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Abstract
Background: Previous studies suggest that olfactory dysfunction is associated with 
cognitive decline or dementia.
Objective: To find a potential association between the olfactory identification (OI) 
and	dementia	onset,	and	build	a	prediction	model	for	dementia	screening	in	the	older	
population.
Methods: Nine	hundred	and	forty-seven	participants	from	the	Shanghai	Aging	Study	
were analyzed. The participants were dementia-free and completed OI test using the 
Sniffin’	Sticks	Screening	Test-12	at	baseline.	After	an	average	of	4.9-year	follow-up,	
75	(8%)	of	the	participants	were	diagnosed	with	incident	dementia.	Discrete	Bayesian	
network	(DBN)	and	multivariable	logistic	regression	(MLR)	models	were	used	to	ex-
plore	the	dependencies	of	the	incident	dementia	on	the	baseline	demographics,	life-
styles,	and	OI	test	results.
Results: In	DBN	 analysis,	 odors	 of	 orange,	 cinnamon,	 peppermint,	 and	 pineapple,	
combined	with	age	and	Mini-mental	State	Examination	(MMSE),	achieved	a	high	pre-
dictive	ability	for	incident	dementia,	with	an	area	under	the	receiver	operating	char-
acteristic	curve	(AUC)	larger	than	0.8.	The	odor	cinnamon	showed	the	highest	AUC	
of	0.838	(95%	CI:	0.731–0.946)	and	a	high	accuracy	of	0.867.	The	DBN	incorporating	
age,	MMSE,	and	one	odor	test	had	an	accuracy	(0.760–0.872	vs.	0.835)	comparable	
to	that	of	the	MLR	model	and	revealed	the	dependency	between	the	variables.
Conclusion: The DBN using OI test may have predictive ability comparable to 
MLR	 analysis	 and	 suggest	 potential	 causal	 relationship	 for	 further	 investigation.	
Identification of odor cinnamon might be a useful indicator for dementia screening 
and deserve further investigation.
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1  | INTRODUC TION

Dementia is an overall term for diseases and conditions character-
ized	by	a	decline	 in	memory,	 language,	problem-solving,	and	other	
thinking skills that affect a person's ability to perform everyday ac-
tivities.	Alzheimer's	disease	(AD)	is	the	most	common	cause	of	de-
mentia.	 There	 are	47	million	people	with	dementia	worldwide.	By	
2050,	the	number	of	people	with	dementia	is	estimated	to	increase	
to	more	than	131	million	(Prince,	Comas-Herrera,	Knapp,	Guerchet,	
&	Karagiannidou,	2016).	Because	effective	treatment	for	dementia	is	
lacking,	it	is	imperative	to	explore	the	risk	factors	and	provide	early	
identification	of	cognitive	decline	and	dementia.	Accumulating	evi-
dence from both human studies and disease models indicates that 
intercellular transmission and the subsequent templated amplifica-
tion	of	some	misfolded	proteins	(e.g.,	amyloid-β and τ,	α-synuclein,	
and	TAR	DNA-binding	protein	43)	are	involved	in	the	onset	and	pro-
gression	of	various	neurodegenerative	diseases	(Peng,	Trojanowski,	
&	 Lee,	 2020).	 Except	 for	 traditionally	 recognized	 mmega-3	 fatty	
acids,	recent	findings	reveal	nicotinamide	adenine	dinucleotide	and	
related metabolites playing important roles in the adaptation of neu-
rons to a wide range of physiological stressors and in counteract-
ing	 processes	 in	 neurodegenerative	 diseases,	 and	 chronic	 gamma	
entrainment and tacrine-benzofuran hybrids may offer neuropro-
tective	 effects,	 which	 might	 provide	 new	 therapeutic	 opportuni-
ties	(Adaikkan	&	Tsai,	2020;	Fancellu	et	al.,	2020;	Lautrup,	Sinclair,	
Mattson,	 &	 Fang,	 2019).	 Olfactory	 dysfunction,	 which	 increases	
substantially	with	aging,	 represents	an	 important	clinical	symptom	
suggesting	the	early	stage	of	neurodegenerative	disorders	(Attems,	
Walker,	&	Jellinger,	2015).	Previous	cross-sectional	and	longitudinal	
population-based studies suggest that olfactory dysfunction is as-
sociated with impairment in various cognitive domains and incident 
cognitive	decline	and	dementia,	and	emphasize	its	essential	role	as	
a	predictive	marker	 (Roalf	et	al.,	2017;	Wehling,	Nordin,	Espeseth,	
Reinvang,	&	Lundervold,	2011).

The	 Shanghai	 Aging	 Study	 (SAS)	 is	 a	 community-based	 co-
hort study for investigating the progression of cognitive decline in 
Chinese	elderly,	with	study	design,	operational	procedures,	and	di-
agnostic criteria similar to most cohort studies in developed coun-
tries	and	published	previously	(Ding	et	al.,	2014).	At	the	baseline	of	
SAS,	the	Sniffin’	Sticks	Smell	Test-12	(SSST-12)	was	used	to	exam-
ine the olfactory identification (OI) ability of the study participants. 
Our	 previous	 study	 of	 the	 cross-sectional	 phase	 of	 SAS	 explored	
the relation between lower total OI score and mild cognitive impair-
ment	(MCI;	Liang	et	al.,	2016).	At	the	prospective	phase,	we	further	
demonstrated that the inability to smell peppermint was associated 
with	a	higher	risk	for	incident	dementia	(Liang	et	al.,	2020).	The	as-
sociations,	 however,	 were	 examined	 only	 by	multivariable	 logistic	
regression	(MLR)	model.	The	predictive	value	of	OI	test	and	identifi-
cation ability of certain odors needs to be further validated.

A	Bayesian	network	(BN)	is	a	probabilistic	graphical	model	that	
represents a set of variables and their conditional dependencies via 
a	directed	acyclic	graph	(DAG;	Scutari	&	Denis,	2014).	BN	is	ideal	for	
taking an event that occurred and predicting the likelihood that any 

one of several possible known causes was the contributing factor. 
Experience	has	shown	that	BN	and	associated	methods	are	geared	
to reasoning with uncertainty in a way closely resembling physicians 
(Kammerdiner,	Gupal,	&	Pardalos,	2007;	Lucas,	2007;	Pearl,	2014).	
Physicians who address to develop computer-assisted system for 
making	clinical	decisions	are	frequently	confronted	by	the	complex-
ity	and	uncertainty	in	the	models	and	prediction.	In	many	cases,	the	
situation is even worse as many of the processes in medicine are only 
partly	known	(Lucas,	2007).	During	the	past	decade,	BN	has	become	
an important tool for building decision-support systems in medical 
sciences and is now steadily becoming main stream in some areas 
(Mani,	Valtorta,	&	McDermott,	2005).

Although	the	BN	model	has	been	used	in	studying	gene	expres-
sion	levels	for	the	PD	(Mestizo-Gutiérrez,	Jácome-Delgado,	Rosales-
Morales,	 Cruz-Ramírez,	 &	 Aranda-Abreu,	 2019),	 and	 in	 predicting	
the	 AD	 using	 clinical	 data	 (Khanna	 et	 al.,	 2018),	 according	 to	 our	
literature	search,	there	is	no	study	that	has	used	the	method	for	pre-
dicting dementia using the OI data from observational studies. In this 
study,	by	using	the	data	from	SAS,	we	examined	the	performance	of	
the BN analysis in predicting incident dementia and compared the 
BN	with	the	MLR	model.	Our	study	also	aimed	to	find	associations	
between	the	baseline	variables,	including	olfactory	function,	and	de-
mentia	onset,	and	to	build	a	prediction	model	with	high	performance	
for dementia screening in the older population. The identification 
of one or several odors that are sensitive for dementia prediction 
would benefit large scale population screen programs for dementia 
prevention and intervention in elders.

