
Brain and Behavior. 2020;10:e01822.	 ﻿	   |  1 of 13
https://doi.org/10.1002/brb3.1822

wileyonlinelibrary.com/journal/brb3

 

Received: 7 May 2020  |  Revised: 13 July 2020  |  Accepted: 12 August 2020
DOI: 10.1002/brb3.1822  

O R I G I N A L  R E S E A R C H

Can dementia be predicted using olfactory identification test in 
the elderly? A Bayesian network analysis

Ding Ding1,2  |   Xiaoniu Liang1,2 |   Zhenxu Xiao1,2 |   Wanqing Wu1,2 |   
Qianhua Zhao1,2 |   Yang Cao3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Brain and Behavior published by Wiley Periodicals LLC.

1Institute of Neurology, Huashan Hospital, 
Fudan University, Shanghai, China
2National Clinical Research Center for Aging 
and Medicine, Huashan Hospital, Fudan 
University, Shanghai, China
3Clinical Epidemiology and Biostatistics, 
School of Medical Sciences, Örebro 
University, Örebro, Sweden

Correspondence
Yang Cao, Clinical Epidemiology and 
Biostatistics, School of Medical Sciences, 
Örebro University, 70182 Örebro, Sweden.
Email: yang.cao@oru.se

Funding information
National Project of Chronic Disease, Grant/
Award Number: 2016YFC1306400; National 
Natural Science Foundation of China, 
Grant/Award Number: 81773513; Scientific 
Research Plan Project of Shanghai Science 
and Technology Committee, Grant/Award 
Number: 17411950106 and 17411950701; 
Shanghai Municipal Science and Technology 
Major Project, Grant/Award Number: 
2018SHZDZX03

Abstract
Background: Previous studies suggest that olfactory dysfunction is associated with 
cognitive decline or dementia.
Objective: To find a potential association between the olfactory identification (OI) 
and dementia onset, and build a prediction model for dementia screening in the older 
population.
Methods: Nine hundred and forty-seven participants from the Shanghai Aging Study 
were analyzed. The participants were dementia-free and completed OI test using the 
Sniffin’ Sticks Screening Test-12 at baseline. After an average of 4.9-year follow-up, 
75 (8%) of the participants were diagnosed with incident dementia. Discrete Bayesian 
network (DBN) and multivariable logistic regression (MLR) models were used to ex-
plore the dependencies of the incident dementia on the baseline demographics, life-
styles, and OI test results.
Results: In DBN analysis, odors of orange, cinnamon, peppermint, and pineapple, 
combined with age and Mini-mental State Examination (MMSE), achieved a high pre-
dictive ability for incident dementia, with an area under the receiver operating char-
acteristic curve (AUC) larger than 0.8. The odor cinnamon showed the highest AUC 
of 0.838 (95% CI: 0.731–0.946) and a high accuracy of 0.867. The DBN incorporating 
age, MMSE, and one odor test had an accuracy (0.760–0.872 vs. 0.835) comparable 
to that of the MLR model and revealed the dependency between the variables.
Conclusion: The DBN using OI test may have predictive ability comparable to 
MLR analysis and suggest potential causal relationship for further investigation. 
Identification of odor cinnamon might be a useful indicator for dementia screening 
and deserve further investigation.
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1  | INTRODUC TION

