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Abstract 

Background:  In sub-Saharan Africa, malaria interventions over the last decades have been successful in reducing 
both mortality and morbidity. In western Kenya however some areas experience contrasting outcomes of the ongo-
ing interventions while the causes for this observation remains not yet clearly known.

Methods:  The WHO insecticide (deltamethrin) susceptibility test of the common malaria vectors was studied. Mul-
tiple surveys on household use and hospital prescriptions of antimalarial drugs from 2003 to 2015 were done. Along 
with this, cross sectional surveys on their availability in the local drug dispensing outlets were also done in 2015. 
Monthly precipitations and air temperature data was collected along with systematic review on abundance and com-
position of common malaria vectors in the study area before and during interventions. The above factors were used 
to explain the possible causes of contrasting outcome of malaria interventions between the three study sites.

Results:  Areas with malaria resurgence or sustained high transmission (Kombewa and Marani) showed higher com-
position of Anopheles funestus sensu lato (s.l.) than the previously abundant Anopheles gambiae sensu stricto (s.s.) and 
the later had higher composition to an area with a sustained infection decline (Iguhu). Anopheles gambiae s.l. from 
Kombewa showed highest resistance (50% mortality) upon exposure to WHO deltamethrin discriminating dosage of 
0.75% while those from Marani and Iguhu had reduced resistance status (both had a mean mortality of 91%). Sam-
pled An. funestus s.l. from Marani were also highly resistant to deltamethrin as 57% of the exposed vectors survived. An 
increasing of mean air temperature by 2 °C was noted for Marani and Iguhu from 2013 to 2015 and was accompanied 
by an increased rainfall at Marani. Community drug use and availability in selling outlets along with prescription in 
hospitals were not linked to the struggling control of the disease.

Conclusions:  The malaria vector species composition shift, insecticide resistance and climatic warming were the 
likely cause of the contrasting outcome of malaria intervention in western Kenya. Surveillance of malaria parasite and 
vector dynamics along with insecticide resistance and vector biting behaviour monitoring are highly recommended 
in these areas.
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Background
Malaria has been the major public health concern in 
many tropical and subtropical countries but the interven-
tions have greatly reduced both morbidity and mortality 

cases [1]. Despite of the observed disease burden reduc-
tion, sub-Saharan still bears 90% of all malaria cases and 
92% of mortalities [1]. Asymptomatic infections in Africa 
have been halved and clinical incidence of the disease 
reduced by 40% between 2000 and 2015 [2]. Similarly, 
malaria outpatient consultations in Kenya have dropped 
from 25 to 35% to 18% and from 20 to 6% of all hospi-
tal admissions [3, 4]. The increased access, ownership 
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and use of the long-lasting insecticidal nets (LLINs) have 
greatly contributed to the decrease of morbidity [2]. The 
use of indoor residual insecticide spray (IRS) in combi-
nation with LLINs resulted to the observed reduction of 
disease burden [5, 6]. The LLINs ownership and use in 
Kenya have been consistently increasing since year 2000 
[7, 8]. However, the massive application of IRS in western 
Kenya started in 2005 and by 2010 only 38% of house-
holds in epidemic prone areas were covered and even less 
in the recent years [4, 8]. Prompt diagnosis and manage-
ment of malaria using efficacious anti-malarial drugs of 
choice remains one of the three important interventions 
[9–11]. The adoption of artemisinin-based combination 
therapy (ACT) recommended use of artemether 20 mg–
lumefantrine 120  mg as first-line treatment for uncom-
plicated malaria since 2004 [12]. About 92.8% of children 
with fever in 2015 were given ACT and only 1.4% used 
sulfadoxine–pyrimethamine (SP) [7].

Despite of the interventions described above, some 
areas in western Kenya successfully controlled the disease 
while others experienced changing dynamics [13]. Simi-
lar observation of sustained high transmission despite 
of the available interventions has been also observed in 
other parts of sub-Saharan Africa in recent years [14, 
15]. However, reasons contributing to this observation 
remain not clearly known in the midlist of the reported 
increasing vectors insecticide resistance and shift of vec-
tor populations in western Kenya [16, 17]. The known 
factors attributing to malaria resurgence and changing 
transmission dynamics [18] were used to explore the rea-
sons contributing to the contrasting outcome of the avail-
able malaria interventions in western Kenya.