2  | MATERIAL AND METHODS

2.1 | Study participants

The	 participants	 of	 the	 current	 study	 were	 a	 subcohort	 of	 SAS.	
In	brief,	SAS	was	designed	to	establish	a	prospective	community-
based	cohort	to	examine	the	prevalence	and	incidence	of	dementia	
and	MCI	in	Chinese	older	adults	residing	in	central	Shanghai	(Ding	
et	al.,	2014).	Between	January,	2010	and	December,	2011,	3,141	
participants	aged	60	years	or	older	were	recruited	and	completed	
the	clinical	interview	as	the	baseline.	Among	them,	1,782	were	as-
sessed	 for	olfactory	 function	by	 the	OI	 test	as	 the	additional	ex-
amination of the interview. Participants who were diagnosed as 
dementia-free	at	the	baseline	were	contacted	between	April,	2014	
and	December,	 2016	 for	 a	 follow-up	 interview	 to	 determine	 the	
new-onset	dementia	cases.	Participants	were	excluded	 if	 they	 (a)	
resided in nursing homes or other institutions; (b) had mental re-
tardation	 or	 severe	 schizophrenia;	 (c)	 had	 severe	 hearing,	 vision,	
or	 verbal	 impairment;	 (d)	 were	 undergoing	 maxillofacial	 surgery;	
(e)	had	chronic	obstructive	pulmonary	disease	or	had	experienced	
an acute upper respiratory tract infection within 1 week; (f) used 
alcohol	 and	 drugs	 excessively;	 (g)	 had	 dementia	 or	 other	 severe	
neurological	 diseases;	 or	 (h)	 refused	 to	 participate,	 were	 lost	 to	
follow-up,	or	were	deceased;	(i)	did	not	cooperate	for	a	completed	



     |  3 of 13DING et al.

data	collection	at	the	follow-up	interview.	Finally,	947	participants	
completed the follow-up interview and were included in the cur-
rent study (Figure 1). Detailed recruitment and follow-up proce-
dures	 of	 SAS	 were	 reported	 previously	 (Ding	 et	 al.,	 2014;	 Liang	
et	al.,	2016,	2020).

2.2 | Baseline data

At	the	baseline,	data	on	demographics,	 lifestyles,	and	medical	his-
tory of each participant were obtained from a face-to-face interview 
by	trained	research	nurses	and	neurologists.	Height	and	weight	were	
measured	and	used	to	calculate	the	body	mass	index	(BMI).	History	
of	chronic	diseases,	including	hypertension,	coronary	artery	disease	
(CAD),	diabetes,	and	stroke	were	asked	and	confirmed	by	medical	re-
cords	maintained	by	participants	(Ding	et	al.,	2014).	Depression	was	
defined	as	present	if	the	scores	of	Center	for	Epidemiologic	Studies	
Depression	 Scale	 (CESD)	 ≥16	 (Eaton,	 Smith,	 Ybarra,	 Muntaner,	 &	
Tien,	2004).

OI	was	 assessed	by	using	 the	Sniffin’	 Sticks	 Screening	Test-12	
(SSST-12),	 which	 consists	 of	 12	 odors	 (orange,	 leather,	 cinnamon,	
peppermint,	 banana,	 lemon,	 liquorice,	 coffee,	 cloves,	 pineapple,	
rose,	 and	 fish)	presenting	on	 felt-tip	 sticks	 (Wolfensberger,	2000).	
The	 SSST-12	 kit	 was	 produced	 by	 Burghart	 Medical	 Technology,	
Hamburg,	 Germany	 (Burghart	 Medical	 Technology).	 Participants	
were asked to sniff each odor sticks and to choose one of four an-
swers from a list that described best the odor. The administration 

methods	 of	 SSST-12	 were	 described	 in	 detail	 elsewhere	 (Liang	
et	al.,	2016).

DNA	was	extracted	from	blood	or	saliva	collected	from	the	par-
ticipants	at	the	baseline	(Ding	et	al.,	2015).	Apolipoprotein	(APOE)	
genotyping	was	conducted	using	the	TaqMan	SNP	method	(Smirnov,	
Morley,	Shin,	Spielman,	&	Cheung,	2009).	The	presence	of	at	 least	
one ε4	allele	was	defined	as	APOE-ε4	allele	positive.

2.3 | Diagnosis of cognitive function

Both	at	 the	baseline	and	follow-up,	 the	cognitive	function	of	each	
participant was evaluated by a battery of neuropsychological 
tests:	 (1)	 Mini-mental	 State	 Examination	 (MMSE);	 (2)	 Conflicting	
Instructions	 Task	 (Go/No	 Go	 Task);	 (3)	 Stick	 Test;	 (4)	 Modified	
Common	Objects	Sorting	Test;	(5)	Auditory	Verbal	Learning	Test;	(6)	
Modified	Fuld	Object	Memory	Evaluation;	(7)	Trail-making	test	A&B;	
and	(8)	Ren	Ming	Bi	(RMB,	Chinese	currency)	test.	The	neuropsycho-
logical tests were administered by study psychometrists according 
to the education level of each participant. Participants with at least 
6	years	of	education	were	administered	by	tests	(1)	to	(5)	and	(7),	and	
those	with	less	than	6	years	of	education	were	administered	by	tests	
(1)	to	(4)	and	(6)	and	(8).	The	normative	data	and	detailed	description	
of	these	tests	were	reported	elsewhere	(Ding	et	al.,	2014,	2015).

Two	 study	 neurologists,	 one	 neuropsychologist	 and	 one	 neu-
roepidemiologist	 reviewed	 the	 functional,	 medical,	 neurologi-
cal,	 psychiatric,	 neuropsychological	 data,	 and	 Clinical	 Dementia	

F I G U R E  1   Flow chart of the subcohort participants in the current study
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Rating	(CDR)	and	Activity	of	Daily	Living	(ADL)	scale	of	the	partic-
ipants and reached a consensus diagnosis regarding the presence 
of	 dementia	 according	 to	 the	 Diagnostic	 and	 Statistical	 Manual	
of	 Mental	 Disorders	 IV	 (DSM–IV)	 criteria	 (American	 Psychiatric	
Association,	1994;	Ding	et	al.,	2014,	2015).

2.4 | Descriptive analysis

Data	of	demographics,	lifestyle,	medical	history,	and	OI	test	results	
were presented as mean with standard deviation (SD) or median 
with	interquartile	range	(IQR)	for	continuous	variable,	and	as	num-
ber and percentage for categorical variables. Difference between 
groups	was	tested	by	the	chi-squared	test	for	categorical	variables,	
and	Student's	 t	 test	or	Mann–Whitney	U	 test	 for	continuous	vari-
ables.	A	two-sided	p-value <.05	was	considered	as	statistically	sig-
nificant.	The	descriptive	analyses	were	performed	using	Stata	16.0	
(StataCorp	LLC).

2.5 | Bayesian network analysis

Prediction for incident dementia was conducted using multinomial 
discrete	BN	(DBN).	Before	entering	the	DBN,	continuous	variables	
were discretized into ten categories based on their own deciles. 
Although	 at	 the	 cost	 of	 losing	 some	 information,	 the	 discretiza-
tion may accommodate skewness of the variables and nonlinear 
relationships	 between	 them,	 and	 speed	 up	 the	 computation	 sub-
stantially	 (Hartemink,	 2001;	 Sachs,	 Perez,	 Pe'er,	 Lauffenburger,	 &	
Nolan,	2005;	Scutari	&	Denis,	2014).