Dementia is an overall term for diseases and conditions character-
ized by a decline in memory, language, problem-solving, and other 
thinking skills that affect a person's ability to perform everyday ac-
tivities. Alzheimer's disease (AD) is the most common cause of de-
mentia. There are 47 million people with dementia worldwide. By 
2050, the number of people with dementia is estimated to increase 
to more than 131 million (Prince, Comas-Herrera, Knapp, Guerchet, 
& Karagiannidou, 2016). Because effective treatment for dementia is 
lacking, it is imperative to explore the risk factors and provide early 
identification of cognitive decline and dementia. Accumulating evi-
dence from both human studies and disease models indicates that 
intercellular transmission and the subsequent templated amplifica-
tion of some misfolded proteins (e.g., amyloid-β and τ, α-synuclein, 
and TAR DNA-binding protein 43) are involved in the onset and pro-
gression of various neurodegenerative diseases (Peng, Trojanowski, 
& Lee,  2020). Except for traditionally recognized mmega-3 fatty 
acids, recent findings reveal nicotinamide adenine dinucleotide and 
related metabolites playing important roles in the adaptation of neu-
rons to a wide range of physiological stressors and in counteract-
ing processes in neurodegenerative diseases, and chronic gamma 
entrainment and tacrine-benzofuran hybrids may offer neuropro-
tective effects, which might provide new therapeutic opportuni-
ties (Adaikkan & Tsai, 2020; Fancellu et al., 2020; Lautrup, Sinclair, 
Mattson, & Fang,  2019). Olfactory dysfunction, which increases 
substantially with aging, represents an important clinical symptom 
suggesting the early stage of neurodegenerative disorders (Attems, 
Walker, & Jellinger, 2015). Previous cross-sectional and longitudinal 
population-based studies suggest that olfactory dysfunction is as-
sociated with impairment in various cognitive domains and incident 
cognitive decline and dementia, and emphasize its essential role as 
a predictive marker (Roalf et al., 2017; Wehling, Nordin, Espeseth, 
Reinvang, & Lundervold, 2011).

The Shanghai Aging Study (SAS) is a community-based co-
hort study for investigating the progression of cognitive decline in 
Chinese elderly, with study design, operational procedures, and di-
agnostic criteria similar to most cohort studies in developed coun-
tries and published previously (Ding et al., 2014). At the baseline of 
SAS, the Sniffin’ Sticks Smell Test-12 (SSST-12) was used to exam-
ine the olfactory identification (OI) ability of the study participants. 
Our previous study of the cross-sectional phase of SAS explored 
the relation between lower total OI score and mild cognitive impair-
ment (MCI; Liang et al., 2016). At the prospective phase, we further 
demonstrated that the inability to smell peppermint was associated 
with a higher risk for incident dementia (Liang et al., 2020). The as-
sociations, however, were examined only by multivariable logistic 
regression (MLR) model. The predictive value of OI test and identifi-
cation ability of certain odors needs to be further validated.

A Bayesian network (BN) is a probabilistic graphical model that 
represents a set of variables and their conditional dependencies via 
a directed acyclic graph (DAG; Scutari & Denis, 2014). BN is ideal for 
taking an event that occurred and predicting the likelihood that any 

one of several possible known causes was the contributing factor. 
Experience has shown that BN and associated methods are geared 
to reasoning with uncertainty in a way closely resembling physicians 
(Kammerdiner, Gupal, & Pardalos, 2007; Lucas, 2007; Pearl, 2014). 
Physicians who address to develop computer-assisted system for 
making clinical decisions are frequently confronted by the complex-
ity and uncertainty in the models and prediction. In many cases, the 
situation is even worse as many of the processes in medicine are only 
partly known (Lucas, 2007). During the past decade, BN has become 
an important tool for building decision-support systems in medical 
sciences and is now steadily becoming main stream in some areas 
(Mani, Valtorta, & McDermott, 2005).

Although the BN model has been used in studying gene expres-
sion levels for the PD (Mestizo-Gutiérrez, Jácome-Delgado, Rosales-
Morales, Cruz-Ramírez, & Aranda-Abreu,  2019), and in predicting 
the AD using clinical data (Khanna et  al.,  2018), according to our 
literature search, there is no study that has used the method for pre-
dicting dementia using the OI data from observational studies. In this 
study, by using the data from SAS, we examined the performance of 
the BN analysis in predicting incident dementia and compared the 
BN with the MLR model. Our study also aimed to find associations 
between the baseline variables, including olfactory function, and de-
mentia onset, and to build a prediction model with high performance 
for dementia screening in the older population. The identification 
of one or several odors that are sensitive for dementia prediction 
would benefit large scale population screen programs for dementia 
prevention and intervention in elders.