Methods
Study area
This study was conducted from three areas with different 
malaria transmission intensity namely; Marani in Kisii 
County (hypoendemic), Iguhu which is located in Kaka-
mega County (mesoendemic) and Kombewa in Kisumu 
County which is in malaria hyperendemic zone (Fig. 1). 
The prevalence of asymptomatic malaria (2002–2010) 
among school age children for Kombewa, Iguhu and 
Marani were 47.1, 28.4 and 6.2% respectively [19]. Demo-
graphic characteristics of the population, topography, 
and climate together with malaria entomological infor-
mation are described elsewhere [19].

Parasitological and entomological surveillance
Monthly malaria finger pricks were done among school 
children and Giemsa-stained blood slide examined 
by microscope as from 2002 to 2016. Along with this, 
monthly pyrethroids spray catch to 30 randomly selected 
houses per site was also done. Total number of malaria 

confirmed cases were obtained from the outpatient regis-
ter books of the three hospitals located in the study area 
from 2005 to 2016. The number of confirmed malaria 
cases were obtained from the local health facilities.

Literature review on the composition of malaria vectors 
and interventions
Review of published research articles from the three 
study sites was done ranging from year 2000 to 2016. 
Electronic search of literatures was based on vector 
composition and abundance; biting activity; long lasting 
insecticide treated nets (LLINs) household ownership 
and use; indoor residual spray. The search was made with 
reference to the study sites on PubMed library. “Malaria 
vector species composition and abundance in western 
Kenya”; “indoor residual spray coverage in western Kenya” 
and “long lasting insecticides treated mosquito nets cover-
age in western Kenya”; “Malaria vectors biting behavior in 
western Kenya”. Furthermore, assessment of species com-
position and abundance of Anopheles gambiae complex 
in the study areas was done.

Malaria vectors insecticides susceptibility test
Insecticide susceptibility test was done using deltame-
thrin discriminating dosage (0.75%) for Anopheles gam-
biae sensu lato (s.l.) adult female mosquitoes using WHO 
tube bioassay guideline [20].

Drug use, availability and prescription surveys
Multiple cross-sectional surveys of anti-malarial drug 
prescriptions in the outpatient department were done in 
year 2003, 2007, 2010 and 2015 in three hospitals located 
in the study area. Along with hospital surveys, commu-
nity surveys on household anti-malarial drug use were 
also done in the same periods. A survey on availability 
of different types of anti-malarial drugs in community 
based drug outlets was done among 57 registered drug 
dispensing outlets in the study area.

Review of precipitation and air temperature data
Retrospective review of monthly mean maximum, aver-
age and minimum rainfall and air temperature data from 
2002 to 2015 obtained from nearby metrological stations.

Data management
Out of 183 searched publications on “malaria vectors in 
western Kenya” 14 papers qualified for the review. The 
search on “LLINS and IRS coverage in western Kenya” 
found 36 research articles and 13 of them were selected. 
Four articles on vector biting behaviour were retrieved 
from the specific study sites. Mortality score of malaria 
vectors exposed to deltamethrin was done according to 
WHO guidelines and resistance was determined at the 
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90% mortality threshold. Comparison of anti-malarial 
drug use and availability was done by using Pearson Chi 
square or exact test. Graphic presentation on variability 
from the mean of the long-term precipitations and air 
temperature data was given per study site.

Results
Trend of asymptomatic and clinical malaria 
and populations of indoor resting malaria vectors
The first cycle (2006) of LLINs mass distribution in 
western Kenya resulted to a decline of both asymp-
tomatic malaria and clinical cases. The second cycle 
(2011) responded appropriately at Iguhu but Marani 
and Kombewa experienced resurgence and persistently 
high transmission respectively despite of the third round 
(2015) LLINs distributions (Figs.  2, 3). The population 
of indoor resting malaria vectors per house per night at 

Marani also increased from 0.03 in December 2007 to 
1.07 in December 2016 Marani (Fig.  4). Whereas, vec-
tor composition at Kombewa and Iguhu remained with 
minor variations as from 2007 to 2016 but with consist-
ently higher densities at Kombewa (Fig. 4).

