Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5,15-Bis(4-pentyloxyphenyl)porphyrin

Mathias O. Senge

School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin 2, Ireland Correspondence e-mail: sengem@tcd.ie

Received 26 May 2013; accepted 4 June 2013

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.109; data-to-parameter ratio = 16.5.

In the title compound, $C_{42}H_{42}N_4O_2$, the complete molecule is generated by a crystallographic inversion centre. The porphyrin system exhibits a near planar macrocycle conformation with an average deviation from the least-squares plane of the 24 macrocycle atoms of 0.037 (5) Å. The phenyl *ipso* C atoms are positioned above and below the porphyrin plane by 0.35 (1) Å and the macrocycle shows evidence of in-plane rectangular elongation with $N \cdots N$ separations of 3.032 (5) and 2.803 (5) Å. Two intramolecular $N-H\cdots N$ hydrogen bonds occur.

Related literature

For the conformation of porphyrins, see: Scheidt & Lee (1987); Senge *et al.* (1997); Senge (2006). For the synthesis of such compounds, see: Wiehe *et al.* (2005).

Experimental

Crystal data

 $C_{42}H_{42}N_4O_2$ $M_r = 634.80$ Triclinic, $P\overline{1}$ a = 9.5222 (6) Å b = 9.5799 (6) Å c = 10.2195 (6) Å $\alpha = 67.777 (1)^{\circ}$ $\beta = 88.063 (1)^{\circ}$ $\gamma = 72.464 (1)^{\circ}$ $V = 819.49 (9) \text{ Å}^{3}$ Z = 1

Data collection

Bruker SMART APEXII	9093 measured reflections
diffractometer	3606 independent reflections
Absorption correction: multi-scan	2489 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.039$
$T_{\min} = 0.97, \ T_{\max} = 0.99$	
Refinement	

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.30 \times 0.10 \times 0.08 \text{ mm}$

T = 90 K

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 219 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.27$ e Å⁻³3606 reflections $\Delta \rho_{min} = -0.23$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N21 - H21 \cdots N24 \\ N21 - H21 \cdots N24^{i} \end{array}$	0.88 0.88	2.50 2.22	3.033 (2) 2.804 (2)	119 123

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *XP* in *SHELXTL*.

This work was supported by a grant from Science Foundation Ireland (SFI P.I. 09/IN.1/B2650).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2552).

References

- Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bond. 64, 1-70.
- Senge, M. O. (2006). Chem. Commun. pp. 243-256.
- Senge, M. O., Medforth, C. J., Forsyth, T. P., Lee, D. A., Olmstead, M. M., Jentzen, W., Pandey, R. K., Shelnutt, J. A. & Smith, K. M. (1997). *Inorg. Chem.* 36, 1149–1163.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wiehe, A., Shaker, Y. M., Brandt, J. C., Mebs, S. & Senge, M. O. (2005). *Tetrahedron*, 61, 5535–5564.

supplementary materials

Acta Cryst. (2013). E69, o1048 [doi:10.1107/S160053681301550X]

5,15-Bis(4-pentyloxyphenyl)porphyrin

Mathias O. Senge

Comment

Many porphyrin structures with four *meso* substituents have been reported (Scheidt & Lee, 1987). The available number of structures for systems with only two *meso* residues is much smaller. In the context of an ongoing program on the conformational flexibility of porphyrins (Senge, 2006) we are interested in a comparative analysis of 5,10-A₂– and 5,15-A₂-disubstituted porphyrins. The title compound is an example for the latter and exhibits a planar macrocycle with an average deviation from the least-squares-plane of the 24 macrocycle atoms of $\Delta 24 = 0.037$ (5) Å. The phenyl *ipso* carbon atoms are positioned above and below the porphyrin plane by 0.35 Å and the macrocycle shows evidence for in-plane distortion with N…N separations of 3.032 (5) and 2.803 (5) Å. This is similar to the situation found in 2,3,5,7,8,12,13,15, 17,18- decasubstituted porphyrins (Senge *et al.*, 1997) where *peri* interaction between the *meso* and beta substituents occur. The molecules pack in parallel layers with the alkyl chains separating the macrocycles and only minimal π -aggregation.