The	 K-fold	 cross-validation	 method	 was	 used	 during	 the	 DBN	
structure	learning	and	validation.	K-fold	cross-validation	is	a	standard	
way to obtain unbiased estimates of a model's goodness of fit and to 
handle the overfitting problem when applying only one single dataset 
in	statistical	learning	(James,	Witten,	Hastie,	&	Tibshirani,	2013).	In	the	
current	study,	we	randomly	split	the	dataset	into	five	equal	partitions,	
instantiated	five	identical	DBNs,	and	trained	each	one	on	four	parti-
tions	while	validating	on	the	remaining	partition.	In	each	iteration,	the	
prediction	was	made	for	the	one	held-out	partition.	In	the	end,	the	vali-
dation for the whole dataset was obtained by combining the prediction 
for	the	five	held-out	partitions	(James	et	al.,	2013).	When	learning	the	
structure	of	the	DBNs,	an	initial	black	list	was	used	to	block	the	arcs	
from	dementia	to	the	baseline	variables,	and	the	arcs	from	the	other	
baseline	variables	to	sex	and	age,	and	no	other	constraints	were	used.	
The	hill-climbing	(HC)	algorithm	was	used	to	learn	the	structure	of	the	
DBNs.	The	HC	starts	from	a	network	with	no	arcs,	then	adds,	removes,	
and	 reverses	one	arc	at	a	 time,	and	 finally	picks	 the	change	 that	 in-
creases the network's Bayesian information criterion score the most 
(Scutari	&	Denis,	2014).

The performance of the DBNs was evaluated using metrics in-
cluding	sensitivity,	specificity,	accuracy,	and	area	under	the	receiver	
operating characteristic (ROC) curve. Terminology and derivations 
of	the	metrics	were	given	in	detail	elsewhere	(Cao,	Fang,	Ottosson,	

Naslund,	&	Stenberg,	2019).	A	successful	prediction	model	for	inci-
dent dementia was defined as one with an area under the ROC curve 
(AUC)	>0.7	(Mandrekar,	2010;	Marzban,	2004).

We also compared the performance of the DBNs with that of 
the	traditional	stepwise	MLR	model	based	on	bidirectional	variable	
selection.	The	K-fold	cross-validation	was	also	used	for	the	stepwise	
MLR	analysis.

The DBNs were constructed using the package bnlearn in soft-
ware	R	version	3.62	(R	Foundation	for	Statistical	Computing)	(Scutari	
&	 Denis,	 2014).	 The	 stepwise	MLR	 analysis	 was	 conducted	 using	
package MASS	in	R	(Ripley,	2002),	and	a	two-sided	p-value <.05	was	
considered as statistically significant.

3  | RESULTS

3.1 | Characteristics of the study participants at 
baseline

In	general,	there	was	no	significant	difference	in	the	baseline	char-
acteristics	between	the	835	excluded	participants	and	the	947	 in-
cluded	participants,	except	for	the	percentage	of	positive	APOE-ε4	
carriers	(18.2%	vs.	16.5%,	p <	.001).	Although	the	mean	age	and	BMI	
of	the	included	participants	were	a	bit	larger	(70.51	vs.	70.12	years,	
and	24.49	vs.	24.07	kg/m2,	 respectively),	 the	differences	were	not	
clinically significant (Table 1).

After	 a	mean	 of	 4.9	 (SD =	 0.8)	 years	 follow-up,	 75	 of	 the	 947	
included participants were diagnosed with new-onset dementia. 
Compared	to	the	872	participants	without	dementia,	the	75	dementia	
cases	were	8-year	older	(77.8	vs.	69.9	years)	when	recruited.	Although	
there was no statistically significant difference in baseline BMI be-
tween	the	dementia	cases	and	those	without	dementia	(controls)	(24.5	
vs.	24.5	kg/m2),	the	cases	averagely	were	shorter	(156.5	vs.	162.0	cm),	
weighed	less	(59.1	vs.	64.4	kg),	and	had	less	education	(9	vs.	12	years).	
CAD,	stroke,	and	APOE-ε4	positive	were	more	frequently	observed	in	
the cases (Table 2). The participants with incident dementia had lower 
correct	identification	rate	in	eight	odors	(leather,	cinnamon,	pepper-
mint,	banana,	 liquorice,	coffee,	rose,	fish)	among	the	12	ones	in	the	
baseline OI test (Table 2). The cases were also showed lower OI sum 
score	(OIS)	and	MMSE	score	at	baseline	(Table	2).

3.2 | Structure of the Bayesian networks and their 
performance

When	 no	 other	 constraints	 except	 for	 the	 initial	 black	 list	 were	
adopted	in	the	DBN	structure	learning	process	using	the	HC	algo-
rithm,	the	probability	of	dementia	incidence	was	found	only	depend-
ent	on	age	(Figure	S1).	Although	there	were	dependencies	observed	
among	demographic	variables	and	among	odors,	separately,	no	de-
pendency was observed between the two groups of the variables. 
Besides,	 no	dependency	was	observed	 for	 education,	MMSE,	 and	
APOE-ε4.
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When	 using	 the	 initial	 DBN	 to	 predict	 the	 incident	 dementia,	
that	 is,	only	age	used	as	a	predictor,	 the	accuracy	of	 the	model	 is	
0.756	and	0.619	in	the	training	and	validation,	respectively.	And	the	
corresponding	AUCs	are	0.836	(95%	confidence	interval	(CI):	0.794–
0.879)	and	0.772	(95%	CI:	0.653–0.891)	(Table	3).

The	 bidirectional	 stepwise	 MLR	 analysis	 indicated	 that	 base-
line	age,	education,	APOE-ε4,	peppermint,	banana,	pineapple,	 and	
MMSE	were	 statistically	 significantly	 associated	with	 incident	 de-
mentia	(Table	S1).	The	accuracy	of	the	MLR	model	for	predicting	the	
incident	dementia	is	0.807	and	0.835	in	the	training	and	validation,	
respectively,	and	the	corresponding	AUCs	are	0.915	(95%	CI:	0.884–
0.946)	and	0.914	(95%	CI:	0.879–0.944)	(Table	3).	However,	the	DBN	
including the dependency of incident dementia on all the variables 
selected	by	the	stepwise	MLR	analysis	performed	much	worse	than	

the	initial	DBN	did,	with	an	accuracy	of	0.212	and	an	AUC	of	0.559	
(95%	CI:	0.486–0.633)	(Table	3).

To investigate whether including simple dependencies of in-
cident dementia on OI test and other baseline variables may im-
prove	the	performance	of	the	initial	DBN,	in	addition	to	age,	we	
included	the	arcs	from	a	single	odor	to	dementia	(i.e.,	the	depen-
dencies of incident dementia on a single odor) into the DBN one 
by one first. It turned out that cinnamon performed best for pre-
diction	in	validation,	with	an	AUC	of	0.779	(95%	CI:	0.672–0.886).	
Although	the	accuracy	(0.630)	of	the	DBN	is	relative	low	because	
of	 the	 low	 specificity	 (0.600),	 its	 sensitivity	 is	 as	 high	 as	 0.895	
(Table 3).