Composition of malaria vectors in areas with different 
responses of malaria interventions in western Kenya
Studies from 2002 to 2004 (Iguhu and Marani) found 
80% of all indoor resting vectors were An. gambiae sensu 
stricto (s.s.) and the rest were Anopheles funestus s.l. The 
vector density of An. gambiae s.s. was 4.95 and 0.19 per 
house per night for Iguhu and Marani respectively [21–
23]. Meanwhile, An. funestus s.l. constituted about 68% of 
all indoor collected vectors at Kombewa with the mean 
density of 6.96 vectors per house per night [21, 24]. How-
ever, following increased LLINs coverage (January 2012 

Fig. 1  Map showing the three study sites with different intensity of malaria transmission; Iguhu (mesoendemic), Kombewa (endemic) and Marani 
(epidemic)
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to June 2014), the population density of An. gambiae s.l. 
at Marani reduced from 0.19 to 0.06 vectors per house 
per night and that of An. funestus s.l. changed slightly 
from 0.19 to 0.17 [17, 21] (figure). Moreover, An. funes-
tus s.l. (in 2014) became the main vector at Marani with 
a composition of 74% of all indoor collected malaria vec-
tors. Between 2014 and 2016, the population of indoor 
resting vectors (mainly An. funestus s.l.) rose sharply 
(Fig. 4). Whereas at Kombewa, the density of An. funes-
tus s.l. decreased from 6.96 in 2004 to 1.08 in 2014 and 
still constituted 62% of all indoor collected vectors. An. 
gambiae s.s. density decreased from 3.24 (2004) to 0.16 
(2014) vectors per house per night and therefore mak-
ing the composition drop from 32% to 10%. Iguhu simi-
larly experienced decline of An. gambiae s.s. from 4.95 to 
0.35 vectors per house per night, but still remained as the 
main vectors by 53% composition [17, 21] (Fig.  5). The 
decline of malaria vectors was also along with reduction 
of sporozoites rates at Iguhu while remaining constant at 
Kombewa and increased at Marani [17].

Insecticide‑treated mosquito nets (LLINs) household 
ownership and indoor residual spray (IRS) scale up in 
western Kenya
Using free mass distribution of the LLINs strategy started 
in 2006, the coverage and ownerships greatly improved 
[7, 13, 17]. Marani experienced a sharp increase in LLINs 
ownership from 11.8% in 2004 to 65.8% in 2008 and up 
to 80% in 2014 where as at Iguhu the coverage gradually 
increased from 12.8% in 2004 to 24.6% in 2007 before 
sharply rose to 78% in 2014. Conversely, the LLINs own-
ership was relatively higher at Kombewa in 2004 (52.3%) 
which then rose to 77.9% in 2010 and then over 80% in 
2014 [13, 17, 19, 25] (Table  1). In western Kenya IRS 
started in 2005 and by 2010 only 38% of households in 
epidemic prone areas were sprayed and even less cover-
age in the recent years [4, 8]. From 2013 to 2015 IRS pro-
gramme shifted only to few districts and this was due to 
some constraints including the emergence of resistance 
to the previously sprayed pyrethroids but also none of the 
study sites sprayed recent years [26].
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Fig. 2  Long term trend of malaria parasitaemia in school age children in western Kenya. a Iguhu, b Marani, c Kombewa
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Susceptibility of Anopheles gambiae s.l. to deltamethrin 
in western Kenya
A total of 476 female An. gambiae s.l. were exposed to 
deltamethrin and 394 (82.7%) died after 24  h observa-
tion. Kombewa showed the highest deltamethrin resist-
ance with the mean mortality of 50% out of 113 exposed 
female mosquitoes. An. Gambiae s.l. form Marani and 
Iguhu had reduced resistance as 91.3% died out of 175 
and 166 of the exposed vectors respectively (Fig.  6). 
Moreover, An. funestus s.l. from Marani were resistant to 
deltamethrin as only 43% (21/37) of exposed female vec-
tors died.

