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A B S T R A C T

We present research using single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor
using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for
training. We performed numerical experiments of x15 upscaling along three midocean ridge areas in the Eastern
Pacific Ocean. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry
versus bicubic or Splines-In-Tension algorithms through upscaling under these conditions: 1) rough topography is
present in both training and testing areas and 2) the range of depths and features in the training area contains the
range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic
interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error
(RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at p < 0.05. In addition, we
found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest
based SISR algorithms.
1. Introduction

Given that 70% of the Earth is covered by oceans, mapping of the
ocean floor is fundamental to geophysical understanding of the Earth.
Quantitative measurements and maps of seafloor depth – bathymetry –

and related topographic metrics is far more difficult than mapping
terrestrial surfaces due to the need to use sonar instead of electro-optical
techniques. Publicly available bathymetric data is sparse, however, as
sonar data is slow and expensive to collect. Over 82% of Earth's ocean
floor in ice-free regions remains unmapped by sonar systems (Sandwell
et al., 2014; Weatherall et al., 2015) in publicly available data. As a
result, we know more about the topography of Mercury, Venus, Mars,
larger moons of Jupiter and Saturn – and now Pluto and Charon – than we
do about Earth's surface covered by water.

What mappings that we have for the remainder of Earth's deep-water
(more than 1 km depth) bathymetry in ice-free regions are only pre-
dictions of bathymetry. The conventional prediction methodology uses
Newtonian gravity potential theory and decades old Fourier transforms
to invert measured geoid height to predicted seafloor topography
try@nrlssc.navy.mil (F. Petry).

August 2019; Accepted 30 Sept
is an open access article under t
(Parker, 1972; Smith and Sandwell, 1994, 1997; Hu et al., 2015). This
is an ill-posed problem. Soundings (sonar measured bathymetry)
that exist within inversion areas constrains possible solutions. The
current maps of world bathymetry from the General Bathymetric
Charts of the Oceans (GEBCO) incorporates this satellite-altimetry
predicted gridded bathymetry (Weatherall et al., 2015) at 1-minute
resolution, representing low-resolution (LR) knowledge of the global
ocean floor.

This practice, however, has physics-based limitations on the resolv-
able resolution and accuracy of potentially solutions. Despite the 1-mini-
ute GEBCOmapping, the altimetry-based portions of the grid is generally
limited to 20-km resolution (Marks and Smith, 2012) (potentially 10-km
with newer satellites and repeated orbits (Marks and Smith, 2016))
compared to 100-m resolution of deep-water sonar-based mapping sys-
tems. Currently, no other deep-water techniques provide 100m-resolu-
tion of seafloor bathymetry. Continued reliance on these techniques is
due, in part, to the desire to obtain analytic/computation solutions based
on first-principles that preserve intuition of the underlying physics and
the ability to adjust approximations in the modeled conditions.
ember 2019
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Enhancement of knowledge beyond the limitations of these methods,
however, is critical to both military and civilian interests. For example,
bathymetry for the area where Malaysian Airlines Flight 370 may have
disappeared (Smith and Marks, 2014; Picard et al., 2017) showed nearly
complete lack of sonar data at the time of the disappearance. Only
the low-resolution satellite-based information existed. Furthermore,
it is known that the majority of civilian air flights occur over oceanic
waters that similarly are unmapped by sonar. While the Indian and
Southern Oceans are now being newly surveyed as a result of the
ML370 disappearance, this tragedy exemplifies how inadequate
deep-water bathymetry can hinder maritime emergency, search, and
recovery operations.

Thus, we turn to examining developments of new computational
techniques, particularly from machine learning, that could enhance our
predictions of bathymetry in these unsurveyed regions of Earth. The
challenge is to maximize knowledge obtainable from LR information and
available high-resolution. Super-resolution imaging (SR) is a class of
techniques that enhance resolution of images by producing higher-
resolution (HR) images based on given low-resolution (LR) images
(Milanfar 2010). The underlying concept in SR is to use the
non-redundant information in low-resolution images to produce
enhanced high-resolution images. Another approach is known as single-
image super-resolution (SISR) based on the concept that images usually
contain redundant, repetitive content. In particular, small image patches
in natural images tend to recur redundantly many times inside images,
both within the same scale, and across different scales. In SISR algorithms
these patches are used to enhance image resolution for natural images.
These upscaling are non-unique, however, yet are satisficing for the
application.