To	further	 improve	predictive	ability	of	 the	DBN,	we	 incorpo-
rated	other	statistically	significant	variables	of	the	MLR	analysis	in	

TA B L E  1   Characteristics of the study participants at baseline

Variable Total Excluded Included p-value

N 1,782 835 947

Male,	n	(%) 818	(45.9) 382	(45.7) 436	(46.0) .940

Age	(year),mean	(SD) 70.12 (7.1) 69.67	(7.5) 70.51	(6.8) .014

BMI (kg/m2),	mean	(SD) 24.29	(3.7) 24.07	(3.3) 24.49	(3.9) .016

Height	(m),mean	(SD) 161.87	(8.9) 162.26	(8.7 161.53	(9.0) .084

Weight	(kg),mean	(SD) 63.78	(11.3) 63.53	(11.00) 63.99	(11.6) .385

Education	(year),	
median [IQR]

12.0	[9.0,	15.0] 12.0	[9.0,	15.0] 12.0	[10.0,	15.0] .407

Smoking,	n	(%) 185	(10.4) 84	(10.1) 101 (10.7) .734

Drinking,	n	(%) 142	(8.0) 55	(6.6) 87	(9.2) .053

CAD,	n	(%) 194	(10.9) 103 (12.3) 91	(9.6) .077

Hypertension,	n	(%) 962	(54.0) 463	(55.4) 499	(52.7) .264

Diabetes,	n	(%) 247	(13.9) 124	(14.9) 123 (13.0) .286

Depression,	n	(%) 277	(15.5) 141	(16.9) 136	(14.4) .161

Stroke,	n	(%) 202 (11.3) 91	(10.9) 111 (11.7) .637

APOE-ε4positive,	n	(%) 308 (17.3) 152	(18.2) 156	(16.5) <.001

Correct answer to odors in the OI test

Orange,	n	(%) 1,365	(76.6) 623	(74.6) 742	(78.4) .071

Leather,	n	(%) 1,002	(56.2) 468	(56.0) 534	(56.4) .923

Cinnamon,	n	(%) 770	(43.2) 353	(42.3) 417	(44.0) .484

Peppermint,	n	(%) 1,622	(91.0) 760	(91.0) 862	(91.0) 1.000

Banana,	n	(%) 1,164	(65.3) 555	(66.5) 609	(64.3) .365

Lemon,	n	(%) 960	(53.9) 452	(54.1) 508	(53.6) .874

Liquorice,	n	(%) 957	(53.7) 450	(53.9) 507	(53.5) .919

Coffee,	n	(%) 1,642	(92.1) 773	(92.6) 869	(91.8) .584

Cloves,	n	(%) 919	(51.6) 422	(50.5) 497	(52.5) .441

Pineapple,	n	(%) 1,234	(69.2) 579	(69.3) 655	(69.2) .977

Rose,	n	(%) 1,112	(62.4) 509	(61.0) 603	(63.7) .257

Fish,	n	(%) 1,475	(82.8) 705	(84.4) 770 (81.3) .093

OIS,	median	[IQR] 8.0	[7.0,	9.0] 8.0	[7.0,	9.0] 8.0	[7.0,	10.0] .420

MMSE,	median	[IQR] 29.0	[28.0,	30.0] 29.0	[27.0,	30.0] 29.0	[28.0,	30.0] .241

Abbreviations:	APOE,	apolipoprotein;	BMI,	body	mass	index;	CAD,	coronary	artery	disease;	IQR,	interquartile	range;	MMSE,	Mini-mental	State	
Examination	score;	OIS,	olfactory	identification	sum	score;	SD,	standard	deviation.
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the DBN one by one. It turned that the DBNs incorporating depen-
dencies	on	a	single	odor	and	MMSE	performed	best	 in	validation.	
The performance metrics of the DBNs including the dependencies 
on	age,	MMSE,	and	one	single	odor	are	shown	in	Table	3,	and	the	
ROCs	are	shown	in	Figures	2	and	3	for	the	training	and	validation,	
respectively.	 In	 general,	 using	 baseline	 age,	MMSE	 and	 one	 odor	
among	orange,	cinnamon,	peppermint,	and	pineapple	may	achieve	
a	 very	 good	 prediction	 in	 validation	 (AUC	 > 0.80) (Table 3 and 
Figure 3).

Again,	the	DBN	including	the	dependency	of	dementia	incidence	
on	 cinnamon	 showed	 the	 highest	 AUC	 of	 0.838	 (95%	 CI:	 0.731–
0.946)	 and	 a	high	 accuracy	 (0.867)	 (Table	3).	 The	 structure	of	 the	
DBN	is	shown	in	Figure	4.

Performance of the DBNs including the dependency of incident 
dementia	on	other	baseline	variables	is	shown	in	Table	S2.	Compared	

to the DBNs including the dependencies of incident dementia on 
age,	MMSE,	 and	one	odor,	DBNs	 including	more	dependencies	of	
incident dementia showed worse predictive ability (Table 3 and 
Table	S2).

4  | DISCUSSION

The	 DBN	 analysis	 in	 our	 study	 indicated	 that	 using	 baseline	 age,	
MMSE,	 and	 one	 odor	 among	 orange,	 cinnamon,	 peppermint,	 and	
pineapple	may	achieve	a	very	good	prediction	(AUC	> 0.80) for inci-
dent dementia. Cinnamon odor is an indicator with a high sensitivity 
of	0.895.

Although	 the	 underlying	 mechanism	 is	 not	 ascertain,	 olfac-
tory dysfunction is known as one of the early symptoms of some 

TA B L E  2   Characteristics of dementia cases and controls at baseline (N =	947)