Historical and current household drug use surveys
Before the introduction of ACT in western Kenya 
(2003) about 47% (487/1031), 44.9% (456/1031) and 4% 
(43/1031) of residents used amodiaquine, sulfadoxine–
pyrimethamine and chloroquine, respectively, while only 
4% (45/1031) reported using quinine. The proportion 
of ACT use in western Kenya was highest by 2015 (89% 
(1330/1493) while only 4.01% (60/1493), 1.2% (19/1493) 
and 0.4% (6/1493) of the residents treated malaria using 
SP, amodiaquine and chloroquine, respectively (Fig.  7). 
The household survey found more use of non-ACT oral 
drugs at Iguhu (9.6% (46/500) than Marani (6% (30/500) 

and Kombewa (1.6% (8/500) [χ2  =  27.54; p  <  0.001] 
(Table  2). The study site with good response to malaria 
interventions showed more use of the already resistant 
anti-malarial drugs than those experiencing infection 
resurgence.

Historical and current pattern of hospital anti‑malarial 
prescriptions
The anti-malarial outpatient prescriptions in three hos-
pitals located in the study areas in 2003 included amo-
diaquine by 47% (487/1036), SP by 44.5% (461/1036), 
chloroquine by 4.2% (43/1036) and 4.3% (45/1036) 
quinine. Three years after malaria treatment policy 
change (year 2007), ACT covered most of the outpa-
tient anti-malarial prescriptions by 60% (3786/6368) fol-
lowed by amodiaquine (18% (1127/6368), quinine (15% 
(961/6368) and SP (8% (488/6368). By 2010 the compli-
ance of ACT prescription dropped to 49.7% (412/829) 
of all prescriptions meanwhile SP rebound to 18.7% 
(155/829). ACT prescription patterns of Marani and 
Iguhu hospitals both declined between 2007 and 2010 
but Kombewa Hospital had an improved compliance 
to the new drug policy. By 2015 all hospitals prescribed 
ACT by 100% (4042/4042) to all outpatient malaria con-
firmed cases (Fig. 8).
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Availability of anti‑malarial drugs in the community drug 
outlets
A survey of 59 drug selling outlets was made in 2015 at 
Kombewa (18/59), Marani (20/59) and Iguhu (21/59). 
Availability of ACT was 100% (59/59) followed by 81.4% 
(48/59) of SP and the injectable quinine found in 64.4% 
(38/59) all of drug shops. Other drugs were oral quinine 
(62.7% (37/59), amodiaquine (15.3% (9/59) and chloro-
quine (6.8% (4/59). However, availability of SP mono-
therapy drugs was highest at Kombewa (94.4% (17/18) 
followed by Iguhu (90.5% (19/21) while with 60% (12/20) 
of the selling outlets at Marani [exact =  7.99; p  <  0.05] 
(Fig. 9).

Precipitation and air temperature variability in western 
Kenya
All sites showed increasing variations from the monthly 
means of maximum and minimum air temperatures as 
from 2011 to 2015. All study sites registered highest varia-
tion from the mean minimum temperatures in the recent 
years. Kombewa observed up to 2.8 °C in March 2016 and 
Marani up to 2.5  °C in September 2014 whereas Iguhu 
noticed the highest increase of 3  °C. Between 2013 and 

2016 there was an increase of mean temperature by 2 °C 
for Marani and Iguhu which consequently led to incre-
ment of the mean of the minimum temperature at Marani 
to 16.13 °C in 2016. Marani also experienced highest rain-
fall increase in September 2014 (Figs. 10, 11, 12).