In this paper we show how to adapt single-image super-resolution
techniques developed in the image-processing domain to processing
deepwater (>1-km) seafloor topography. We were interested in
determining whether available HR information can be leveraged to
enhance LR knowledge of the seafloor. We hypothesized that SISR
computer vision algorithms can enhance LR knowledge of bathymetry
through upscaling. Motivating this research was success with SISR for
image processing producing high-resolution details in natural images.
Additionally SISR was used to enhance morphology details of galaxy
images (Ball and Brunner, 2010; Schawinski et al., 2017) which have
similarity to seafloor features upon treating gridded bathymetry as a
gray-scale image. Additionally SISR can enable quantitative extrapo-
lation of HR information from MBES surveys into neighboring areas
covered only by predicted bathymetry. These algorithms can be trained
to associate HR information onto lower-resolution versions of the
surface.

Enhancement is assessed by root-mean squared error of upscaled LR
bathymetry being significantly lower using SISR versus linear-invariant
interpolation methods which do not leverage HR information for
upscaling processes as quantified by hypothesis testing. To test this hy-
pothesis, we performed numerical experiments of upscaling three areas
of the Eastern Pacific Ocean along mid-ocean ridge systems. These areas
have HR grids obtained by sonar surveys that serve for training SISR
algorithms and ground-truth of upscaled LR grids for both SISR and
linear-invariant interpolation methods. We tested SISR skill against our
benchmark skill level of interpolation in both localized and external
upscaling experiments (external upscaling here means training SISR
techniques in one area to upscale other separate and distant areas). We
found that four of the SISR algorithms have higher skill than interpola-
tion under the conditions that we will discuss in this paper. It should be
stressed here that the enhancement is in accuracy only, not enhancement
of resolution. Being an ill-posed problem, any higher resolution fabric of
the ocean floor is merely a prediction.

Section 2 of the paper provides background on previous work in
topographic metrics and computer vision for digital bathymetry models
and specific SISR approaches. Section 3 describes data used for experi-
mentation and implementation details for SISR techniques. Section 4
2

reports on experiments that applied SISR to the bathymetry data
described and discusses experimental observations including our dis-
covery of significantly more accurate bathymetry using SISR versus
bicubic interpolation. Section 5 discusses the experimental results,
including conditions in which we expect SISR to be able to enhance LR
bathymetry knowledge. Section 6 provides a summary and our
conclusions.

2. Background

2.1. Previous work on seafloor-topography upscaling

Geophysical data, including bathymetry, is often sparse and irregu-
larly spaced. Gridding interpolation algorithms traditionally map this
sparse data to a gridded surface. One such interpolation algorithm is
Splines-In-Tension (SIT) (Smith and Wessel, 1990; Wessel and Bercovici,
1998). SIT is the gridded surface generator used in Generic Mapping
Tools (GMT) [Wessel et al., 2013] and widely used in the scientific
community (GMT's “surface”).

There are applications to undersea features of quantitative geomor-
phological techniques used for land data. Micallef et al. (2007) used
seafloor slope, aspect, plan curvature, and profile curvature to classify
distinct topographic areas of the Storegga Slide in the Norwegian Sea
through a decision tree process. Another, Wormald et al. (2012), used
morphometric techniques in combination with functional analysis of
metrics for semi-automated quantitative classification of morphological
structures on the submarine Monowai Volcano, such as lava flow fields,
ridges, cones, and faults. Morphometric functions used included slope,
aspect, hydrology tools, and curvature functions. These were applied to
the multibeam bathymetry to aid analysis of structural features, and
improve accuracy and repeatability of volcano interpretation. The func-
tions all highlight subtle changes in the bathymetry such as directional
(aspect) or the extent of change of the seafloor slope), while the hy-
drology tools and curvature functions identify sharp changes in ba-
thymetry (i.e., structure edges). These approaches provide a proof of
concept, i.e., evidence that different morphologies along the seafloor can
be quantitatively and consistently classified based on topographic
metrics.

A logical extension of seafloor metric techniques (Micallef et al.,
2007) and land classification (Iwahashi and Pike, 2007; Marmion et al.,
2009) is to apply machine-learning algorithms for automated classifica-
tion of undersea features. Two studies used worldwide predicted ba-
thymetry from Smith and Sandwell (1994). In one study, Gorini (2009),
applied morphometric quantities in (Micallef et al., 2007) on predicted
bathymetry to produce a worldwide map of nine different global geo-
morphology types. Gorini used the ISODATA unsupervised classification
algorithm (Mather and Koch, 2011) to cluster undersea regions into nine
categories. More recently, Valentine et al. (2013) used a neural network
auto-encoder approach for seamount and provided automated identifi-
cation of seamounts in Smith and Sandwell (1997) bathymetry with a
true positive skill rate of 72.3%. How to discriminatively learn a
low-dimensional feature space, in which the mapped features have small
within-class scatter and big between-class separation, is a challenging
problem. Zhou et al. (2019) describe a technique, compact and
discriminative stacked auto-encoders for this problem.