Variable Controls (n = 872) Incident dementia cases (n = 75) p-value

Male,	n	(%) 407	(46.7) 29	(38.7) .225

Age	(year),	mean	(SD) 69.9	(6.5) 77.8	(5.6) <.001

BMI (kg/m2),	mean	(SD) 24.5	(3.5) 24.5	(7.0) .988

Height	(cm),	mean	(SD) 162.0	(8.4) 156.5	(13.2) <.001

Weight	(kg),	mean	(SD) 64.4	(11.5) 59.1	(12.2) <.001

Education	(year),	median	[IQR] 12.0	[12.0,	15.0] 9.0	[6.0,	12.5] <.001

Smoking,	n	(%) 93	(10.7) 8 (10.7) 1.000

Drinking,	n	(%) 83	(9.5) 4	(5.3) .319

CAD,	n	(%) 78	(8.9) 13 (17.3) .031

Hypertension,	n	(%) 451	(51.7) 48	(64.0) .054

Diabetes,	n	(%) 113 (13.0) 10 (13.3) 1.000

Depression,	n	(%) 120 (13.8) 16	(21.3) .105

Stroke,	n	(%) 92	(10.6) 19	(25.3) <.001

APOE-ε4positive,	n	(%) 137	(15.7) 19	(25.3) .046

Correct answer to odors in the OI test

Orange,	n	(%) 687	(78.8) 55	(73.3) .340

Leather,	n	(%) 504	(57.8) 30	(40.0) .004

Cinnamon,	n	(%) 397	(45.5) 20	(26.7) .002

Peppermint,	n	(%) 808	(92.7) 54	(72.0) <.001

Banana,	n	(%) 578	(66.3) 31	(41.3) <.001

Lemon,	n	(%) 468	(53.7) 40	(53.3) 1.000

Liquorice,	n	(%) 478	(54.8) 29	(38.7) .010

Coffee,	n	(%) 809	(92.8) 60	(80.0) <.001

Cloves,	n	(%) 465	(53.3) 32	(42.7) .098

Pineapple,	n	(%) 603	(69.2) 52	(69.3) 1.000

Rose,	n	(%) 570	(65.4) 33	(44.0) <.001

Fish,	n	(%) 717 (82.2) 53	(70.7) .021

OIS,	median	[IQR] 8.0	[7.0,	10.0] 7.0	[5.0,	8.0] <.001

MMSE,	median	[IQR] 29.0	[28.0,	30.0] 27.0	[25.0,	28.5] <.001

Abbreviations:	APOE,	apolipoprotein;	BMI,	body	mass	index;	CAD,	coronary	artery	disease;	IQR,	interquartile	range;	MMSE,	Mini-mental	State	
Examination	score;	OIS,	olfactory	identification	sum	score;	SD,	standard	deviation.
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F I G U R E  2  ROCs	of	the	discrete	Bayesian	networks	including	dependency	of	incident	dementia	on	baseline	age,	MMSE,	and	one	single	
odor in the training
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F I G U R E  3  ROCs	of	the	discrete	Bayesian	networks	including	dependency	of	incident	dementia	on	baseline	age,	MMSE,	and	one	single	
odor in the validation
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neurodegenerative	disorders,	such	as	AD	and	Parkinson's	disease	
(PD)	(Hawkes,	Shephard,	&	Daniel,	1997;	Koss,	1986;	Serby,	Corwin,	
Conrad,	&	Rotrosen,	 1985).	 This	may	provide	 a	 perspective	 into	
the process of early anatomical change in neurodegenerative dis-
ease.	Some	evidence	 indicated	that	AD-related	pathology	would	
first	occur	in	the	olfactory	bulbs	and	tracts,	where	amyloid-β pro-
tein	(Aβ),	tau,	and	α-synuclein	are	concentrated	(Schofield,	Finnie,	
&	Yong,	2014).	The	lesion	involves	multiple	levels	of	the	olfactory	
system	as	it	progresses,	including	the	surrounding	olfactory	bulb,	
olfactory	 epithelium,	 and	 olfactory	 pathways	 connecting	 cog-
nitive	 regions	 in	 the	brain	 (Attems,	Walker,	&	 Jellinger,	 2014).	A	
meta-analysis	provided	evidence	that	in	AD	higher	order	olfactory	
functions appear to be more strongly affected than in PD. The 
stronger deficits found in odor identification and recognition in 
AD	may	thus	be	interpreted	as	the	sum	of	perceptual	and	cogni-
tive	deficits,	whereas	detection	thresholds	deficits	in	PD,	might	be	
less	dependent	on	cognition	(Rahayel,	Frasnelli,	&	Joubert,	2012).	
Braak	et	 al	 indicated	 that	AD	pathology	 in	 the	olfactory	 system	
happens during as “transentorhinal stage” and “limbic stage” and 
involves central olfactory regions such as entorhinal and piriform 

cortices	more	than	the	bulb	(Braak	et	al.,	1996).	This	 is	also	pos-
sibly	a	 reason	why	AD	patients	are	more	 impaired	 in	cognitively	
demanding tests of olfaction (such as identification) compared to 
sensory tests (such as threshold).

Many	 studies	 have	 examined	 the	 use	 of	 olfactory	 identifica-
tion test as a predictor of the development of dementia (Roberts 
et	al.,	2016).	Combining	early	markers	 such	as	MMSE,	APOE	gen-
otype,	and	olfactory	 identification	deficit	have	been	shown	strong	
prediction	capability	for	dementia	in	long-term	cohort	studies,	how-
ever,	 the	 prediction	models	were	mainly	 based	 on	 logistic	 regres-
sion	analysis,	and	the	performance	of	the	models	was	not	validated	
using	unseen	data	or	cross-validation	(Conti	et	al.,	2013;	Devanand	
et	al.,	2008,	2015;	Liang	et	al.,	2020;	Stanciu	et	al.,	2014).	Sun	et	al.	
summarized the findings of two prospective longitudinal cohort 
studies	and	30	cross-sectional	studies,	and	concluded	that	although	
a positive association between poorer performance on olfactory and 
dementia	was	demonstrated,	hyposmia	had	only	moderately	predic-
tive	value	(Sun,	Raji,	MacEachern,	&	Burke,	2012).

There	are	several	advantages	of	using	BN.	First,	commonly	used	
methods in epidemiological studies such as logistic regression and 

F I G U R E  4  Structure	of	the	discrete	Bayesian	network	(DBN)	including	the	dependency	of	incident	dementia	on	baseline	age,	MMSE,	and	
cinnamon
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related methods do not take account of conditional dependence that 
may	exist	between	the	covariates.	Conditional	dependence	between	
some of the risk factors may be already known or may be regarded 
as	plausible	on	biological	grounds	(Karhausen,	1987;	Susser,	1991).	
However,	 such	 information	could	be	 incorporated	 into	BN	models	
to reveal the potential relationships between the health or disease 
status	and	the	associated	risk	factors	(Li,	Shi,	&	Satz,	2008).	Second,	
high correlation among predictors has long been an annoyance in 
regression	analysis.	The	crux	of	the	problem	is	that	the	linear	regres-
sion model assumes each predictor has an independent effect on 
the response that can be encapsulated in the predictor's regression 
coefficient.	 As	 opposed	 to	 creating	 problems	 of	 multicollinearity,	
the associations between candidate predictor variables are naturally 
accounted	for	when	defining	a	BN’s	conditional	probability	distribu-
tions	using.	The	HC	algorithm	used	in	the	study	may	search	a	struc-
ture	 starting	 from	either	 an	 empty,	 full,	 or	 possibly	 random	DAG,	
or	an	initial	DAG	chosen	according	to	existing	knowledge.	The	main	
loop	then	consists	of	attempting	every	possible	single-edge	addition,	
removal,	or	reversal	relative	to	the	current	candidate	network.	The	
change	 that	 increases	 the	 score	 the	most	 then	 becomes	 the	 next	
candidate. The process iterates until a change in a single-edge no 
longer increases the score. By gradually taking into account of the 
relationships	between	the	variables,	the	problem	of	multicollinearity	
therefore	can	be	reduced	in	a	BN	analysis	(Nguefack-Tsague,	2011).	
Third,	 the	 DAG	 proposed	 by	 the	 BN	 captures	 the	 dependence	
structure	of	multiple	variables	and,	used	appropriately,	allows	more	
robust conclusions about the direction of causation. BN analysis 
revealed a richer structure of relationships than could be inferred 
using the traditional multivariable regression methods such as logis-
tic regression and highlight potential pathway unseen previously for 
further	investigation	(Moffa	et	al.,	2017).

However,	 there	 are	 also	 some	 limitations	 in	 our	 study.	We	 col-
lected data on potential confounders as many as possible to be used in 
the	analysis	model.	But	there	are	still	uncollected	confounders,	such	
as	occupation,	leisure	time	activities,	which	could	influence	the	cogni-
tive	function.	APOE	has	been	identified	as	a	major	genetic	risk	factor	
for	AD.	However,	the	APOE	frequencies	have	a	significant	variation	in	
populations	with	different	ethnicities.	The	frequency	of	the	APOE-ε4	
allele	in	our	Shanghai	Aging	Study	is	9.3%,	which	is	in	the	range	of	that	
in	Asian	 populations	 (6.3%–9.3%),	 but	 lower	 than	 that	 in	Caucasian	
and	African	American	populations	 (11%–27%)	 (Ding	et	 al.,	 2014).	 In	
our	study,	 the	APOE-ε4	allele	did	not	 link	 to	any	of	 the	parameters	
due to the relatively small sample size and the low frequency of the 
APOE-ε4	 allele	 in	 our	 study	population.	 Further	 studies	with	 larger	
sample	size	may	have	the	condition	to	explore	if	the	APOE-ε4	allele	
is independent or has synergistic effects with other risk factors for 
cognitive impairment. The relatively high lost to follow-up rate in 
the	prospective	phase	of	data	 collection	may	 induce	 selection	bias,	
although most characteristics of participants followed or lost to fol-
lowed are similar. Our dataset includes both continuous and binary 
variables.	To	reduce	the	complexity	of	the	networks	and	computing	
time,	we	discretized	 the	 continuous	variables	 for	 the	DBN	analysis,	
which	may	 result	 in	 information	 reduction	 in	 the	analyses.	A	better	

solution would be a hybrid BN with use of Markov chain Monte Carlo 
techniques	(Scutari	&	Denis,	2014).	We	also	noticed	that	including	too	
many dependencies of incident dementia on the potential baseline 
predictors only incorporates noise rather than information in pre-
diction,	which	results	 in	a	very	 low	performance	in	validation	(accu-
racy =	0.212	and	AUC	=	0.559)	and	suggests	the	overfitting	problem	
in	the	DBN.	Although	limited	by	the	software	packages	currently	avail-
able	and	adopting	the	compromising	methods	so	far,	we	would	like	to	
explore	the	hybrid	BN	in	the	future	and	see	whether	it	could	improve	
the	predictive	ability	further.	In	the	SSST-12	test,	the	order	of	the	iden-
tification	items	might	also	contribute	to	the	effect.	However,	we	could	
hardly	find	a	reference	that	explained	if	the	item	order	is	randomized	
or	not.	Additionally,	the	result	on	each	item	might	be	affected	by	an	
unknown	interaction	between	the	odor	and	the	response	options,	and	
this should be carefully considered in future studies.

