of malignancies
such as GBM, chemoresistance to the first-line therapy agents such
as TMZ can be mediated via ROS induced- activation of
cytoprotective autophagy. Therefore, understanding the interplay
between mitochondria, autophagy, tumor growth, resistance, and
metastasis will provide us with better clues to new treatment
strategies (44).
Frontiers in Oncology | www.frontiersin.org 5
Mitochondria are responsible for maintaining the oxidant-
antioxidant system in a cell. Oxidative damage, which has been
implicated in tumorigenesis, usually follows mitochondria
dysfunction. Mutations in genes encoding components of
mitochondrial protein complexes such as NADH-ubiquinone
oxidoreductase chain 4 (ND4) subunit can lead to elevated
superoxide radical (O2

•–) production, thus resulting in
sustained ROS-dependent oncogenic pathways and induction
of mitochondrial DNA (mtDNA). These changes are associated
with an increased risk of tumorigenesis and metastasis in
GBM (45).

GLUD2, which encodes for glutamate dehydrogenase (GDH),
plays a critical role in regulating GBM tumorigenesis and is
involved in normal cellular processes such as Krebs cycle and
energy production as well as ammonia homeostasis (46). GDH is
a mitochondrial enzyme, and its primary function is the
reversible catabolization of glutamate to a-KG and ammonia.
Typically, GDH exhibits high activity levels in specific mammalian
organs such as the brain, liver, pancreas and kidney (47).
Overexpression of GLUD2 is associated with the modification of
mitochondrial function and metabolic profile of human GBM
cells. GLUD2 overexpression is associated with increased ROS
production due to increased mitochondrial oxidative metabolism
and increased oxygen consumption levels (48). An increase in
ROS levels causes cell cycle arrest in G0/G1 due to the decreased
cyclin D1 and E expression (49). Also depicted in Figure 2,
increased ROS levels inhibit the cell cycle’s progression, hence,
causing cells to remain in their quiescent stage.

The Warburg effect, which is characterized by increased
tumor cell glycolysis and decreased mitochondrial energy
metabolism even in the presence of oxygen, can be seen in
various malignancies such as GBM (50). Furthermore, malignant
cells raise the mitochondrial apoptotic threshold by activating
mitochondrial maintenance programs, which is important for
enhancing cancer cell survival, proliferation, and metastasis.
Other organelles such as the nucleus and endoplasmic
reticulum and their crosstalk with mitochondria are essential
components of cancer cell physiology such as survival,
proliferation, metastasis, and stemness (51). In extreme
environmental conditions such as hypoxia and acidic shift of
the environment, nutritional deficiency and radiation, GSCs use
specific protective mechanisms such as activation of stress
response pathways to counteract the anti-cancer effects of
endogenous stressors such as increased ROS production and
exogenous stressors such as chemotherapy agents. These
pathways, such as cytosolic heat shock response (HSR), the
integrated stress response (ISR), and unfolded protein response
(UPR), are either mediated by mitochondria or endoplasmic
reticulum (ER) or cooperation of both organelles (52, 53).

Glioblastoma Stem Cell Maintenance,
Differentiation, and Quiescence
Stem Cell Maintenance
Stem cell maintenance is critical for GBM tumor recurrence,
tumorigenicity, and metastasis. This stem cell feature is
mediated through different mechanisms. It is noteworthy that
differentiated GBM cells demonstrate lower therapy resistance
February 2021 | Volume 11 | Article 582694
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compared to GSCs. The more we learn about these novel
pathways, the better we can develop anti-cancer agents
effectively targeting GSCs and induce their differentiation into
the less resistant GBM cell types. GSCs employ specific
mechanisms to maintain their stem cell features. One of these
mechanisms is to counteract factors that can induce cell
differentiation, such as bone morphogenetic proteins (BMPs). In
response to anti-GSCs effects of BMP, GSCs secrete gremlin1, a
BMP antagonist that inhibits BMP signaling, resulting in
maintenance of stem cell features such as self-renewal
capacity (54).

Hypoxia is another crucial factor that maintains and regulates
stemness features and undifferentiated state in neural,
hematopoietic stem cells, and GSCs (55, 56). Under hypoxic
conditions, the number of GSCs in the G0 phase increases and
more differentiated glioblastoma cells are induced into the
undifferentiated form. Hypoxia maintains GSCs through the
activation of NOTCH pathway, which is mediated by hypoxia-
inducible factor-1a (HIF-1a) and 2a (HIF-2a) (56–58). Moreover,
hypoxia can induce mixed-lineage leukemia 1 (MLL1), a histone
methyltransferase, to increase the sensitivity and response of GSCs
to hypoxia-induced regulation of stemness features (55).