The problems of within-class diversity and between-class similarity
are still two big challenges. A method to learn discriminative CNNs to
boost the performance of remote sensing image scene classification was
developed by optimizing a new discriminative objective function for
training (Cheng et al., 2018b). A recent study used sonar data with ma-
chine learning (Lawson et al., 2017), applying decision forests and
extra-tree classifiers (Geurts et al., 2006) to identify seamounts and
mid-ocean ridge segments along the East Pacific Rise (EPR). Using
labeled training data based on localized statistical metrics for bathymetry
and topography they achieved highest classification skill with test data
from the Pacific, 97%, using the extra-tree classifier.
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2.2. Single-image super-resolution

Gridded bathymetry can be treated as a continuous grayscale image
for computer vision approaches from image processing for increasing
image resolution (Milanfar, 2010). This problem is called “super--
resolution”. Early methods combined multiple frames, where each frame
was slightly offset from others. Example-based methods for
super-resolution (Freeman et al., 2002) led to single-image super--
resolution (SISR) where image upscaling is based on a LR-HR dictionary
(i.e. basis space). SISR is an ill posed problem, because many unique HR
images can share a single LR image, a process that is not invertible. The
SISR methods assume a mapping between the two resolutions, both for
internal examples at various scales and similar external examples (Yang
et al., 2014).

Next we discuss methods used in our research. An early SISR method
is neighborhood embedding (NE) methods (Chang et al., 2004). This
assumes that LR and HR patches lie on similarly shaped manifolds and
that new pairs of data are described as a local linear combination of
existing examples on the manifold. Variants of this include NE with least
squares (NE-LS) and NE with the addition of nearest neighbor least
squares (Yang et al., 2008) showed how to use sparse representation for
super-resolution by linking a pair of LR and HR dictionaries and assuming
the same few columns that approximate the LR image patch will create a
HR image patch. Zeyde et al. (2010) improved on this by achieving
higher quality in terms of peak signal-to-noise ratio (PSNR) and fewer
artifacts. Wu and Bai (2018) used dictionary learning to produce sparse
representations for seismic imaging data.
Fig. 1. Areas used in this paper from the (top row) Juan de Fuca Ridge (middle r
Respectively, these area are labeled JUAN, NEPR, and SEPR.
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More recently (Timofte, et al., 2013) proposed two methods: (1) the
anchored neighborhood regression (ANR) and (2) global regression (GR).
ANR obtains comparable quality to early methods while almost an order
of magnitude faster, and GR gains additional speed by sacrificing quality.
Timofte et al. (2014) improved ANR with an adjusted anchored neigh-
borhood regression (Aþ), similar to super-resolution by simple functions
(SF) (Yang and Yang, 2013); i.e., by regressing on all training data rather
than a dictionary. The improved method, termed jointly optimized re-
gressors (JOR) (Dai et al., 2015), uses k-nearest neighbors to associate an
optimal regressor for each image patch and then uses a regressor for
super-resolution.

3. Design

3.1. Data

We used collocated LR and HR bathymetry data for our experiments.
The LR data is 1-minute bathymetry from the 2014 GEBCO grid
(Weatherall et al., 2015). The collocated HR data is from side-scan sonar
and MBES datasets (Carbotte et al., 2004, http://www.marine-geo.org)
and Global Multi-Resolution Topography GMRT Synthesis (Ryan et al.,
2009, http://www.geomapapp.org). We considered three mid-ocean
ridge regions in the Pacific Ocean. These regions are along the Juan de
Fuca Ridge (JUAN) and two sections of the East Pacific Rise (EPR) Ridge,
North EPR (NEPR) and South EPR (SEPR) regions. The eastern sections of
the Pacific are: (1) deep enough regions for satellite altimetry to predict
bathymetry; (2) the regions along ridges are shallower than other parts of
ow) North East Pacific Rise Ridge (bottom row) South East Pacific Rise Ridge.

http://www.marine-geo.org
http://www.geomapapp.org
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the Pacific so that affects of upward continuation are lessened, and (3)
available data of the regions are abundant as shown in Fig. 1. The JUAN
area is an intermediate spreading center, at the boundary between Juan
de Fuca Plate and Pacific plate, with a spreading rate of 56 mm/yr
(Wilson, 1993). Gridded bathymetry data is available as part of GMRT
Synthesis (Ryan et al., 2009), from multibeam sonar data from 36
research cruises (1981–2009). The spreading center has a well-defined
ridge with a relatively broad axial valley at its crest.

The NEPR area is on the East Pacific Rise off the Pacific coast of
Central America (8�N-18�N). It includes 300-m horizontal resolution
gridded bathymetry, which is a combination of data from side-scan phase
Fig. 2. In each row, the inset to the left is high-resolution gridded sonar data obtaine
topography from the general bathymetric chart of the oceans (GEBCO 2014) grid is

4

bathymetry sonar and multibeam sonar system surveys (Macdonald,
2012).