5  | CONCLUSION

The	DBN	 incorporating	 age,	MMSE,	 and	 one	 odor	 test	may	 have	
predictive	ability	comparable	to	MLR	analysis,	while	DBN	may	also	
reveal the dependency between the variables in static data and sug-
gest potential causal relationship for further investigation.

ACKNOWLEDG MENTS
D.D.,	 X.L.,	 Z.X.,	 W.W.,	 and	 Q.Z.	 were	 supported	 by	 grants	 from	
Shanghai	 Municipal	 Science	 and	 Technology	 Major	 Project	
(2018SHZDZX03)	and	ZJ	Lab,	National	Natural	Science	Foundation	
of	China	 (81773513),	 Scientific	Research	Plan	Project	 of	 Shanghai	
Science	and	Technology	Committee	(17411950701,	17411950106),	
and	 National	 Project	 of	 Chronic	 Disease	 (2016YFC1306400).The	
funders	 of	 the	 study	 had	 no	 role	 in	 study	 design,	 data	 collection,	
data	analysis,	data	interpretation,	or	writing	of	the	report.

CONFLIC T OF INTERE S T
The authors declare that there is no conflict of interest related to 
the paper.

AUTHOR CONTRIBUTIONS
Conceptualization,	 Ding	 Ding	 and	 Yang	 CAO;	 Data	 curation,	
Xiaoniu	 Liang,	 Zhenxu	 Xiao,	 Wanqing	 Wu,	 and	 Qianhua	 Zhao;	
Formal	 analysis,	 Ding	 Ding	 and	 Yang	 CAO;	 Funding	 acquisition,	
Ding	Ding;	 Investigation,	Ding	Ding,	Xiaoniu	Liang,	Zhenxu	Xiao,	
Wanqing	Wu,	and	Qianhua	Zhao;	Methodology,	Yang	CAO;	Project	
administration,	Ding	Ding;	Software,	Yang	CAO;	Validation,	Ding	
Ding	and	Yang	CAO;	Visualization,	Yang	CAO;	Writing	–	original	
draft,	Ding	Ding	and	Yang	CAO;	Writing	–	review	&	editing,	Ding	
Ding,	 Xiaoniu	 Liang,	 Zhenxu	 Xiao,	Wanqing	Wu,	 Qianhua	 Zhao,	
and	Yang	CAO.

E THIC AL APPROVAL
The study is an observational study and was approved by the Medical 
Ethical	Committee	of	Huashan	Hospital,	Fudan	University,	Shanghai,	



12 of 13  |     DING et al.

China	 (approval	 number:	 2009-195).	 All	 participants	 and/or	 their	
legal guardians gave their written informed consent for participation 
in the study. There is no personal identification disclosed in our data.

PEER RE VIE W
The peer review history for this article is available at https://publo 
ns.com/publo n/10.1002/brb3.1822.

DATA AVAIL ABILIT Y S TATEMENT
The data are not publicly available but may be available upon reason-
able request and with permission of the principle investigator Dr. 
Ding Ding (dingding@huashan.org.cn).

ORCID
Ding Ding  https://orcid.org/0000-0002-0352-0883 
Yang Cao  https://orcid.org/0000-0002-3552-9153 

R E FE R E N C E S
Adaikkan,	 C.,	 &	 Tsai,	 L.	 H.	 (2020).	 Gamma	 entrainment:	 Impact	

on	 neurocircuits,	 glia,	 and	 therapeutic	 opportunities.	 Trends 
in Neurosciences,	 43(1),	 24–41.	 https://doi.org/10.1016/j.
tins.2019.11.001

American	Psychiatric	Association	(1994).	DSM-IV: Diagnostic and statisti-
cal manual of mental disorders.	Washington,	DC:	American	Psychiatric	
Press Inc.

Attems,	J.,	Walker,	L.,	&	Jellinger,	K.	A.	 (2014).	Olfactory	bulb	 involve-
ment in neurodegenerative diseases. Acta Neuropathologica,	127(4),	
459–475.	https://doi.org/10.1007/s00401-014-1261-7

Attems,	 J.,	 Walker,	 L.,	 &	 Jellinger,	 K.	 A.	 (2015).	 Olfaction	 and	
aging:	 A	 mini-review.	 Gerontology,	 61(6),	 485–490.	 https://doi.
org/10.1159/00038	1619

Braak,	H.,	Braak,	E.,	Yilmazer,	D.,	de	Vos,	R.	A.,	Jansen,	E.	N.,	&	Bohl,	J.	
(1996).	Pattern	of	brain	destruction	 in	Parkinson's	and	Alzheimer's	
diseases. Journal of Neural Transmission (Vienna),	 103(4),	 455–490.	
https://doi.org/10.1007/BF012	76421

Burghart	 Medical	 Technology.	 Hamburg,	 Germany.	 Retrieved	 from:	
http://www.burgh art.net

Cao,	Y.,	Fang,	X.,	Ottosson,	J.,	Naslund,	E.,	&	Stenberg,	E.	(2019).	A	com-
parative study of machine learning algorithms in predicting severe 
complications after bariatric surgery. Journal of Clinical Medicine,	8(5),	
668.	https://doi.org/10.3390/jcm80	50668

Conti,	M.	Z.,	Vicini-Chilovi,	B.,	Riva,	M.,	Zanetti,	M.,	Liberini,	P.,	Padovani,	
A.,	 &	 Rozzini,	 L.	 (2013).	 Odor	 identification	 deficit	 predicts	 clini-
cal conversion from mild cognitive impairment to dementia due to 
Alzheimer's	disease.	Archives of Clinical Neuropsychology,	28(5),	391–
399.	https://doi.org/10.1093/arcli	n/act032

Devanand,	D.	P.,	Lee,	S.,	Manly,	J.,	Andrews,	H.,	Schupf,	N.,	Doty,	R.	L.,	
…	Mayeux,	R.	(2015).	Olfactory	deficits	predict	cognitive	decline	and	
Alzheimer	dementia	in	an	urban	community.	Neurology,	84(2),	182–
189.	https://doi.org/10.1212/WNL.00000	00000	001132

Devanand,	D.	P.,	Liu,	X.,	Tabert,	M.	H.,	Pradhaban,	G.,	Cuasay,	K.,	Bell,	K.,	
…	Pelton,	G.	H.	 (2008).	Combining	early	markers	 strongly	predicts	
conversion	 from	mild	 cognitive	 impairment	 to	Alzheimer's	 disease.	
Biological Psychiatry,	 64(10),	 871–879.	 https://doi.org/10.1016/j.
biops	ych.2008.06.020

Ding,	 D.,	 Zhao,	 Q.,	 Guo,	 Q.,	 Meng,	 H.,	Wang,	 B.,	 Luo,	 J.,	 …	 Hong,	 Z.	
(2015).	Prevalence	of	mild	cognitive	impairment	in	an	urban	commu-
nity	in	China:	A	cross-sectional	analysis	of	the	Shanghai	Aging	Study.	
Alzheimer's & Dementia: The Journal of the Alzheimer's Association,	
11(3),	300–309.	e2.	https://doi.org/10.1016/j.jalz.2013.11.002

Ding,	D.,	Zhao,	Q.	H.,	Guo,	Q.	H.,	Meng,	H.	J.,	Wang,	B.,	Yu,	P.	M.,	…	Hong,	
Z.	(2014).	The	Shanghai	aging	study:	Study	design,	baseline	charac-
teristics,	and	prevalence	of	dementia.	Neuroepidemiology,	43(2),	114–
122.	https://doi.org/10.1159/00036	6163

Eaton,	W.	W.,	 Smith,	 C.,	 Ybarra,	M.,	Muntaner,	 C.,	 &	 Tien,	 A.	 (2004).	
Center	for	Epidemiologic	Studies	Depression	Scale:	Review	and	revi-
sion	(CESD	and	CESD-R).	In	M.	E.	Maruish	(Ed.),	The use of psychologi-
cal testing for treatment planning and outcomes assessment: Instruments 
for adults	(pp.	363–377).	New	York:	Taylor	&	Francis	Group.