Experimental

The compound was prepared as described by Wiehe et al. (2005) and crystallized from CH₂Cl₂/CH₃OH.

Refinement

All nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined with a standard riding model (C—H distance 0.96 - 0.99 Å, $U_{iso} = 1.2-1.5$ times of parent atom). Pyrrole hydrogen atoms were located in difference maps and refined with isotropic thermal parameters.

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *XP* in *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level; hydrogen atoms have been omitted for clarity.

5,15-Bis(4-pentyloxyphenyl)porphyrin

Crystal data

C₄₂H₄₂N₄O₂ $M_r = 634.80$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.5222 (6) Å b = 9.5799 (6) Å c = 10.2195 (6) Å a = 67.777 (1)° $\beta = 88.063$ (1)° $\gamma = 72.464$ (1)° V = 819.49 (9) Å³ Z = 1

Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.97, T_{\max} = 0.99$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.109$ S = 1.043606 reflections 219 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 338 $D_x = 1.286 \text{ Mg m}^{-3}$ $D_m = n/d \text{ Mg m}^{-3}$ $D_m \text{ measured by not measured}$ Melting point: n/d K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1771 reflections $\theta = 4.5-60.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 90 KParallelpiped, red $0.30 \times 0.10 \times 0.08 \text{ mm}$

9093 measured reflections 3606 independent reflections 2489 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.1316P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ х V Ζ 0.64309 (14) -0.19503 (16) N21 0.46008 (14) 0.0171 (3) 0.047 (6)* H21 0.5815 -0.10690.4627 N24 0.36841 (13) -0.12143(15)0.61217 (14) 0.0160(3)C1 0.62390 (16) -0.34160(19)0.52069 (17) 0.0179 (4) C2 0.74472 (17) -0.4492(2)0.48647 (18) 0.0190 (4) H2A 0.7600 -0.55920.5123 0.023*C3 0.83431 (17) -0.36651(19)0.41037 (17) 0.0185 (4) H3A 0.9229 -0.40900.3740 0.022* C4 -0.20511(19)0.39479 (17) 0.0169 (4) 0.77200 (16) C5 0.83034 (16) -0.07952(19)0.33369 (17) 0.0169 (4) C16 0.24129 (16) -0.07563(19)0.67302 (16) 0.0164(3)C17 0.18961 (17) -0.2107(2)0.74985 (18) 0.0195 (4) H17A 0.1041 -0.20970.8006 0.023* C18 0.28721 (17) -0.3376(2)0.73457 (18) 0.0198 (4) 0.024* H18A 0.2843 -0.44370.7732 C19 0.39727 (16) -0.28065(19)0.64781 (17) 0.0172 (4) C20 0.0185 (4) 0.51314 (16) -0.37959(19)0.60556 (17) H20A -0.48770.6396 0.022* 0.5167 C51 0.98127 (17) -0.11283(19)0.28262 (17) 0.0177(4)C52 1.01657 (17) -0.1671(2)0.17315 (18) 0.0206(4)-0.18590.025* H52A 0.9421 0.1286 C53 -0.1945(2)0.0207(4)1.15769 (17) 0.12745 (18) H53A 1.1792 -0.23160.0527 0.025* C54 1.26742 (16) -0.16720(19)0.19238 (18) 0.0188(4)C55 1.23542 (17) -0.11454(19)0.30202 (17) 0.0192 (4) H55A 1.3103 -0.09650.3467 0.023* C56 1.09475 (17) -0.08822(19)0.34664 (18) 0.0192 (4) 0.023* H56A 1.0744 -0.05260.4224 01 1.41004 (11) -0.18754(14)0.15628 (12) 0.0226(3)C57 1.45008 (17) -0.2298(2)0.03660 (18) 0.0227(4)H57A 1.3832 -0.1524-0.04880.027*H57B 1.4430 -0.33660.0554 0.027* C58 1.60744 (17) -0.2284(2)0.01421 (18) 0.0211 (4) -0.29430.1048 0.025* H58A 1.6702 H58B 1.6106 -0.1185-0.01470.025* C59 -0.2919(2)-0.09922(19)0.0249 (4) 1.66924 (17) H59A 0.030* 1.6492 -0.3934-0.0788