An important tumor suppressor, p53 regulates different
cellular functions such as cell differentiation, DNA repair, and
angiogenesis. Mouse double minute 2 homolog (MDM2) gene is
a negative regulator of p53. Within cells, p53 is usually present in
low levels albeit, in certain types of malignancies, due to
disrupted MDM2 and p53 interaction, p53 is upregulated to
prevent cells’malignant transformation in response to oncogenic
stress (59). Conversely, in some malignancies such as GBM,
MDM2 is overexpressed, and as a result, the activity of p53 is
inhibited (60). In addition, Oliner et al. demonstrated the
importance of MDM2 in maintaining GSC stemness,
inhibition of which can cause further inhibition of factors
related to GSCs stemness (61). Intriguingly, cholesterol might
be involved in GSC stemness. RNA sequencing comparison of
patient-derived GSCs and differentiated GBM cells showed the
importance of cholesterol biosynthesis pathway in maintaining
GSC stemness. More studies revealed that farnesyl diphosphate
synthase (FDPS), which serves as an important enzyme in
isoprenoid biosynthesis, has a vital role in GSC stemness
maintenance (62). It is of note that GSCs highly express
ectonucleotidase ENPP1 (ectonucleotide pyrophosphatase/
phosphodiesterase 1) compared to other types of cells such as
NSCs. Ectonucleotidase ENPP1 is involved in maintaining GSCs,
and its knockdown induces GSCs to differentiate into GBM cells,
lowers cellular proliferation rate, induces cell death, and
decreases chemotherapy resistance (24).

Long non-coding RNAs (long ncRNA, lncRNA) are other
essential mediators of GBM resistance, involved in various
diseases and act as critical biological regulators. Follow-up of
patients with GBM showed that overexpression of TP73-AS1, a
GBM-associated lncRNA, maintains stemness of GSCs through
interactions involving multiple pathways, thus leading to
increased resistance of GBM cells to TMZ therapy (4). That
said, lncRNA are good targets for potential therapeutic options.
Frontiers in Oncology | www.frontiersin.org 6
Transformation of GSCs Into Differentiated Cells and
Dedifferentiation of GBM Cells Into Stem-Like Cells
Early studies have established the importance of c-Jun N-terminal
kinase (JNK) signaling pathway in GSCmaintenance, self-renewal,
and differentiation. Activation of the JNK pathway is necessary for
self-renewal and inhibition of GSC from differentiation. Therefore,
JNK pathway inhibition promotes GSC differentiation and
diminishes tumor-initiating potential, making them more prone
to cancer therapy strategies (63). Nutritional stress, acidic
environment, and hypoxia induce dedifferentiation of GBM cells
into GSCs. However, eliminating any of these conditions permit
GSCs proliferation and transition into differentiated GBM cells,
with increased sensitivity to the anti-cancer therapy (23).

Dedifferentiation of GBM cells into stem-like cells, possible
through various mechanisms, is required for tumor continuity
and is usually associated with a low survival rate. As we
previously mentioned, hypoxia can induce transformation of
differentiated GBM tumor cells into an undifferentiated state that
exhibits stem-cell-like features. The tumor microenvironment
plays a critical role in the stemness and differentiation state of
different tumor cells. Cancer therapy, such as irradiation, can
alter the tumor microenvironment and promote stem-like cell
features, angiogenesis, recruitment of inflammatory cells such as
Ly6G+ inflammatory cells like tumor-associated neutrophils
(TANs) and granulocytic myeloid-derived suppressor cells (G-
MDSCs) (64). Following radiation therapy, GBM tumor cells are
driven to dedifferentiation. Besides, Ly6G+ inflammatory cells
further promote the secretory feature of senescent GBM cells and
alteration of tumor microenvironment, which are mediated
through NFkB signaling pathway. Ly6G+ inflammatory cells
promote GBM tumor cells dedifferentiation through the NO-
ID4 axis. Inhibitors of differentiation (ID) family members are
important regulators of GSCs with stem-like features and GBM
cells’ transformation into GSCs (65–68).