The SEPR area is 1700 km to the southwest from 7�-9�S and was
mapped with multibeam sonar in 1991 (Cochran et al., 1993). This data
has a grid resolution of 100-m and covers roughly 150 km to each side of
ridge axis. Bathymetry of SEPR is broadly similar to that of the NEPR, but
while depth of the ridge crest varies at the NEPR, it is relatively constant
at the SEPR (Cochran et al., 1993). The data set's northern edge is
approximately 1700 km southwest of the southernmost part of NEPR
coverage. Fig. 2 shows for the areas of interest, the high-resolution
gridded sonar data obtained from global multi-resolution topography
d from global multi-resolution topography (GMRT), and low resolution seafloor
to the right.
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(GMRT) (Ryan et al., 2009) is on the left, and low resolution seafloor
topography from the general bathymetric chart of the oceans (GEBCO
2014) grid Weatherall et al. (2015) is to the right.

We collected corresponding HR and LR bathymetry data from these
three areas, first converting LR and HR data from the angular coordinate
system (latitude and longitude) to Cartesian UTM coordinates. We then
upsampled the LR data from a 1/15 resolution difference of the HR to 1/6
resolution difference using bicubic interpolation (Press et al., 2007, Sec.
3.6.3). Next we aligned the three data sets to overlapping points using a
triangulation-based linear interpolation. Finally, we parsed data into
corresponding overlapping 10 � 10 LR blocks and 60 � 60 HR blocks
(Fig. 3) resulting in 1127, 2455, and 4232 blocks respectively.

From these we plotted depth and roughness distributions (Fig. 4) for
the three regions. The depth distribution, or hypsometry, came from all
depth nodes with the corresponding LR (Fig. 4a) and HR (Fig. 4b) blocks.
Roughness is standard deviation of depths within a patch (Fig. 4c and 4d
for the LR and HR patches). We processed these through the kernel
density-smoothing algorithm (Bowman and Azzalini, 1997) as imple-
mented in the “ksdensity” function of the Matlab Statistics and Machine
Learning Toolbox, (2017).

Topographically, JUAN contains shallower depths of the three dis-
tributions. NEPR and SEPR have similar depths, with a wider distribution
of depths in NEPR. The JUAN and NEPR regions exhibit multimodal
hypsometry, while the SEPR region is largely unimodal. Depth distribu-
tions between the LR and HR versions appear similar. Roughness for
JUAN shows a largely smoothed region compared to NEPR and SEPR
regions. The roughness peak for JUAN is close to zero and LR and HR
distributions appear similar. The NEPR and SEPR roughness distributions
are different. The peaks for both are further away from zero than the
JUAN peak. The roughness also increases for both when going from the
Fig. 3. Two examples of high-resolution (HR) and low-resolution (LR) patches from
patch data.

5

LR version to the HR version.

3.2. Single image super-resolution methods

In this paper we compare the upscaling skill of eight SISR methods
against the skill of four interpolations algorithms (Table 1). Four of the
methods use data invariant linear filters and include SIT 1990, SIT 1993,
SIT 1998, and bicubic interpolation. The other eight methods require
training from extracted features of sample coincident LR and HR patches:
NE, NE þ LS, NE þ NNLS, Zeyde et al., ANR, GR, Aþ, JOR, and SRF.
These SISR methods are trained with the same features and procedures.
To account for the inherent differences in the bathymetry data, we
treated the HR and LR blocks as a single grayscale image, in which we
treated depth as the intensity value of an image. We designed the training
dictionary to a size of 512 and trained using the approach presented in
Zeyde et al., [2010]. During the SISR algorithm training phase, the K-SVD
dictionary training algorithm used a sparsity-based minimization with a
target sparsity of 20. The sparsity was a value that was designed to be
changed, and appears to be application specific. In the original program,
the previous author left a comment that the value of this variable is
“TBD”. We needed to alter the codes to perform on continuous depth
maps instead of [0, 255] binned data. The original codes used were
designed originally to work on images, to adapt them to allow their use
on topological data we needed to change the target sparsity value.

Standard SISR techniques often involve iteratively learning a map-
ping between corresponding HR and LR datasets. For natural imagery,
training the SISR methods begins with HR imagery, which is down
sampled to create the corresponding LR image. This process inherently
maintains alignment between the LR and HR data. The data is also bound
between minimum and maximum intensities with pixel values
the SEPR data sets. There is a scale difference of x6 between the HR and LR



Fig. 4. Hypsomtery and roughness distributions for the JUAN, NEPR and SEPR areas. Fig. 4a and 4b are hypsomtery for the LR and HR grids, respectively. Fig. 4c and
4d are roughness distribution for the LR and HR grids.
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traditionally being an 8 bit integer valued between 0 and 255. In order to
apply the SISR techniques to the bathymetry data, the SISR approaches
and bathymetry data required the following modifications.