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H59B	1.6167	-0.2157	-0.1927	0.030*	
C510	1.83383 (17)	-0.3191 (2)	-0.10777 (18)	0.0217 (4)	
H51A	1.8868	-0.3995	-0.0159	0.026*	
H51B	1.8546	-0.2190	-0.1236	0.026*	
C511	1.89275 (18)	-0.3744 (2)	-0.22522 (19)	0.0277 (4)	
H51C	2.0009	-0.4029	-0.2182	0.042*	
H51D	1.8518	-0.2889	-0.3175	0.042*	
H51E	1.8637	-0.4673	-0.2159	0.042*	

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	<i>U</i> ²³
N21	0.0139 (7)	0.0134 (7)	0.0229 (8)	-0.0023 (5)	0.0014 (5)	-0.0075 (6)
N24	0.0136 (6)	0.0145 (7)	0.0195 (7)	-0.0030(5)	-0.0003(5)	-0.0071 (6)
C1	0.0159 (8)	0.0165 (8)	0.0220 (9)	-0.0040 (6)	-0.0007 (6)	-0.0088 (7)
C2	0.0184 (8)	0.0141 (8)	0.0241 (9)	-0.0023 (6)	0.0006 (7)	-0.0090 (7)
C3	0.0148 (8)	0.0197 (9)	0.0206 (9)	-0.0017 (6)	0.0021 (6)	-0.0103 (7)
C4	0.0119 (7)	0.0192 (9)	0.0184 (9)	-0.0012 (6)	0.0004 (6)	-0.0087 (7)
C5	0.0151 (8)	0.0190 (9)	0.0171 (8)	-0.0047 (6)	0.0008 (6)	-0.0078 (7)
C16	0.0156 (8)	0.0186 (9)	0.0146 (8)	-0.0046 (6)	0.0001 (6)	-0.0065 (7)
C17	0.0179 (8)	0.0206 (9)	0.0199 (9)	-0.0071 (7)	0.0040 (6)	-0.0071 (7)
C18	0.0193 (8)	0.0156 (9)	0.0237 (9)	-0.0066 (7)	0.0022 (7)	-0.0059 (7)
C19	0.0153 (8)	0.0159 (8)	0.0201 (9)	-0.0046 (6)	-0.0004 (6)	-0.0066 (7)
C20	0.0180 (8)	0.0136 (8)	0.0236 (9)	-0.0054 (6)	-0.0001 (6)	-0.0063 (7)
C51	0.0171 (8)	0.0144 (8)	0.0191 (9)	-0.0031 (6)	0.0028 (6)	-0.0052 (7)
C52	0.0183 (8)	0.0214 (9)	0.0221 (9)	-0.0066 (7)	0.0012 (7)	-0.0080(8)
C53	0.0232 (9)	0.0212 (9)	0.0189 (9)	-0.0060 (7)	0.0045 (7)	-0.0100 (7)
C54	0.0146 (8)	0.0146 (8)	0.0222 (9)	-0.0026 (6)	0.0047 (6)	-0.0036 (7)
C55	0.0193 (8)	0.0165 (9)	0.0204 (9)	-0.0057 (7)	-0.0015 (7)	-0.0053 (7)
C56	0.0197 (8)	0.0182 (9)	0.0184 (9)	-0.0034 (7)	0.0021 (6)	-0.0078 (7)
01	0.0168 (6)	0.0286 (7)	0.0251 (7)	-0.0071 (5)	0.0065 (5)	-0.0135 (6)
C57	0.0202 (8)	0.0268 (10)	0.0229 (9)	-0.0062 (7)	0.0069 (7)	-0.0127 (8)
C58	0.0180 (8)	0.0183 (9)	0.0233 (9)	-0.0047 (7)	0.0060 (7)	-0.0050 (7)
C59	0.0204 (9)	0.0312 (11)	0.0260 (10)	-0.0096 (8)	0.0071 (7)	-0.0135 (8)
C510	0.0185 (8)	0.0216 (9)	0.0237 (9)	-0.0046 (7)	0.0049 (7)	-0.0088 (8)
C511	0.0209 (9)	0.0360 (11)	0.0324 (11)	-0.0105 (8)	0.0071 (8)	-0.0190(9)