Nutritional stress or nutritional deprivation instigates
dedifferentiation of GBM cell into GSCs and is associated with
an increased expression of GBM stem-like cell features, including
biomarkers such as CD133, therapy resistance, and angiogenesis.
Moreover, nutritional stress activates Wnt and Hedgehog
signaling pathways and causes overexpression and nuclear
localization of stemness markers such as Sox2, Oct 4, and
Nanog at the transcriptional and translational levels (23).

Transition of GSCs Into Quiescence and
Mechanisms Involved in Quiescent
State Maintenance
The transition of GSCs into quiescent state (G0–G1 phase arrest)
is a tumor protective response following chemoradiotherapy.
Proteins such as Cdk 4, Cdk 6, cyclin B1, and cyclin D1
regulating the cell cycle are down-regulated upon entry into
the quiescent state. Inhibition of Cyclin D1, which regulates cell
cycle progression through the G1 phase in human umbilical cord
blood stem cells (hUCBSC), can induce glioblastoma cell lines to
enter cell cycle arrest (69). A decrease in intracellular pH is
associated with GSCs induction into the quiescent state,
increased stemness and increased expression of stemness
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markers (20). Though it was proposed that the simultaneous
treatment with TMZ and glucose starvation could promote GBM
tumor cell death, a recent study by Wang et al. suggested that
glucose starvation can induce resistant GBM tumor cells to enter
quiescence, thus leading to their increased resistance to
chemotherapy (70).

Quiescent GSCs stay in a functional reversible G0 phase,
vigorously maintained by several pathways until reactivation and
reentry into the cell cycle. In Figure 2, various pathways involved
in GBM quiescence are illustrated. BMP signaling, found to be
the mediator of GSCs quiescence, is further regulated by its
downstream targets, ID1 and p21, and is also associated with
increased chemoradiotherapy resistance. A series of experiments
by Sachdeva and colleagues showed that BMP4 not only
modulates GSC phenotype but also causes an inhibition of
GSC self-renewal capacity and tumorigenicity (71). In recent
years, mitochondria have been recognized as a crucial regulator
of GSC quiescent state maintenance, potentially serving as an
important target against GBM resistance.

As aforementioned, mitochondria can counteract the destructive
effects of endogenous and exogenous stressors in GSCs. One of
these mechanisms is the activation of mitochondrial stress pathways
such as mitochondrial unfolded protein response (UPRmt).
Chaperones and proteases of the UPRmt pathway maintain
cellular homeostasis through proteotoxic stress elimination.
Intracellular calcium ion (Ca2+) homeostasis, regulated by
mitochondria, is necessary as intracellular Ca2+ modulates cell-
cycle progression (72). Mitochondrial Ca2+ uptake and regulation of
store-operated Ca2+ entry (SOCE) activity controls Ca2+ levels
through store-operated channels (73, 74).

Reactivation of Quiescent GSCs
Quiescent GSCs reside mainly in pre-necrotic areas of the tumor.
Upon removal of exogenous and endogenous stressors, GSCs
reactivate and migrate into the oxygen and nutrient-rich areas
such as perivascular zones for proliferation and differentiation.
Nevertheless, how these cells get reactivated and enter the
proliferative phase is yet to be clarified.

GINS complex, a heterotetrameric complex which consists of
four subunits including Sld5, Psf1, Psf2, and Psf3, is important in
initiating DNA replication and progression by serving as a DNA
helicase in association with CDC45 and MCM2-7 (75, 76).
Recent studies have shown that induction of GINS expression
is not only required for the reactivation of quiescent GBM cells
residing in peri-necrotic niches, but also determines the
proliferative phenotypes of quiescent GBM cells. Quiescent
GSCs show decreased GINS protein subunit levels, which
positively correlate with the results stating that GINS is
involved in the reactivation of quiescent GSCs (77).