3.2.1. SISR Modifications
Unlike natural images, the HR and LR data are measured from inde-

pendent systems (sonar and satellite altimetry, respectively), which es-
timate ocean depth. The SISR approaches are customized to handle two
data sources (HR and LR separately). With these changes, SISR tech-
niques now function to map not only resolution differences, but
compensate for sensor differences as well. The multiscale procedure for
the Aþ, JOR, and SRF methods was not used in this work. As discussed,
the programs used were designed originally to work on images. The
original codes used a scaling feature parameter for performing bicubic
interpolation on the images to make recursively scaled images. The
original magnification code was set to x3. This process works better on
larger images, as the scaling of both the high resolution and low reso-
lution patches has a positive impact.

However this was not the case for our application. It created an issue
of mismatched scaled high and low res patches. If we were to perform
additional down sampling this would introduce undesirable noise. By
removing the process we obtained more desirable results.

Specifically, JOR is set up to use 5 million training samples, 32 joint
regressors learned by 20 iterations of the EM algorithm outlined in Dai
et al. (2015). Furthermore, all SISR methods are set up to operate with a
window size of 3 � 3 pixels with an overlap of two pixels.

3.2.2. Bathymetry Modifications
Bathymetry data was also modified to work with SISR algorithms.

Since the SISR algorithms used were designed for natural images,
training and testing data was adjusted to fit the requirements. HR and LR
bathymetry blocks (represented in natural depths) were normalized be-
tween 0 and 1 by dividing recorded depths by depth of the Mariana
6

Trench (36,200 feet deep). Normalization was applied before training of
SISR methods and reversed after their application to obtain depth esti-
mates on the same scale as original data. Also to minimize quantization
errors depth values are kept in 64-bit resolution so HR and LR data can be
encoded without adding significant quantization noise.

4. Results

Three sets of experiments focused on trends and limitations of
applying SISR techniques to bathymetry. We compared the performance
of SISR techniques quantitatively in terms of rootmean-square error
(RMSE Eq. 1).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðbyi � yiÞ2�n
s

(1)

In Eq. 1 yi represents ground truth soundings from MBES mapping
systems, yˆi corresponding estimates from performing SISR of coincident
LR data, and n is the total number of individual soundings extracted from
the patch in a region. Overall, we used the RMSE as a metric to compare
error in estimated HR from observed ground truth.

We then used mean and standard deviation of the RMSE calculations
for hypothesis testing, Student's t-test (Press et al., 2007), testing for
significance between SISR methods and the lowest RMSE from an
interpolation method. We rejected the null hypothesis at p � 0.05. Stu-
dent's t-test indicated both significantly improved or degraded perfor-
mance based on, respectively, lowered and increased RMSE when
accompanied with rejection of the null hypothesis.

4.1. Internal validation

Internal validation of the twelve techniques for each of the three data
sets separately used 5-fold cross-validation, where 80% of data from each



Table 1
Descriptions of Interpolation and SISR algotithms Used in Experiments.

1 Splines in Tension (SIT) -1990
Widely used algorithm. Uses the Generic Mapping Tools (GMT) software
package

2 Splines in Tension (SIT) -1993
Uses Matlab regspline2d function. Used within open source GIS (GRASS GIS)
package

3 Splines in Tension (SIT) -1998
Uses Matlab spline2d function. Interpolates data with a cubic spline in 2
dimensions.

4 Bicubic Interpolation (BI)
Linear space-invariant interpolation scheme. An extension of cubic interpolation
for interpolating data points on a 2D grid

5 Neighborhood Embedding þ Least Square (NE þ LS)
Uses unconstrained least squares to solve regression. It is based on neighbor
embedding, i.e. how a feature vector corresponding to a patch can be
reconstructed by its neighbors in feature space

6 Neighborhood Embedding þ NonNegative Least Square (NE þ NNLS)
Very similar to NE þ LS. Uses Langrange multipliers to solve problems with
using standard SUM1-LS method

7 Sparse Representation Single Image Scale Up (Zeldye)
Uses sparse-representation modeling. Assumes a local Sparse-Land model:
assumes that each patch from the images considered can be well represented
using a linear combination of few atoms from a dictionary.

8 Anchored Neighorhood Regression (ANR)
ANR uses Ridge Regression to learn exemplar neighborhoods, using these
neighborhoods to precompute projections to map LR patches to HR domain.
This method learns sparse dictionaries and regressors, anchored to dictionary
atoms

9 Global Regression (GR)
Unlike ANR where neighborhood size is set, in GR the neighborhood coincides
with whole dictionary in use. This method uses Ridge Regression/Collaborative
Representation.