Geometric parameters (Å, °)

N21—C1	1.370 (2)	C52—H52A	0.9500
N21—C4	1.3722 (19)	C53—C54	1.394 (2)
N21—H21	0.8800	С53—Н53А	0.9500
N24—C19	1.367 (2)	C54—O1	1.3710 (18)
N24—C16	1.3711 (19)	C54—C55	1.384 (2)
C1—C20	1.388 (2)	C55—C56	1.381 (2)
C1—C2	1.428 (2)	С55—Н55А	0.9500
С2—С3	1.362 (2)	C56—H56A	0.9500
C2—H2A	0.9500	O1—C57	1.4335 (19)
C3—C4	1.427 (2)	C57—C58	1.511 (2)
С3—НЗА	0.9500	С57—Н57А	0.9900

C4—C5	1.399 (2)	С57—Н57В	0.9900
C5-C16 ⁱ	1.412 (2)	C58—C59	1.527 (2)
C5—C51	1.496 (2)	С58—Н58А	0.9900
C16—C5 ⁱ	1.412 (2)	C58—H58B	0.9900
C16—C17	1.457 (2)	C59—C510	1.515 (2)
C17—C18	1.348 (2)	С59—Н59А	0.9900
С17—Н17А	0.9500	С59—Н59В	0.9900
C18—C19	1.448 (2)	C510—C511	1.514 (2)
C18—H18A	0.9500	С510—Н51А	0.9900
C19—C20	1.396 (2)	С510—Н51В	0.9900
C20—H20A	0.9500	C511—H51C	0.9800
C51—C52	1.394 (2)	C511—H51D	0.9800
C51—C56	1.403 (2)	C511—H51E	0.9800
C52—C53	1.389 (2)		
C1—N21—C4	110.37 (13)	С54—С53—Н53А	120.3
C1—N21—H21	124.8	O1—C54—C55	114.91 (14)
C4—N21—H21	124.8	O1—C54—C53	125.17 (15)
C19—N24—C16	105.16 (13)	C55—C54—C53	119.92 (14)
N21—C1—C20	126.59 (15)	C56—C55—C54	120.09 (15)
N21—C1—C2	106.65 (13)	С56—С55—Н55А	120.0
C20—C1—C2	126.68 (15)	С54—С55—Н55А	120.0
C3—C2—C1	108.13 (15)	C55—C56—C51	121.49 (16)
C3—C2—H2A	125.9	С55—С56—Н56А	119.3
C1—C2—H2A	125.9	С51—С56—Н56А	119.3
C2—C3—C4	108.17 (14)	C54—O1—C57	118.76 (12)
С2—С3—НЗА	125.9	O1—C57—C58	106.88 (13)
С4—С3—НЗА	125.9	O1—C57—H57A	110.3
N21—C4—C5	124.67 (14)	С58—С57—Н57А	110.3
N21—C4—C3	106.62 (14)	O1—C57—H57B	110.3
C5—C4—C3	128.61 (14)	С58—С57—Н57В	110.3
C4—C5—C16 ⁱ	123.29 (14)	Н57А—С57—Н57В	108.6
C4—C5—C51	118.72 (14)	C57—C58—C59	111.63 (14)
C16 ⁱ —C5—C51	117.82 (14)	С57—С58—Н58А	109.3
N24—C16—C5 ⁱ	125.69 (15)	С59—С58—Н58А	109.3
N24—C16—C17	110.71 (14)	С57—С58—Н58В	109.3
C5 ⁱ —C16—C17	123.59 (14)	С59—С58—Н58В	109.3
C18—C17—C16	106.36 (14)	H58A—C58—H58B	108.0
C18—C17—H17A	126.8	C510—C59—C58	113.42 (14)
C16—C17—H17A	126.8	С510—С59—Н59А	108.9
C17—C18—C19	106.69 (15)	С58—С59—Н59А	108.9
C17—C18—H18A	126.7	С510—С59—Н59В	108.9
C19—C18—H18A	126.7	С58—С59—Н59В	108.9
N24—C19—C20	126.46 (14)	Н59А—С59—Н59В	107.7
N24—C19—C18	111.07 (13)	C59—C510—C511	113.04 (14)
C20-C19-C18	122.44 (15)	С59—С510—Н51А	109.0
C1—C20—C19	128.88 (15)	C511—C510—H51A	109.0
C1-C20-H20A	115.6	С59—С510—Н51В	109.0
C19—C20—H20A	115.6	C511—C510—H51B	109.0