Therapeutic Implications of Proliferative
and Quiescent GSCs
A significant hurdle in GBM treatment is the presence of
resistant intratumoral GSCs. Most current treatment strategies
show little to no efficacy due to the evasiveness of GSCs.
However, engineered oncolytic viruses are a promising
Frontiers in Oncology | www.frontiersin.org 7
treatment strategy for some malignancies, such as GBM.
Recent discoveries have shown that the Zika virus (ZIKV; the
primary cause of newborn microcephaly outbreak in 2015) could
treat resistant GBM. The Zika virus primarily kills different brain
cells, such as neural precursor cells (NPC), leading to
microcephaly. Further studies have shown that ZIKV displays
higher oncolytic activity toward GSCs than NPCs and
differentiated glioblastoma cells, and at the same time, causes
no harm to normal brain tissue. ZIKV confers its oncolytic
property by inhibiting the self-renewal capacity of GSCs (78).
Earlier studies demonstrated that the upregulated expression of
SOX2 in GSCs is associated with GBM’s higher tumorigenicity
due to an increased self-renewal capacity (30). SOX2 acts by
modulating GSCs ZIKV infection and regulating their expression
of the Integrin av subunit. Integrin av plays a major role in
cellular migration, proliferation, and intracellular signaling by
the formation of a heterodimer with one of the distinct b
subunits including b1, b3, b5, b6, and b8 (79). Further
experiments showed that avb5 plays a critical role in ZIKV
infection of GSCs by maintaining the GSCs (80).

Manipulation of GSC differentiation and proliferation can
serve as an important target for effective treatment of resistant
GBM. Theoretically, each GSC has three choices: self-renewal to
produce two GSCs, asymmetric division to produce one GSC and
one cell that proliferates but cannot self-renew, and commitment
to differentiate to produce two cells that proliferate but cannot
self-renew. Generally, GSC are present in two different niches:
quiescent and active in cell division. Differentiated GBM cells
exhibit a lower resistance to chemoradiotherapy compared to
undifferentiated and quiescent cancer stem cells. GSCs exhibit
low expression levels of MKP1, which is a dual-specificity
phosphatase and negatively regulates ERK1/2 and p38 MAPK.
The role of MKP1 is significant since the high expression level of
MKP1 is associated with the differentiation of GSCs and their
increased sensitivity to TMZ (81). What makes these findings
significant is that a group of glioblastoma patients with a higher
expression level of MKP1 showed improved prognosis and
overall survival rate. Studies on histone deacetylase inhibitors
(HDACIs) showed that these agents could cause an upregulation
of glioma cell MKP1; thus, MKP1 is a promising treatment
strategy targeting resistant GSCs (82).

Another critical target of resistant GBM therapy is mitochondria.
As aforementioned, mitochondria play a critical role in tumor
biology by regulating cell cycle, metabolism, apoptosis, DNA
repair, and maintenance of stemness in cancer stem cells.
Mitochondria enable cancer cells to be more tolerant against
hypoxia, radiation, and cytotoxic agents by activating stress
response pathways and altering cell metabolism. A small synthetic
molecule named KHS101 was discovered to effectively impair
mitochondrial heat shock protein family D member 1 (HSPD1)
and its dependent metabolic pathway. KHS101 is a good anti-tumor
agent since it can effectively exert its anti-tumor effect on different
subtypes of cancer cells, including GSCs, without negatively
impacting intact cells. KHS101 interrupts GBM cell aerobic
glycolysis and mitochondria respiration-dependent pathways and
causes aggregation of HSPD1 and metabolic enzymes in GBM cells,
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thereby promoting their metabolic exhaustion. Induction of acute
metabolic stress, which leads to alteration of the cell cycle, metabolic,
and stemness pathways, causes different subtypes of GBM cells to
undergo autophagy and apoptosis after KSH101 treatment. All of
this could lead to the loss of stem cell-like features of GBM cells and
an increase in cell death. Further experiments on patient-derived
tumor xenografts in mice showed that KHS101 treatment could
successfully diminish tumor growth and increase the survival
rate (83).

Induction of reactive oxygen species (ROS), by-products of
mitochondrial metabolism, can be used as another effective
treatment strategy. In GSCs, ROS is present at low levels due to
the free radical scavenging system. Moreover, low levels of ROS are
associated with a higher malignant potential. Further, studies have
shown that high ROS levels can prevent the cancer progression (84,
85). Curcumin, the main component of turmeric, has previously
shown its antioxidant effects on the prevention and progression of
different types of cancers. However, what makes curcumin an even
more valuable anti-cancer agent is that it can target non-GSCs
(GBM cell that do not have GSCs) and effectively target GSCs
through different mechanisms such as the induction of
mitochondrial ROS, leading to MAPK activation, STAT3
inactivation, and downregulation of STAT3 targets. Together,
these mechanisms could decrease the self-renewal and survival of
GSCs and non-GSCs (86).