10 Adjusted Anchored Neighorhood Regression (Aþ)
Based on ANR but instead of learning regressors on dictionary it uses full
training material approach similar to methods like Simple Functions. Aþ still
trains the dictionary, but keeps training samples (neighborhood) after the
dictionary is trained.

11 Jointly Optimized Regressors (JOR)
Exemplar-based -input LR image decomposed to fixed size overlapping patches
size. This method uses jointly optimized collection of fixed number of local
regressors. Overall, the determined “most appropriate regressor” is used to
resolve the HR estimate

12 Super Resolution Forests (SRF)
Does not rely on neighborhood embedding and sparse-coding, but uses locally
linear regression. This replaces the single dictionary approach of other methods
with many smaller ones.
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region was used for training and the remaining 20% for validating per-
formance of each SISR method. So we trained and applied five separate
sets of SISR models to each region. Only eight of twelve SISR methods in
our experiments were trainable with prior extracted information from
samples of coincident LR and HR patches.

The five divisions of training and testing data does not qualitatively
alter the general trend of results in SISR performance. Small changes in
training data does not cause a large change in model performances.
Table 2
Internal test results: A) Root-mean squared error (rmse) values; B) Hypothesis testin
significantly lower rmse compard to bicubic interpolation (reject null hypothesis); Ita

Bicubic NE þ LS NE þ NNS Zeyde

(A)

Juan 34.49 34.18 34.82 33.79
Nepr 46.65 44.37 46.26 43.99
Sepr 46.93 42.63 43.98 42.38
All 40.10 38.86 39.64 38.74

(B)

Juan 1 0.67 0.64 0.33
Nepr 1 1.3E-03 0.62 1.7E-04
Sepr 1 1.3E-05 0.005 3.8E-06
All 1 0.0096 0.47 0.0044
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Table 2a tabulates the RMSE of multiple SISR algorithms across this five-
fold cross validation. This represents overall performance of the twelve
SISR methods when training is performed internally to the region. Fig. 5
displays mean RMSE and standard error of the mean, σM, Eq. 2:ffiffiffiffiffiffi
σM

p ¼ σ
N
; (2)

where σ is standard deviation of the RMSE, and N is sample size. Table 2
tabulates the p-value of accepting the null hypothesis from Student's t-
test. The bold values indicate that the SISR algorithm shows significantly
lower RMSE compared to bicubic interpolation (i.e., reject the null hy-
pothesis); italic highlights means significantly larger RMSE. A signifi-
cantly lower RMSE (bold) is the desired result.

Based on five-fold cross validation, SISR algorithms generally upscale
from LR to HR grids with significantly enhanced skill versus bicubic
interpolation as quantified by Student's t-test for the two East Pacific
Ridge data sets. Seven SISR methods pass t-test for SEPR, five SISR
methods pass for NEPR. For the JUAN region, only the SRF method
provides enhancement.

Additionally, we computed SISR performance on bathymetry data
when all available data is mixed. Rows in Table 2 labeled ALL show
RMSE and p-values from Student's t-test when all data are combined in
five-fold cross validation. The same SISR that passed the t-test in NEPR
pass for this ALL case, but with higher p-values than NEPR or SEPR cross-
validation results alone.

4.2. External validation

For external validation, the SISR methods learn from patches in one
region and then predict bathymetry in an external regions. For example,
SISR techniques trained on JUAN data would be applied to enhance SEPR
and NEPR. Here we used the entire data set from each of the three regions
to create separate SISR models and then applied separately to the
remaining two regions. In general, these tests demonstrated that trained
models based on regions mapped by sonar could be extended into non-
neighboring regions where only satellite altimetry predicted bathymetry
is available. Fig. 6 shows bar graphs for these tests.

Note the bicubic interpolation method requires no training. All other
trained SISR methods have two bars for each of two external training
areas applied to the test area with the applicable RSME above each bar.
There are no standard deviation bars here since predictions are for the
entire test area at once. We assume that the ratio of (error of predicted
depth)/(predicted depth) is equal to the fractional standard deviations of
internal tests.

Table 3 a tabulates RMSE values in Fig. 6 and 3 b the p-value of
accepting the t-test null hypothesis. Bold and Italic (significant
improvement or degradation respectively) highlight tests in which the
null hypothesis is rejected for p < 0.05, compared to bicubic interpola-
tion. In addition, we highlight cases where the null hypothesis is rejected
for a weaker value of p < 0.1 by placing numbers in parentheses.
g p-values vs bicubic interpolation. Bold values indicate SISR algorithm shows
lic - significantly larger rmse. Bold values are desired result.