2  | MATERIAL AND METHODS

2.1 | Study participants

The participants of the current study were a subcohort of SAS. 
In brief, SAS was designed to establish a prospective community-
based cohort to examine the prevalence and incidence of dementia 
and MCI in Chinese older adults residing in central Shanghai (Ding 
et al., 2014). Between January, 2010 and December, 2011, 3,141 
participants aged 60 years or older were recruited and completed 
the clinical interview as the baseline. Among them, 1,782 were as-
sessed for olfactory function by the OI test as the additional ex-
amination of the interview. Participants who were diagnosed as 
dementia-free at the baseline were contacted between April, 2014 
and December, 2016 for a follow-up interview to determine the 
new-onset dementia cases. Participants were excluded if they (a) 
resided in nursing homes or other institutions; (b) had mental re-
tardation or severe schizophrenia; (c) had severe hearing, vision, 
or verbal impairment; (d) were undergoing maxillofacial surgery; 
(e) had chronic obstructive pulmonary disease or had experienced 
an acute upper respiratory tract infection within 1 week; (f) used 
alcohol and drugs excessively; (g) had dementia or other severe 
neurological diseases; or (h) refused to participate, were lost to 
follow-up, or were deceased; (i) did not cooperate for a completed 
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data collection at the follow-up interview. Finally, 947 participants 
completed the follow-up interview and were included in the cur-
rent study (Figure  1). Detailed recruitment and follow-up proce-
dures of SAS were reported previously (Ding et  al.,  2014; Liang 
et al., 2016, 2020).

2.2 | Baseline data

At the baseline, data on demographics, lifestyles, and medical his-
tory of each participant were obtained from a face-to-face interview 
by trained research nurses and neurologists. Height and weight were 
measured and used to calculate the body mass index (BMI). History 
of chronic diseases, including hypertension, coronary artery disease 
(CAD), diabetes, and stroke were asked and confirmed by medical re-
cords maintained by participants (Ding et al., 2014). Depression was 
defined as present if the scores of Center for Epidemiologic Studies 
Depression Scale (CESD) ≥16 (Eaton, Smith, Ybarra, Muntaner, & 
Tien, 2004).

OI was assessed by using the Sniffin’ Sticks Screening Test-12 
(SSST-12), which consists of 12 odors (orange, leather, cinnamon, 
peppermint, banana, lemon, liquorice, coffee, cloves, pineapple, 
rose, and fish) presenting on felt-tip sticks (Wolfensberger, 2000). 
The SSST-12 kit was produced by Burghart Medical Technology, 
Hamburg, Germany (Burghart Medical Technology). Participants 
were asked to sniff each odor sticks and to choose one of four an-
swers from a list that described best the odor. The administration 

methods of SSST-12 were described in detail elsewhere (Liang 
et al., 2016).

DNA was extracted from blood or saliva collected from the par-
ticipants at the baseline (Ding et al., 2015). Apolipoprotein (APOE) 
genotyping was conducted using the TaqMan SNP method (Smirnov, 
Morley, Shin, Spielman, & Cheung, 2009). The presence of at least 
one ε4 allele was defined as APOE-ε4 allele positive.

2.3 | Diagnosis of cognitive function

Both at the baseline and follow-up, the cognitive function of each 
participant was evaluated by a battery of neuropsychological 
tests: (1) Mini-mental State Examination (MMSE); (2) Conflicting 
Instructions Task (Go/No Go Task); (3) Stick Test; (4) Modified 
Common Objects Sorting Test; (5) Auditory Verbal Learning Test; (6) 
Modified Fuld Object Memory Evaluation; (7) Trail-making test A&B; 
and (8) Ren Ming Bi (RMB, Chinese currency) test. The neuropsycho-
logical tests were administered by study psychometrists according 
to the education level of each participant. Participants with at least 
6 years of education were administered by tests (1) to (5) and (7), and 
those with less than 6 years of education were administered by tests 
(1) to (4) and (6) and (8). The normative data and detailed description 
of these tests were reported elsewhere (Ding et al., 2014, 2015).

Two study neurologists, one neuropsychologist and one neu-
roepidemiologist reviewed the functional, medical, neurologi-
cal, psychiatric, neuropsychological data, and Clinical Dementia 

F I G U R E  1   Flow chart of the subcohort participants in the current study



4 of 13  |     DING et al.

Rating (CDR) and Activity of Daily Living (ADL) scale of the partic-
ipants and reached a consensus diagnosis regarding the presence 
of dementia according to the Diagnostic and Statistical Manual 
of Mental Disorders IV (DSM–IV) criteria (American Psychiatric 
Association, 1994; Ding et al., 2014, 2015).