Discussion
Sub-Saharan Africa still carry the highest malaria disease 
burden with 92% of the global mortalities [1]. However, 
there is a significant reduction of death by 40% between 
year 2000 and 2015 [2]. Similar success has been also 
observed in Kenya where the asymptomatic infections 
have been halved and significant decrease of clinical out-
patient consultations as well as admissions [3, 4, 7]. The 
global malaria action plan (GMAP) of 2008–2015 tar-
geted to reduce malaria cases by 75% but the infection in 
some areas in western Kenya was still increasing (Fig. 2). 
Existence of disease resurgence despite of the intensified 
interventions in the recent years has not only being seen 
in western Kenya but also in other countries of sub-Saha-
ran Africa but with inadequate explanation on the cause 
[13, 15, 27].
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This study found a significant reduction of indoor rest-
ing malaria vectors since the start of interventions in 
some sites (Fig.  4). Marani experienced an increase of 
indoor resting vectors from 2014 to 2016 which was also 
along with an escalation of asymptomatic parasitemia 
among primary school pupils (Figs. 2, 4). In conjunction 
with increased parasitemia at Marani, An. funestus s.l. 
became the main vector as they constituted three quar-
ters of the total indoor female vectors and the rest being 
Anopheles arabiensis. Before interventions An. gambiae 
s.s. covered about 80% of all indoor resting vectors there-
after An. funestus s.l. took over. Elsewhere in East Africa 
studies have reported an increasing importance of An. 

funestus s.l. in malaria transmissions with an increase of 
not only abundance but also sporozoites rates [28, 29]. 
A study in western Kenya showed consistent findings as 
An. funestus s.l. was also found to have a raising abun-
dance with highest sporozoite rate as compared to other 
vectors [30]. The LLINs ownership and use scale-up also 
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Table 1  Coverage of  long-lasting insecticidal nets (LLINs) 
from 2004 to 2015 from the three study sites showing dif-
ferent response of interventions in western Kenya

Year Household LLINs ownership References

Kombewa (%) Marani (%) Iguhu (%)

2004 52.3 11.8 12.8 [19]

2007/2008 65 65.8 24.6 [19]

2014 > 80 > 80 78 [17]

2015 > 80 > 80 > 80 [13]
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changed the composition of malaria vectors at Kombewa, 
the population of An. gambiae s.s. reduced by 22% while 
that of An. funestus only decreased by 6%. Iguhu has the 
highest composition of An. gambiae s.s. with the least 
populations of An. funestus s.l. where there was a sus-
tained low transmission and controlled vector popula-
tion (Figs.  2, 4). One factor that clearly differentiates 
these areas is that sites with non-improving outcome of 
interventions (Marani and Kombewa) have An. funestus 
s.l. as the major vector (Fig.  5). The vector have shown 

to be the main malaria transmitting agent as a result of 
an increased sporozoites rates as well as abundance while 
exhibiting highest insecticide resistance to the widely 
used pyrethroids [30, 31]. Studies on insecticide sus-
ceptibility of this vector in East and South Africa found 
very high resistance to both deltamethrin and perme-
thrin [29–32]. Populations of An. funestus s.l. from Kisii 
showed similar susceptibility upon deltamethrin expo-
sure. Other studies in western Kenya also found as low 
as 10% mortality upon exposure to deltamethrin [30, 31]. 
The sustained control of malaria infection at Iguhu could 
be due to presence of insecticide susceptible An. gambiae 
s.s. as the major malaria vector (Figs.  5, 6). Whereas as 
Kombewa had a composition of all insecticide resist-
ant vectors (An. gambiae s.s. as well as An. funestus s.l.) 
which could have limited the benefits of LLINs and IRS. 
Generally, study areas with high composition of insec-
ticide resistant vectors experienced infection resur-
gence or sustained high transmission which is contrary 
to the global technical strategy for malaria 2016–2030 
[1]. Moreover, having higher composition of highly 
anthropophilic An. funestus s.l. with such high resistance 
levels amid of changed biting behaviour increase chances 
of more malaria transmission [17, 30, 31, 33]. Neverthe-
less, the change in biting time from midnight to earlier or 
late has been reported from all the three study sites and, 
therefore, this could contribute to even more infection 
transmission potentials to areas with increasing or sus-
tained high indoor vector densities [17, 33, 34].