ANR GR Aþ JOR SRF

33.78 33.80 34.02 36.78 32.37
43.79 43.95 45.57 45.54 43.56
41.58 41.59 45.50 42.60 42.24
38.61 38.77 39.45 40.05 37.84

0.32 0.34 0.52 0.0029 0.003
5.4E-05 1.3E-04 0.13 0.16 9.8E-06
4.9E-08 5.3E-08 0.16 1.3E-05 1.5E-06
0.0018 0.0054 0.17 0.92 2.1E-06



Fig. 5. Internal test results: average RMSE results in JUAN, NEPR and SEPR regions for internal five-fold tests. Lower RMSE means a better result. A bar graph of the
overall average RMSE scores for all data in the region with standard error of mean given by the error bar.
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Fig. 6. External test results: Bar graphs providing the RMSE results in the JUAN, NEPR and SEPR external tests. The RMSE for the data invariant linear filters, such as
bicubic interpolation, will result in one value since these interpolation methods have no training mechanism. The trained methods give varied RMSE for the two
regions external to the train region.
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One external case, using NEPR trained SISR algorithms, showed
significantly lowered RMSE versus bicubic interpolation. In particular,
the methods by Zedye, ANR, GR and SRF showed significantly lowered
RMSE. For the weaker p < 0.1 criterion, training in JUAN provides
lowered RMSE in SEPR for these same methods. In addition, training the
SRF algorithm in SEPR to predict NEPR has p¼ 0.052, qualitatively close
to passing at p < 0.05.
9

Experiments for data invariant linear filters alone showed that the
bicubic interpolator outperforms all of the SIT algorithms. This result
indicates that for the case of upscaling of gridded bathymetry (e.g.,
digital bathymetry models or DBMs), the bicubic method provides lower
RMS error versus SIT. For data that is irregularly spaced and potentially
sparse, however, SIT methods may be a better choice when using data
invariant linear filters for interpolation.



Table 3
External test results: A) Rmse values; B) Hypothesis testing p-values vs bicubic interpolation. Bold values indicate SISR algorithm shows significantly lower rmse
compard to bicubic interpolation (reject null hypothesis); Italic - significantly larger rmse. Bold values are desired result.

Bicubic NE þ LS NE þ NNLS Zeyde ANR GR Aþ JOR SRF

(A)

JUAN Test
SEPR Models 34.49 36.24 38.94 35.20 35.71 36.32 33.99 38.87 34.02
NEPR Models 34.49 35.67 39.64 35.01 35.01 34.95 34.16 37.93 34.33
NEPR Test
SEPR Models 46.65 46.65 47.10 45.89 46.22 46.60 46.18 48.41 (45.28)
JUAN Models 46.65 46.20 46.58 45.97 45.90 46.16 46.26 50.63 45.82
SEPR Test
NEPR Models 46.93 45.26 50.47 44.92 44.69 44.74 46.01 46.80 44.80
JUAN Models 46.93 45.56 45.95 (45.26) (45.05) (45.13) 46.26 49.64 (45.12)

(B)

JUAN Test
SEPR Models 1 0.02 0.02 0.33 0.10 0.016 0.49 2.9E-08 0.52
NEPR Models 1 0.11 8.1E-05 0.48 0.48 0.53 0.65 1.1E-05 0.83
NEPR Test
SEPR Models 1 1.00 0.55 0.28 0.54 0.94 0.51 0.017 0.052
JUAN Models 1 0.53 0.92 0.34 0.29 0.49 0.58 4.8E-07 0.24
SEPR Test
NEPR Models 1 0.099 0.13 0.046 0.026 0.029 0.36 0.90 0.032
JUAN Models 1 0.18 0.34 0.098 0.062 0.074 0.51 0.012 0.069
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5. Discussion

Based on the five-fold cross validation, the SISR algorithms generally
upscale from LR to HR grids, with significantly enhanced skill versus
bicubic interpolation as quantified by Student's t-test for the two East
Pacific Ridge data sets. The performance in the JUAN region, however, has
less skill, with only the SRF algorithm showing significant improvement.
Examining these results with the roughness distributions in Fig. 4 shows
that trained SISR models can enhance localized bathymetric estimates in
areas with roughened topography and where HR multi-beam data is
available in close proximity. For smoothed regions, because of lowered
high frequency content, many SISR methods may provide no advantages
and, in some cases, are worse predictors versus bicubic interpolation.

In addition to the roughness requirement, both the internal and
external validation experiments show that there must be an adequate
number of detailed exemplars from which to train. For internal tests, the
ratio of exemplar to test patches is four to one. The external validation
experiment of using NEPR to predict SEPR is the only external upscaling
case where the SISR methods provide enhanced skill versus interpola-
tion. The NEPR region had twice the data of the SEPR set.