2.4 | Descriptive analysis

Data of demographics, lifestyle, medical history, and OI test results 
were presented as mean with standard deviation (SD) or median 
with interquartile range (IQR) for continuous variable, and as num-
ber and percentage for categorical variables. Difference between 
groups was tested by the chi-squared test for categorical variables, 
and Student's t test or Mann–Whitney U test for continuous vari-
ables. A two-sided p-value <.05 was considered as statistically sig-
nificant. The descriptive analyses were performed using Stata 16.0 
(StataCorp LLC).

2.5 | Bayesian network analysis

Prediction for incident dementia was conducted using multinomial 
discrete BN (DBN). Before entering the DBN, continuous variables 
were discretized into ten categories based on their own deciles. 
Although at the cost of losing some information, the discretiza-
tion may accommodate skewness of the variables and nonlinear 
relationships between them, and speed up the computation sub-
stantially (Hartemink,  2001; Sachs, Perez, Pe'er, Lauffenburger, & 
Nolan, 2005; Scutari & Denis, 2014).

The K-fold cross-validation method was used during the DBN 
structure learning and validation. K-fold cross-validation is a standard 
way to obtain unbiased estimates of a model's goodness of fit and to 
handle the overfitting problem when applying only one single dataset 
in statistical learning (James, Witten, Hastie, & Tibshirani, 2013). In the 
current study, we randomly split the dataset into five equal partitions, 
instantiated five identical DBNs, and trained each one on four parti-
tions while validating on the remaining partition. In each iteration, the 
prediction was made for the one held-out partition. In the end, the vali-
dation for the whole dataset was obtained by combining the prediction 
for the five held-out partitions (James et al., 2013). When learning the 
structure of the DBNs, an initial black list was used to block the arcs 
from dementia to the baseline variables, and the arcs from the other 
baseline variables to sex and age, and no other constraints were used. 
The hill-climbing (HC) algorithm was used to learn the structure of the 
DBNs. The HC starts from a network with no arcs, then adds, removes, 
and reverses one arc at a time, and finally picks the change that in-
creases the network's Bayesian information criterion score the most 
(Scutari & Denis, 2014).

The performance of the DBNs was evaluated using metrics in-
cluding sensitivity, specificity, accuracy, and area under the receiver 
operating characteristic (ROC) curve. Terminology and derivations 
of the metrics were given in detail elsewhere (Cao, Fang, Ottosson, 

Naslund, & Stenberg, 2019). A successful prediction model for inci-
dent dementia was defined as one with an area under the ROC curve 
(AUC) >0.7 (Mandrekar, 2010; Marzban, 2004).

We also compared the performance of the DBNs with that of 
the traditional stepwise MLR model based on bidirectional variable 
selection. The K-fold cross-validation was also used for the stepwise 
MLR analysis.

The DBNs were constructed using the package bnlearn in soft-
ware R version 3.62 (R Foundation for Statistical Computing) (Scutari 
& Denis,  2014). The stepwise MLR analysis was conducted using 
package MASS in R (Ripley, 2002), and a two-sided p-value <.05 was 
considered as statistically significant.

3  | RESULTS

3.1 | Characteristics of the study participants at 
baseline

In general, there was no significant difference in the baseline char-
acteristics between the 835 excluded participants and the 947 in-
cluded participants, except for the percentage of positive APOE-ε4 
carriers (18.2% vs. 16.5%, p < .001). Although the mean age and BMI 
of the included participants were a bit larger (70.51 vs. 70.12 years, 
and 24.49 vs. 24.07 kg/m2, respectively), the differences were not 
clinically significant (Table 1).

After a mean of 4.9 (SD  =  0.8) years follow-up, 75 of the 947 
included participants were diagnosed with new-onset dementia. 
Compared to the 872 participants without dementia, the 75 dementia 
cases were 8-year older (77.8 vs. 69.9 years) when recruited. Although 
there was no statistically significant difference in baseline BMI be-
tween the dementia cases and those without dementia (controls) (24.5 
vs. 24.5 kg/m2), the cases averagely were shorter (156.5 vs. 162.0 cm), 
weighed less (59.1 vs. 64.4 kg), and had less education (9 vs. 12 years). 
CAD, stroke, and APOE-ε4 positive were more frequently observed in 
the cases (Table 2). The participants with incident dementia had lower 
correct identification rate in eight odors (leather, cinnamon, pepper-
mint, banana, liquorice, coffee, rose, fish) among the 12 ones in the 
baseline OI test (Table 2). The cases were also showed lower OI sum 
score (OIS) and MMSE score at baseline (Table 2).