Precipitations and air temperature among others fac-
tors significantly affect the breeding and population 
growth of malaria vectors [35, 36]. In East Africa high-
lands for example, climatic warming has been associated 
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Fig. 7  Trend of household anti-malarial drug use in three study sites 
of western Kenya from 2003 to 2015. a Iguhu, b Marani, c Kombewa

Table 2  Compared household use of  different anti-malarial drugs from  2003 to  2015 of  three study sites of  western 
Kenya

Survey year Study site Type of anti-malarial drug used χ2 p value

(SP, AQ, CQ) (ACT, QN)

2015 Marani 6% (30/500) 94% (470/500) 27.54 < 0.0001

Kombewa 1.6% (8/500) 98.4% (492/500)

Iguhu 9.2% (46/500) 90.8% (454/500)

2010 Marani 31.9% (91/285) 68.1% (194/285) 50.48 < 0.0001

Kombewa 26.1% (52/199) 73.9% (147/199)

Iguhu 53.6% (185/345) 46.4% (160/345)

2007 Marani 30.1% (1145/3800) 69.9% (2655/3800) 119.45 < 0.0001

Kombewa 36.3% (340/937) 63.7% (597/937)

Iguhu 21% (984/4492) 79% (3508/4492)

2003 Marani 95.4% (207/217) 4.6% (10/217) 1.78 0.1821

Kombewa 93.9% (170/181) 6.1% (11/181)

Iguhu 96.2% (607/631) 3.8% (24/631)
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with malaria epidemics [37, 38]. The increasing monthly 
mean minimum and maximum ambient temperature 
from 2012 to 2015 was seen to all study sites. In con-
junction with this, highest peak of rainfall at Marani was 
noted in September 2014. The combination of increased 
rainfall and air temperature increase at Marani gives the 
possible explanation of malaria resurgence in this area 
(Figs. 2, 4, 12). The increase of mean minimum temper-
ature plays a major role on mosquito breeding in cool 
highland areas such as that of Kisii (mean annual temper-
ature of 21.13 °C in 2016) than lowland warm areas [37]. 
The raise of vector populations at Marani was preceded 
by an increase of the mean minimum air temperature by 
2.5  °C and rainfall (Figs. 2, 12). The climatic warming at 
Marani has resulted to an increase of the mean minimum 
temperature to 16.16 °C which might shorten the larvae 
stage and also gametocyte cycles in adult mosquitoes 
[38]. Along with this, increasing land use as a results of 
population growth have also contributed the increased 
suitable breeding sites and survivorship of An. funestus 
populations as it has been reported elsewhere [39].

The efficacy of ACT in western Kenya remains high 
despite of the reported increase of polymorphisms of 
specific key codons [40–42]. Availability of SP in drug 
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Fig. 9  Availability of various anti-malarial drugs from the community drug dispensing outlets of three study sites with different responses of malaria 
interventions in western Kenya, 2015. QN quinine, ACT artemisinin-based combination therapy, AQ amodiaquine, SP sulfadoxine–pyrimethamine, 
CQ chloroquine
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dispensing outlets remains high but the use of this drug 
remains low (Table  2 and Fig.  9). Areas experiencing 
infection resurgence had lower use of SP and therefore 
drug resistance looks unlikely to explain the incident. 
The continued use of SP for presumptive treatment and 
self-prescriptions is consistent to the sustained SP spe-
cific codons polymorphisms while those of chloroquine 
diminishes [41, 43, 44]. Elsewhere in Africa, the sustained 
use of already resistant anti-malarials was associated with 
persistent malaria high transmissions [45]. Moreover, 
poverty has been associated with malaria morbidity and 
mortality for long but these three communities in west-
ern Kenya have similar social economic status and eco-
nomic inequalities [46, 47].