As a test region, SEPR was the best region in which to predict. Using
NEPR for training, upscaling using Zeyde, ANR, GR and SRF pass Student
t-test at p < 0.05. These same methods pass using JUAN with a weaker p
< 0.1. These results may be explainable from the wider depth ranges in
the JUAN and NEPR hypsometries versus the comparatively tighter
hypsometry of SEPR. Generally, diverse training sets provided enhanced
skill to prediction than less diverse sets.

The range of depths in SEPR is a subset of the range of depths of NEPR
and JUAN. The match of SEPR roughness makes NEPR a stronger pre-
dictor for SEPR. Likewise, because SEPR has lower diversity of depths
than that of NEPR, it is a poor predictor for NEPR.

The SRF method shows some evidence of robustness versus training
data available. For the case of training SRF with SEPR data to predict the
NEPR, the algorithm barely fails the stronger Student's t-test of p < 0.05
as its p ¼ 0.052 for this case; no other technique was close. Also, SRF is
the only SISR method that enables enhanced cross-validation in JUAN.
The relatively smaller amounts of rough examples here versus NEPR and
SEPR, however, is enough for the SRF method to have enhanced skill.

6. Discussion and conclusions

We addressed the following questions: can computer vision based
10
methods be used to enhance our LR knowledge of seafloor topography
with more skill than Splines-In-Tension or bicubic interpolation alone,
and under what circumstances can enhancement occur? We showed that
SISR, can enhance this LR knowledge of bathymetry through upscaling.
We quantitatively judged successful enhancement when RMSE of
upscaled LR bathymetry is significantly lowered by using SISR methods
versus linear invariant interpolation as quantified by hypothesis testing.
Table 1 lists and describes SISR methods tested in this paper.

We found that multiple SISR methods (Table 2) can provide statisti-
cally significant improvement in estimating HR information. This is true
within a localized region under conditions of roughness present in the
seafloor, as for the NEPR and SEPR regions. There were O(103) training
exemplars; the ratio of training to testing exemplars equaled four to one.
The JUAN area is smooth compared to EPR regions. Here, SISR methods
offered little improvement since there is a proportionally lower amount
of high-detailed seafloor from which to train.

In addition, we discovered that four SISR methods (Table 3) can
significantly lower RMSE versus interpolation for the case of external
prediction (training in one area to enhance LR bathymetry in a second,
distant area). This case occurred for training in the NEPR to enhance the
SEPR. JUAN also enhanced SEPR with weaker acceptance criteria.
Meanwhile, SEPR could not be used to predict NEPR (except for the SRF
method) or JUAN. NEPR and JUAN were unable to enhance each other.
We interpret these results to mean that externally trained methods can
enhance a LR bathymetry grid if rough topography is present in both
areas and the range of depths and features in the training area contains
the range of depths in the enhancement area.

We also found evidence that the SRF method may be a more robust
enhancement algorithm versus the other algorithms. SRF was the only
algorithm to provide internal enhancement in JUAN and upscale NEPR
using SRF trained in the comparatively smaller SEPR set. This observa-
tion is aligned with two other studies (Martin et al., 2015, Lawson et al.,
2017), indicating that random-forest based computer vision algorithms
provide predictive skill for geophysical or topographic predictions
involving the ocean floor.

SISR methods can significantly upscale LR bathymetry to provide
lower RMSE versus interpolation. Certain conditions must be met to
successfully implement the method. The SISR methods perform best
when there is a large quantity of local MBES data available for training
the SISR methods. High-detailed topographic information must be pre-
sent, and the range of depths of the training region should include the
range of the test region. In contrast, interpolation offers as good or better
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upscaling in areas where only a few soundings of MBES data are avail-
able, or in smoothed regions.

Further investigation could focus on SISR effectiveness in other
regions that are only partially mapped by deep-water multibeam
systems. In this paper, we considered only three regions in the Pacific
Ocean. Application of these methods in the Atlantic Ocean could be
effective, given the evidence of higher SISR skill with seafloor roughness.
In addition, based on the increased skill in the internal tests, these SISR
methods could be applied as inpainting, the process of restoring damaged
or missing parts of images (Elad, 2010, Starck et al., 2015). The trained
super-resolution methods used in this paper could be trained to
compensate for any missing ping data in bathymetric side-scan images;
neighboring seafloor structures could be used as exemplars and enhance
the bathymetric estimates of the textural structure of missing regions.
Finally, increasing the amount of training data inherently alters the
performance of SISR methods discussed in this paper. With more data,
deep learning methods (Goodfellow et al., 2016) that require large
amounts of exemplars, such as convolutional neural networks (SR-CNN)
(Dong et al., 2015)], could become implementable. Such an effort would
introduce a broader range of features of undersea seafloor structures.
Additionally it could be possible to learn more powerful feature repre-
sentation by using convolutional neural networks (Cheng et al., 2018a, b,
c) and some discrimination information (Cheng et al., 2018a, b, c).
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