3.2 | Structure of the Bayesian networks and their 
performance

When no other constraints except for the initial black list were 
adopted in the DBN structure learning process using the HC algo-
rithm, the probability of dementia incidence was found only depend-
ent on age (Figure S1). Although there were dependencies observed 
among demographic variables and among odors, separately, no de-
pendency was observed between the two groups of the variables. 
Besides, no dependency was observed for education, MMSE, and 
APOE-ε4.
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When using the initial DBN to predict the incident dementia, 
that is, only age used as a predictor, the accuracy of the model is 
0.756 and 0.619 in the training and validation, respectively. And the 
corresponding AUCs are 0.836 (95% confidence interval (CI): 0.794–
0.879) and 0.772 (95% CI: 0.653–0.891) (Table 3).

The bidirectional stepwise MLR analysis indicated that base-
line age, education, APOE-ε4, peppermint, banana, pineapple, and 
MMSE were statistically significantly associated with incident de-
mentia (Table S1). The accuracy of the MLR model for predicting the 
incident dementia is 0.807 and 0.835 in the training and validation, 
respectively, and the corresponding AUCs are 0.915 (95% CI: 0.884–
0.946) and 0.914 (95% CI: 0.879–0.944) (Table 3). However, the DBN 
including the dependency of incident dementia on all the variables 
selected by the stepwise MLR analysis performed much worse than 

the initial DBN did, with an accuracy of 0.212 and an AUC of 0.559 
(95% CI: 0.486–0.633) (Table 3).

To investigate whether including simple dependencies of in-
cident dementia on OI test and other baseline variables may im-
prove the performance of the initial DBN, in addition to age, we 
included the arcs from a single odor to dementia (i.e., the depen-
dencies of incident dementia on a single odor) into the DBN one 
by one first. It turned out that cinnamon performed best for pre-
diction in validation, with an AUC of 0.779 (95% CI: 0.672–0.886). 
Although the accuracy (0.630) of the DBN is relative low because 
of the low specificity (0.600), its sensitivity is as high as 0.895 
(Table 3).

To further improve predictive ability of the DBN, we incorpo-
rated other statistically significant variables of the MLR analysis in 

TA B L E  1   Characteristics of the study participants at baseline

Variable Total Excluded Included p-value

N 1,782 835 947

Male, n (%) 818 (45.9) 382 (45.7) 436 (46.0) .940

Age (year),mean (SD) 70.12 (7.1) 69.67 (7.5) 70.51 (6.8) .014

BMI (kg/m2), mean (SD) 24.29 (3.7) 24.07 (3.3) 24.49 (3.9) .016

Height (m),mean (SD) 161.87 (8.9) 162.26 (8.7 161.53 (9.0) .084

Weight (kg),mean (SD) 63.78 (11.3) 63.53 (11.00) 63.99 (11.6) .385

Education (year), 
median [IQR]