Fancellu,	G.,	Chand,	K.,	Tomas,	D.,	Orlandini,	E.,	Piemontese,	L.,	Silva,	D.	
F.,	…	Santos,	M.	A.	(2020).	Novel	tacrine-benzofuran	hybrids	as	po-
tential	multi-target	drug	candidates	for	the	treatment	of	Alzheimer's	
Disease. Journal of Enzyme Inhibition and Medicinal Chemistry,	35(1),	
211–226.	https://doi.org/10.1080/14756	366.2019.1689237

Hartemink,	A.	J.	 (2001).	Principled computational methods for the valida-
tion discovery of genetic regulatory networks.	Cambridge,	MA,	United	
States:	Massachusetts	Institute	of	Technology.

Hawkes,	 C.	H.,	 Shephard,	 B.	 C.,	 &	Daniel,	 S.	 E.	 (1997).	Olfactory	 dys-
function in Parkinson's disease. Journal of Neurology, Neurosurgery & 
Psychiatry,	62(5),	436–446.	https://doi.org/10.1136/jnnp.62.5.436

James,	G.,	Witten,	D.,	Hastie,	T.,	&	Tibshirani,	R.	(2013).	An introduction to 
statistical learning,	Vol.	112.	New	York,	NY:	Springer.

Kammerdiner,	A.	R.,	Gupal,	A.	M.,	&	Pardalos,	P.	M.	(2007).	Application	
of Bayesian networks and data mining to biomedical problems. AIP 
Conference Proceedings,	953:132–+.

Karhausen,	 L.	 R.	 (1987).	 On	 the	 logic	 of	 causal	 inference.	 American 
Journal of Epidemiology,	126(3),	556–557.

Khanna,	S.,	Domingo-Fernandez,	D.,	Iyappan,	A.,	Emon,	M.	A.,	Hofmann-
Apitius,	M.,	&	Frohlich,	H.	(2018).	Using	multi-scale	genetic,	neuroim-
aging	and	clinical	data	for	predicting	Alzheimer's	disease	and	recon-
struction of relevant biological mechanisms. Scientific Reports,	8(1),	
1–13.	https://doi.org/10.1038/s41598-018-29433-3

Koss,	 E.	 (1986).	 Olfactory	 dysfunction	 in	 Alzheimer's	 disease.	
Developmental Neuropsychology,	 2(2),	 89–99.	 https://doi.
org/10.1080/87565	64860	9540332

Lautrup,	S.,	Sinclair,	D.	A.,	Mattson,	M.	P.,	&	Fang,	E.	F.	(2019).	NAD(+)	in	
brain aging and neurodegenerative disorders. Cell Metabolism,	30(4),	
630–655.	https://doi.org/10.1016/j.cmet.2019.09.001

Li,	J.,	Shi,	J.	J.,	&	Satz,	D.	 (2008).	Modeling	and	analysis	of	disease	and	
risk factors through learning Bayesian networks from observational 
data. Quality and Reliability Engineering International,	24(3),	291–302.	
https://doi.org/10.1002/qre.893

Liang,	X.	N.,	Ding,	D.,	Zhao,	Q.	H.,	Guo,	Q.	H.,	Luo,	J.	F.,	Hong,	Z.	(2016).	
Association	 between	 olfactory	 identification	 and	 cognitive	 func-
tion	in	community-dwelling	elderly:	The	Shanghai	aging	study.	BMC 
Neurology,	16(1),	199.	https://doi.org/10.1186/s12883-016-0725-x

Liang,	X.,	Ding,	D.,	Zhao,	Q.,	Wu,	W.,	Xiao,	Z.,	Luo,	J.,	&	Hong,	Z.	(2020).	
Inability	to	smell	peppermint	 is	 related	to	cognitive	decline:	A	pro-
spective community-based study. Neuroepidemiology,	 54(3),	 258–
264.	https://doi.org/10.1159/00050	5485

Lucas,	 P.	 J.	 (2007).	 Biomedical	 applications	 of	 Bayesian	 networks.	 In	
Advances in probabilistic graphical models,	 Vol.	 213	 (pp.	 333–358).	
Berlin,	Heidelberg:	Springer.

Mandrekar,	 J.	N.	 (2010).	 Receiver	 operating	 characteristic	 curve	 in	 di-
agnostic test assessment. Journal of Thoracic Oncology,	5(9),	1315–
1316.	https://doi.org/10.1097/JTO.0b013	e3181	ec173d

Mani,	S.,	Valtorta,	M.,	&	McDermott,	S.	(2005).	Building	Bayesian	network	
models	 in	medicine:	The	MENTOR	experience.	Applied Intelligence,	
22(2),	93–108.	https://doi.org/10.1007/s10489-005-5599-3

Marzban,	 C.	 (2004).	 The	 ROC	 curve	 and	 the	 area	 under	 it	 as	 perfor-
mance measures. Weather Forecast,	 19(6),	 1106–1114.	 https://doi.
org/10.1175/825.1

Mestizo-Gutiérrez,	S.	L.,	Jácome-Delgado,	J.	A.,	Rosales-Morales,	V.	Y.,	
Cruz-Ramírez,	N.,	&	Aranda-Abreu,	G.	E.	(2019).	A	Bayesian	Network	
Model	for	the	Parkinson’s	Disease:	A	study	of	gene	expression	levels.	

https://publons.com/publon/10.1002/brb3.1822
https://publons.com/publon/10.1002/brb3.1822
https://orcid.org/0000-0002-0352-0883
https://orcid.org/0000-0002-0352-0883
https://orcid.org/0000-0002-3552-9153
https://orcid.org/0000-0002-3552-9153
https://doi.org/10.1016/j.tins.2019.11.001
https://doi.org/10.1016/j.tins.2019.11.001
https://doi.org/10.1007/s00401-014-1261-7
https://doi.org/10.1159/000381619
https://doi.org/10.1159/000381619
https://doi.org/10.1007/BF01276421
http://www.burghart.net
https://doi.org/10.3390/jcm8050668
https://doi.org/10.1093/arclin/act032
https://doi.org/10.1212/WNL.0000000000001132
https://doi.org/10.1016/j.biopsych.2008.06.020
https://doi.org/10.1016/j.biopsych.2008.06.020
https://doi.org/10.1016/j.jalz.2013.11.002
https://doi.org/10.1159/000366163
https://doi.org/10.1080/14756366.2019.1689237
https://doi.org/10.1136/jnnp.62.5.436
https://doi.org/10.1038/s41598-018-29433-3
https://doi.org/10.1080/87565648609540332
https://doi.org/10.1080/87565648609540332
https://doi.org/10.1016/j.cmet.2019.09.001
https://doi.org/10.1002/qre.893
https://doi.org/10.1186/s12883-016-0725-x
https://doi.org/10.1159/000505485
https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1007/s10489-005-5599-3
https://doi.org/10.1175/825.1
https://doi.org/10.1175/825.1


     |  13 of 13DING et al.

In Current trends in Semantic Web Technologies: Theory and practice 
(pp.	153–186).	Cham,	Switzerland:	Springer.