The school-based surveillance of asymptomatic malaria 
demonstrates to be a better metric for monitoring trans-
mission intensity and intervention effect size than the 
hospital based (Figs. 2, 3). For example at Kombewa, the 
number of positive cases in 2011 among primary school 
aged children was the same as in 2015 but the hospital 
survey shows higher number of cases in 2011 than 2015 

(Figs. 2, 3). This could be due the fact that the later sur-
veillance system may be affected by number of factors 
like case management rate, reporting rate and case con-
firmation. In western Kenya, malaria diagnosis and treat-
ment used to be based on blood slide as well as clinical 
judgment, therefore some cases in 2011 could be clini-
cally diagnosed and reported as confirmed [48]. How-
ever, malaria case detection following the introduction 
of rapid diagnostic tests and blood slide microscopy 
training over the recent years has greatly improved [49]. 
Moreover, the hospital-based surveillance system is often 
interrupted by frequent strike of physicians and nurses. 
Asymptomatic malaria prevalence data among school 
age children was collected systematically and thus more 
reliable than hospital-based malaria case data (Figs.  2, 
3). This study also found of an increased LLINs owner-
ship to over 80% in all areas, studies however shows low-
est use among the 5–14 age group (school age) [25]. The 
unpublished data from the study sites shows 72 and 58% 
of this age group slept under LLINs a night before survey 
at Marani and Kombewa, respectively. Whereas at Iguhu 

Fig. 10  Long-term variability of air temperature and precipitation at Iguhu (Kakamega County) in western Kenya
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(areas showing sustained low transmission), only 50% of 
the 5–14 age group slept under LLINs. The use of LLINs 
among the school age was highest at Marani (malaria 
resurgence site) and lowest at Iguhu (an area with con-
trolled transmission). One would expect to see highest 
use of LLINs in an area that has attained sustained trans-
mission control but the opposite is true. This means that 
other factors like increase in vector population and insec-
ticide resistance could be the likely major drive of infec-
tion transmissions in these populations. The over 80% 
LLINs coverage could have provided community wide 
protective effect [50] to all study sites despite of low use 
among the school age but the explaining reasons for the 
observed variation in response to interventions are likely 
to be type of the vector, population density and insecti-
cide susceptibility (Table 1). In western Kenya, suitability 
of asymptomatic malaria surveillance in schools has been 
evaluated and found to be representative of the general 
population [51]. Therefore, the described trend of malaria 
transmission which also correlates with the indoor vec-
tors populations represents the true infection transmis-
sion dynamics in the study area (Figs.  2, 4). This study 

however lacks information of the long-term malaria case 
management rates, site specific An. funestus s.l. insecti-
cide susceptibility and site specific vector behavior. This 
information would have improved the analysis on the 
cause of the observed changing dynamics of malaria 
infection in western Kenya.

Conclusions
The sustained highest composition of the highly 
anthropophilic An. funestus s.l. and also availabil-
ity of pyrethroids resistant An. gambiae s.l. could be 
the cause of the sustained high malaria transmission at 
Kombewa. The increase of the mean minimum air tem-
perature and precipitation have led to an increased 
abundance of insecticide resistant An. funestus s.l. popu-
lation at Marani which may have subsequently caused the 
observed infection resurgence. At Iguhu where there was 
a sustained control of infection, the pyrethroids moder-
ately resistant An. gambiae s.s. had the highest composi-
tion. Climate variability, insecticide resistance and vector 
population shift are likely the cause of the contrasting 
outcome of malaria interventions n western Kenya. To 

Fig. 11  Long-term variability of air temperature and precipitation at Kombewa (Kisumu County) in western Kenya
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meet the GMAP 2030 targets there is a call for use of 
carbamates and organophosphates for indoor targeted 
interventions and expansion the integrated vector man-
agement [16, 31]. Along with this, the continued surveil-
lance of vectors and clinical and subclinical infection is 
highly recommended for changing infection transmission 
risks. Monitoring of insecticides resistance should be 
done along with use of air temperature and precipitation 
data to predict vector and parasite dynamics especially in 
highlands where slight changes in these parameters could 
lead to devastating infection outbreaks. Malaria trans-
mission competence and biting behaviour of re-emerging 
Anopheles funestus complex should be also studied.
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