12.0 [9.0, 15.0] 12.0 [9.0, 15.0] 12.0 [10.0, 15.0] .407

Smoking, n (%) 185 (10.4) 84 (10.1) 101 (10.7) .734

Drinking, n (%) 142 (8.0) 55 (6.6) 87 (9.2) .053

CAD, n (%) 194 (10.9) 103 (12.3) 91 (9.6) .077

Hypertension, n (%) 962 (54.0) 463 (55.4) 499 (52.7) .264

Diabetes, n (%) 247 (13.9) 124 (14.9) 123 (13.0) .286

Depression, n (%) 277 (15.5) 141 (16.9) 136 (14.4) .161

Stroke, n (%) 202 (11.3) 91 (10.9) 111 (11.7) .637

APOE-ε4positive, n (%) 308 (17.3) 152 (18.2) 156 (16.5) <.001

Correct answer to odors in the OI test

Orange, n (%) 1,365 (76.6) 623 (74.6) 742 (78.4) .071

Leather, n (%) 1,002 (56.2) 468 (56.0) 534 (56.4) .923

Cinnamon, n (%) 770 (43.2) 353 (42.3) 417 (44.0) .484

Peppermint, n (%) 1,622 (91.0) 760 (91.0) 862 (91.0) 1.000

Banana, n (%) 1,164 (65.3) 555 (66.5) 609 (64.3) .365

Lemon, n (%) 960 (53.9) 452 (54.1) 508 (53.6) .874

Liquorice, n (%) 957 (53.7) 450 (53.9) 507 (53.5) .919

Coffee, n (%) 1,642 (92.1) 773 (92.6) 869 (91.8) .584

Cloves, n (%) 919 (51.6) 422 (50.5) 497 (52.5) .441

Pineapple, n (%) 1,234 (69.2) 579 (69.3) 655 (69.2) .977

Rose, n (%) 1,112 (62.4) 509 (61.0) 603 (63.7) .257

Fish, n (%) 1,475 (82.8) 705 (84.4) 770 (81.3) .093

OIS, median [IQR] 8.0 [7.0, 9.0] 8.0 [7.0, 9.0] 8.0 [7.0, 10.0] .420

MMSE, median [IQR] 29.0 [28.0, 30.0] 29.0 [27.0, 30.0] 29.0 [28.0, 30.0] .241

Abbreviations: APOE, apolipoprotein; BMI, body mass index; CAD, coronary artery disease; IQR, interquartile range; MMSE, Mini-mental State 
Examination score; OIS, olfactory identification sum score; SD, standard deviation.
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the DBN one by one. It turned that the DBNs incorporating depen-
dencies on a single odor and MMSE performed best in validation. 
The performance metrics of the DBNs including the dependencies 
on age, MMSE, and one single odor are shown in Table 3, and the 
ROCs are shown in Figures 2 and 3 for the training and validation, 
respectively. In general, using baseline age, MMSE and one odor 
among orange, cinnamon, peppermint, and pineapple may achieve 
a very good prediction in validation (AUC  >  0.80) (Table  3 and 
Figure 3).

Again, the DBN including the dependency of dementia incidence 
on cinnamon showed the highest AUC of 0.838 (95% CI: 0.731–
0.946) and a high accuracy (0.867) (Table 3). The structure of the 
DBN is shown in Figure 4.

Performance of the DBNs including the dependency of incident 
dementia on other baseline variables is shown in Table S2. Compared 

to the DBNs including the dependencies of incident dementia on 
age, MMSE, and one odor, DBNs including more dependencies of 
incident dementia showed worse predictive ability (Table  3 and 
Table S2).

4  | DISCUSSION

The DBN analysis in our study indicated that using baseline age, 
MMSE, and one odor among orange, cinnamon, peppermint, and 
pineapple may achieve a very good prediction (AUC > 0.80) for inci-
dent dementia. Cinnamon odor is an indicator with a high sensitivity 
of 0.895.

Although the underlying mechanism is not ascertain, olfac-
tory dysfunction is known as one of the early symptoms of some 

TA B L E  2   Characteristics of dementia cases and controls at baseline (N = 947)