Moffa,	G.,	 Catone,	G.,	 Kuipers,	 J.,	 Kuipers,	 E.,	 Freeman,	D.,	Marwaha,	
S.,	…	Bebbington,	P.	 (2017).	Using	directed	acyclic	graphs	in	epide-
miological	research	in	psychosis:	An	analysis	of	the	role	of	bullying	
in psychosis. Schizophrenia Bulletin,	 43(6),	 1273–1279.	 https://doi.
org/10.1093/schbu	l/sbx013

Nguefack-Tsague,	 G.	 (2011).	 Using	 bayesian	 networks	 to	 model	 hier-
archical relationships in epidemiological studies. Epidemiology and 
Health,	33,	e2011006.	https://doi.org/10.4178/epih/e2011006

Pearl,	 J.	 (2014).	Probabilistic reasoning in intelligent systems: Networks of 
plausible inference.	San	Francisco,	CA:	Elsevier.

Peng,	C.,	 Trojanowski,	 J.	Q.,	&	 Lee,	V.	M.	 (2020).	 Protein	 transmission	
in neurodegenerative disease. Nature Reviews. Neurology,	16(4),	199–
212.	https://doi.org/10.1038/s41582-020-0333-7

Prince,	M.,	Comas-Herrera,	A.,	Knapp,	M.,	Guerchet,	M.,	&	Karagiannidou,	
M.	(2016).	World Alzheimer report 2016: Improving healthcare for peo-
ple living with dementia: Coverage, quality and costs now and in the fu-
ture.	London,	UK:	Alzheimer’s	Disease	International	(ADI).

Rahayel,	S.,	Frasnelli,	J.,	&	Joubert,	S.	(2012).	The	effect	of	Alzheimer's	
disease	 and	 Parkinson's	 disease	 on	 olfaction:	 A	 meta-analysis.	
Behavioral Brain Research,	231(1),	 60–74.	 https://doi.org/10.1016/j.
bbr.2012.02.047

Ripley,	 B.	 D.	 (2002).	Modern applied statistics with S.	 New	 York,	 NY:	
Springer.

Roalf,	 D.	 R.,	 Moberg,	 M.	 J.,	 Turetsky,	 B.	 I.,	 Brennan,	 L.,	 Kabadi,	 S.,	
Wolk,	 D.	 A.,	 &	Moberg,	 P.	 J.	 (2017).	 A	 quantitative	 meta-analysis	
of olfactory dysfunction in mild cognitive impairment. Journal of 
Neurology, Neurosurgery and Psychiatry,	88(3),	226–232.	https://doi.
org/10.1136/jnnp-2016-314638

Roberts,	 R.	 O.,	 Christianson,	 T.	 J.	 H.,	 Kremers,	W.	 K.,	 Mielke,	 M.	 M.,	
Machulda,	M.	M.,	Vassilaki,	M.,	…	Petersen,	R.	C.	(2016).	Association	
between olfactory dysfunction and amnestic mild cognitive impair-
ment	and	Alzheimer	disease	dementia.	 JAMA Neurology,	73(1),	93–
101.	https://doi.org/10.1001/jaman	eurol.2015.2952

Sachs,	K.,	Perez,	O.,	Pe'er,	D.,	Lauffenburger,	D.	A.,	&	Nolan,	G.	P.	(2005).	
Causal protein-signaling networks derived from multiparameter sin-
gle-cell data. Science,	308(5721),	523–529.	https://doi.org/10.1126/
scien	ce.1105809

Schofield,	 P.	 W.,	 Finnie,	 S.,	 &	 Yong,	 Y.	 M.	 (2014).	 The	 role	 of	 olfac-
tory challenge tests in incipient dementia and clinical trial design. 
Current Neurology and Neuroscience Reports,	14(9),	 479.	 https://doi.
org/10.1007/s11910-014-0479-z

Scutari,	M.,	&	Denis,	J.-B.	(2014).	Bayesian networks: With examples in R. 
Boca	Raton,	FL:	Chapman	and	Hall/CRC.

Serby,	M.,	Corwin,	 J.,	Conrad,	P.,	&	Rotrosen,	 J.	 (1985).	Olfactory	dys-
function	 in	 Alzheimer's	 disease	 and	 Parkinson's	 disease.	American 
Journal of Psychiatry,	 142(6),	 781–782.	 https://doi.org/10.1176/
ajp.142.6.781-a

Smirnov,	 D.	 A.,	Morley,	M.,	 Shin,	 E.,	 Spielman,	 R.	 S.,	 &	 Cheung,	 V.	 G.	
(2009).	Genetic	analysis	of	radiation-induced	changes	in	human	gene	
expression.	 Nature,	 459(7246),	 587–591.	 https://doi.org/10.1038/
natur	e07940

Stanciu,	 I.,	 Larsson,	 M.,	 Nordin,	 S.,	 Adolfsson,	 R.,	 Nilsson,	 L.	 G.,	 &	
Olofsson,	 J.	 K.	 (2014).	 Olfactory	 impairment	 and	 subjective	 olfac-
tory	 complaints	 independently	 predict	 conversion	 to	 dementia:	 A	
longitudinal,	 population-based	 study.	 Journal of the International 
Neuropsychological Society,	20(2),	209–217.	https://doi.org/10.1017/
S1355	61771	3001409

Sun,	G.	H.,	Raji,	C.	A.,	MacEachern,	M.	P.,	&	Burke,	J.	F.	(2012).	Olfactory	
identification	testing	as	a	predictor	of	the	development	of	Alzheimer's	
dementia:	 A	 systematic	 review.	 Laryngoscope,	 122(7),	 1455–1462.	
https://doi.org/10.1002/lary.23365

Susser,	M.	(1991).	What	is	a	cause	and	how	do	we	know	one	-	a	grammar	
for pragmatic epidemiology. American Journal of Epidemiology,	133(7),	
635–648.	https://doi.org/10.1093/oxfor	djour	nals.aje.a115939

Wehling,	 E.,	 Nordin,	 S.,	 Espeseth,	 T.,	 Reinvang,	 I.,	 &	 Lundervold,	 A.	 J.	
(2011). Unawareness of olfactory dysfunction and its association 
with cognitive functioning in middle aged and old adults. Archives of 
Clinical Neuropsychology,	 26(3),	 260–269.	 https://doi.org/10.1093/
arcli	n/acr019

Wolfensberger,	 M.	 (2000).	 Sniffin'Sticks:	 A	 new	 olfactory	 test	 bat-
tery. Acta oto-laryngologica,	 120(2),	 303–306.	 https://doi.
org/10.1080/00016	48007	50001134

SUPPORTING INFORMATION
Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section.

How to cite this article:	Ding	D,	Liang	X,	Xiao	Z,	Wu	W,	Zhao	
Q,	Cao	Y.	Can	dementia	be	predicted	using	olfactory	
identification	test	in	the	elderly?	A	Bayesian	network	analysis.	
Brain Behav. 2020;10:e01822. https://doi.org/10.1002/
brb3.1822

https://doi.org/10.1093/schbul/sbx013
https://doi.org/10.1093/schbul/sbx013
https://doi.org/10.4178/epih/e2011006
https://doi.org/10.1038/s41582-020-0333-7
https://doi.org/10.1016/j.bbr.2012.02.047
https://doi.org/10.1016/j.bbr.2012.02.047
https://doi.org/10.1136/jnnp-2016-314638
https://doi.org/10.1136/jnnp-2016-314638
https://doi.org/10.1001/jamaneurol.2015.2952
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://doi.org/10.1007/s11910-014-0479-z
https://doi.org/10.1007/s11910-014-0479-z
https://doi.org/10.1176/ajp.142.6.781-a
https://doi.org/10.1176/ajp.142.6.781-a
https://doi.org/10.1038/nature07940
https://doi.org/10.1038/nature07940
https://doi.org/10.1017/S1355617713001409
https://doi.org/10.1017/S1355617713001409
https://doi.org/10.1002/lary.23365
https://doi.org/10.1093/oxfordjournals.aje.a115939
https://doi.org/10.1093/arclin/acr019
https://doi.org/10.1093/arclin/acr019
https://doi.org/10.1080/000164800750001134
https://doi.org/10.1080/000164800750001134
https://doi.org/10.1002/brb3.1822
https://doi.org/10.1002/brb3.1822