Previously, we stated that p53 inactivation due to MDM2
overexpression could lead to GBM tumor recurrence via the
absence of inhibition of stemness-related factors in GSCs.
Experiments on patient-derived GSCs have shown that GBM
stemness can be inhibited by MDM2 inhibitor, AMG232.
However, p53 reactivation is required to increase the sensitivity
of GBM tumor cells to MDM2 inhibitors (61). Besides, targeting
the cholesterol biosynthesis pathway has shown to be a promising
treatment strategy against resistant GSCs. Alendronate, a popular
anti-osteoporotic agent, is effective in GBM treatment as it inhibits
farnesyl diphosphate synthase (an enzyme involved in isoprenoid
biosynthesis and GSCs’ maintenance) that in turn, reduces
embryonic stem-cell features and activation of pathways related
to necrosis and development in GBM cells (62).

Lack of selectivity of specific agents to target GSCs is another
obstacle in managing GBM. Recently, an RNA aptamer (a
shortened form of aptamer 40L) known as A40s, was developed
to bind to CD133+-GSCs selectively. Moreover, GSCs can
internalize these aptamers, which could be used as a means of
drug delivery such as microRNAs targeting and inhibiting GSCs
(87). Induction of apoptosis through mitochondria ROS formation
is an important mechanism employed by certain agents such as
sulforaphane, which is an isothiocyanate found in cruciferous
vegetables that exhibits anti-cancer properties (88).

The few aforementioned therapeutic strategies could
potentially be used in the management of GBM. However, none
of these therapeutic agents can achieve effective GBM treatment.
An effective therapeutic strategy would be one that prevents GBM
progression, recurrence, and reduces the possibility of GBM
resistance development. An ideal therapeutic agent should
possess specific characteristics such as high affinity to its target
Frontiers in Oncology | www.frontiersin.org 8
cells (GSCs), reasonable price, public availability and, most
importantly, effective against GSLCs and quiescent GSCs.
DISCUSSION

GSCs are a distinct subpopulation of GBM cells with unique self-
renewal properties, the potential to proliferate and differentiate. In the
presence of environmental stressors (such as chemoradiotherapy,
nutritional deprivation, hypoxia, and acidic shift of the environment),
these cells undergo cell cycle arrest and become quiescent. The
quiescent state is phase G0 of the cell cycle, where cell inactivity is
observed. Chemoradiotherapy mostly affects rapidly dividing cells,
which explains why the quiescent state protects GSCs during
chemoradiotherapy. GSCs are dormant until an activating signal
causes them to reactivate, and migrate to the perivascular regions,
which provides them with enough nutrition and oxygen for
proliferation. Currently, we are faced with several obstacles in the
effective treatment of GBM such as the presence of quiescent GSCs.
Conventional therapies lack specificity for quiescent GSCs, making it
difficult to eradicate these tumor-driving cells. Although extensive
research has identified most of the pathways and mechanisms
involved in quiescent state activation and reactivation in other
kinds of malignancies and neural stem cells, understanding of
quiescent GSCs is not well elucidated, therefore, more studies
are warranted.

For effective GBM treatment, future therapeutic strategies
focusing on reducing GSC transition into the quiescent state and
reactivation of existing quiescent GSCs, might be beneficial.
Another focus could be induction of GSCs to proliferate and
become committed to differentiate. This way, the tumor-
initiating cell population could be significantly reduced. More
research on the specific role of the brain lymphatic and immune
system in GBM and the interaction between these systems is also
warranted. It is necessary to understand how proliferative GBM
cells and quiescent GSCs behave in different microenvironments,
including in an inflammatory setting.

Methods such as High-throughput Automated Single Cell
Imaging Analysis (HASCIA) facilitate the assessment of
heterogeneity and state transition in GSCs at the single-cell level,
which is vital for future GBM research and discovery of new anti-
cancer drugs that can target state transitions, for instance,
inhibition of quiescent state transformation or activation of
differentiated state (89). A thorough understanding of GSC
transition between quiescent, self-renewing and proliferative
progenitor states that cannot self-renew could help develop
targeted therapy to these specific populations with little
influence on the normal neural stem cells. We believe that this
ideal therapy will most likely be a combinational therapy due to
the complexity of the GBM hierarchy.
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