Variable Controls (n = 872) Incident dementia cases (n = 75) p-value

Male, n (%) 407 (46.7) 29 (38.7) .225

Age (year), mean (SD) 69.9 (6.5) 77.8 (5.6) <.001

BMI (kg/m2), mean (SD) 24.5 (3.5) 24.5 (7.0) .988

Height (cm), mean (SD) 162.0 (8.4) 156.5 (13.2) <.001

Weight (kg), mean (SD) 64.4 (11.5) 59.1 (12.2) <.001

Education (year), median [IQR] 12.0 [12.0, 15.0] 9.0 [6.0, 12.5] <.001

Smoking, n (%) 93 (10.7) 8 (10.7) 1.000

Drinking, n (%) 83 (9.5) 4 (5.3) .319

CAD, n (%) 78 (8.9) 13 (17.3) .031

Hypertension, n (%) 451 (51.7) 48 (64.0) .054

Diabetes, n (%) 113 (13.0) 10 (13.3) 1.000

Depression, n (%) 120 (13.8) 16 (21.3) .105

Stroke, n (%) 92 (10.6) 19 (25.3) <.001

APOE-ε4positive, n (%) 137 (15.7) 19 (25.3) .046

Correct answer to odors in the OI test

Orange, n (%) 687 (78.8) 55 (73.3) .340

Leather, n (%) 504 (57.8) 30 (40.0) .004

Cinnamon, n (%) 397 (45.5) 20 (26.7) .002

Peppermint, n (%) 808 (92.7) 54 (72.0) <.001

Banana, n (%) 578 (66.3) 31 (41.3) <.001

Lemon, n (%) 468 (53.7) 40 (53.3) 1.000

Liquorice, n (%) 478 (54.8) 29 (38.7) .010

Coffee, n (%) 809 (92.8) 60 (80.0) <.001

Cloves, n (%) 465 (53.3) 32 (42.7) .098

Pineapple, n (%) 603 (69.2) 52 (69.3) 1.000

Rose, n (%) 570 (65.4) 33 (44.0) <.001

Fish, n (%) 717 (82.2) 53 (70.7) .021

OIS, median [IQR] 8.0 [7.0, 10.0] 7.0 [5.0, 8.0] <.001

MMSE, median [IQR] 29.0 [28.0, 30.0] 27.0 [25.0, 28.5] <.001

Abbreviations: APOE, apolipoprotein; BMI, body mass index; CAD, coronary artery disease; IQR, interquartile range; MMSE, Mini-mental State 
Examination score; OIS, olfactory identification sum score; SD, standard deviation.
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F I G U R E  2  ROCs of the discrete Bayesian networks including dependency of incident dementia on baseline age, MMSE, and one single 
odor in the training
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F I G U R E  3  ROCs of the discrete Bayesian networks including dependency of incident dementia on baseline age, MMSE, and one single 
odor in the validation
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neurodegenerative disorders, such as AD and Parkinson's disease 
(PD) (Hawkes, Shephard, & Daniel, 1997; Koss, 1986; Serby, Corwin, 
Conrad, & Rotrosen,  1985). This may provide a perspective into 
the process of early anatomical change in neurodegenerative dis-
ease. Some evidence indicated that AD-related pathology would 
first occur in the olfactory bulbs and tracts, where amyloid-β pro-
tein (Aβ), tau, and α-synuclein are concentrated (Schofield, Finnie, 
& Yong, 2014). The lesion involves multiple levels of the olfactory 
system as it progresses, including the surrounding olfactory bulb, 
olfactory epithelium, and olfactory pathways connecting cog-
nitive regions in the brain (Attems, Walker, & Jellinger,  2014). A 
meta-analysis provided evidence that in AD higher order olfactory 
functions appear to be more strongly affected than in PD. The 
stronger deficits found in odor identification and recognition in 
AD may thus be interpreted as the sum of perceptual and cogni-
tive deficits, whereas detection thresholds deficits in PD, might be 
less dependent on cognition (Rahayel, Frasnelli, & Joubert, 2012). 
Braak et al indicated that AD pathology in the olfactory system 
happens during as “transentorhinal stage” and “limbic stage” and 
involves central olfactory regions such as entorhinal and piriform 

cortices more than the bulb (Braak et al., 1996). This is also pos-
sibly a reason why AD patients are more impaired in cognitively 
demanding tests of olfaction (such as identification) compared to 
sensory tests (such as threshold).

Many studies have examined the use of olfactory identifica-
tion test as a predictor of the development of dementia (Roberts 
et al., 2016). Combining early markers such as MMSE, APOE gen-
otype, and olfactory identification deficit have been shown strong 
prediction capability for dementia in long-term cohort studies, how-
ever, the prediction models were mainly based on logistic regres-
sion analysis, and the performance of the models was not validated 
using unseen data or cross-validation (Conti et al., 2013; Devanand 
et al., 2008, 2015; Liang et al., 2020; Stanciu et al., 2014). Sun et al. 
summarized the findings of two prospective longitudinal cohort 
studies and 30 cross-sectional studies, and concluded that although 
a positive association between poorer performance on olfactory and 
dementia was demonstrated, hyposmia had only moderately predic-
tive value (Sun, Raji, MacEachern, & Burke, 2012).

There are several advantages of using BN. First, commonly used 
methods in epidemiological studies such as logistic regression and 

F I G U R E  4  Structure of the discrete Bayesian network (DBN) including the dependency of incident dementia on baseline age, MMSE, and 
cinnamon
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related methods do not take account of conditional dependence that 
may exist between the covariates. Conditional dependence between 
some of the risk factors may be already known or may be regarded 
as plausible on biological grounds (Karhausen, 1987; Susser, 1991). 
However, such information could be incorporated into BN models 
to reveal the potential relationships between the health or disease 
status and the associated risk factors (Li, Shi, & Satz, 2008). Second, 
high correlation among predictors has long been an annoyance in 
regression analysis. The crux of the problem is that the linear regres-
sion model assumes each predictor has an independent effect on 
the response that can be encapsulated in the predictor's regression 
coefficient. As opposed to creating problems of multicollinearity, 
the associations between candidate predictor variables are naturally 
accounted for when defining a BN’s conditional probability distribu-
tions using. The HC algorithm used in the study may search a struc-
ture starting from either an empty, full, or possibly random DAG, 
or an initial DAG chosen according to existing knowledge. The main 
loop then consists of attempting every possible single-edge addition, 
removal, or reversal relative to the current candidate network. The 
change that increases the score the most then becomes the next 
candidate. The process iterates until a change in a single-edge no 
longer increases the score. By gradually taking into account of the 
relationships between the variables, the problem of multicollinearity 
therefore can be reduced in a BN analysis (Nguefack-Tsague, 2011). 
Third, the DAG proposed by the BN captures the dependence 
structure of multiple variables and, used appropriately, allows more 
robust conclusions about the direction of causation. BN analysis 
revealed a richer structure of relationships than could be inferred 
using the traditional multivariable regression methods such as logis-
tic regression and highlight potential pathway unseen previously for 
further investigation (Moffa et al., 2017).

However, there are also some limitations in our study. We col-
lected data on potential confounders as many as possible to be used in 
the analysis model. But there are still uncollected confounders, such 
as occupation, leisure time activities, which could influence the cogni-
tive function. APOE has been identified as a major genetic risk factor 
for AD. However, the APOE frequencies have a significant variation in 
populations with different ethnicities. The frequency of the APOE-ε4 
allele in our Shanghai Aging Study is 9.3%, which is in the range of that 
in Asian populations (6.3%–9.3%), but lower than that in Caucasian 
and African American populations (11%–27%) (Ding et  al.,  2014). In 
our study, the APOE-ε4 allele did not link to any of the parameters 
due to the relatively small sample size and the low frequency of the 
APOE-ε4 allele in our study population. Further studies with larger 
sample size may have the condition to explore if the APOE-ε4 allele 
is independent or has synergistic effects with other risk factors for 
cognitive impairment. The relatively high lost to follow-up rate in 
the prospective phase of data collection may induce selection bias, 
although most characteristics of participants followed or lost to fol-
lowed are similar. Our dataset includes both continuous and binary 
variables. To reduce the complexity of the networks and computing 
time, we discretized the continuous variables for the DBN analysis, 
which may result in information reduction in the analyses. A better 

solution would be a hybrid BN with use of Markov chain Monte Carlo 
techniques (Scutari & Denis, 2014). We also noticed that including too 
many dependencies of incident dementia on the potential baseline 
predictors only incorporates noise rather than information in pre-
diction, which results in a very low performance in validation (accu-
racy = 0.212 and AUC = 0.559) and suggests the overfitting problem 
in the DBN. Although limited by the software packages currently avail-
able and adopting the compromising methods so far, we would like to 
explore the hybrid BN in the future and see whether it could improve 
the predictive ability further. In the SSST-12 test, the order of the iden-
tification items might also contribute to the effect. However, we could 
hardly find a reference that explained if the item order is randomized 
or not. Additionally, the result on each item might be affected by an 
unknown interaction between the odor and the response options, and 
this should be carefully considered in future studies.

5  | CONCLUSION

The DBN incorporating age, MMSE, and one odor test may have 
predictive ability comparable to MLR analysis, while DBN may also 
reveal the dependency between the variables in static data and sug-
gest potential causal relationship for further investigation.
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