C52—C51—C56	117.34 (14)	H51A—C510—H51B	107.8
C52—C51—C5	123.54 (14)	C510—C511—H51C	109.5
C56—C51—C5	119.12 (15)	C510—C511—H51D	109.5
C53—C52—C51	121.78 (15)	H51C—C511—H51D	109.5
С53—С52—Н52А	119.1	C510—C511—H51E	109.5
C51—C52—H52A	119.1	H51C—C511—H51E	109.5
C52—C53—C54	119.38 (16)	H51D—C511—H51E	109.5
С52—С53—Н53А	120.3		
C4—N21—C1—C20	174.18 (15)	C2—C1—C20—C19	176.51 (16)
C4—N21—C1—C2	-2.51 (18)	N24—C19—C20—C1	0.4 (3)
N21—C1—C2—C3	1.54 (18)	C18—C19—C20—C1	178.43 (16)
C20—C1—C2—C3	-175.14 (16)	C4—C5—C51—C52	63.4 (2)
C1—C2—C3—C4	-0.05 (19)	C16 ⁱ —C5—C51—C52	-121.15 (18)
C1—N21—C4—C5	-174.17 (15)	C4—C5—C51—C56	-116.84 (18)
C1—N21—C4—C3	2.48 (18)	C16 ⁱ —C5—C51—C56	58.6 (2)
C2—C3—C4—N21	-1.45 (18)	C56—C51—C52—C53	-0.7 (2)
C2—C3—C4—C5	175.01 (16)	C5—C51—C52—C53	179.07 (15)
N21-C4-C5-C16 ⁱ	-2.8 (3)	C51—C52—C53—C54	0.0 (2)
C3-C4-C5-C16 ⁱ	-178.73 (16)	C52—C53—C54—O1	-179.13 (15)
N21—C4—C5—C51	172.32 (14)	C52—C53—C54—C55	0.5 (2)
C3—C4—C5—C51	-3.6 (3)	O1—C54—C55—C56	179.34 (14)
C19—N24—C16—C5 ⁱ	179.15 (15)	C53—C54—C55—C56	-0.4 (2)
C19—N24—C16—C17	0.37 (17)	C54—C55—C56—C51	-0.4 (2)
N24—C16—C17—C18	0.14 (18)	C52—C51—C56—C55	0.9 (2)
C5 ⁱ —C16—C17—C18	-178.68 (15)	C5-C51-C56-C55	-178.90 (15)
C16—C17—C18—C19	-0.56 (18)	C55—C54—O1—C57	-175.16 (14)
C16—N24—C19—C20	177.47 (16)	C53—C54—O1—C57	4.5 (2)
C16—N24—C19—C18	-0.72 (17)	C54—O1—C57—C58	174.70 (13)
C17—C18—C19—N24	0.84 (19)	O1—C57—C58—C59	172.84 (13)
C17—C18—C19—C20	-177.45 (15)	C57—C58—C59—C510	-170.19 (15)
N21—C1—C20—C19	0.5 (3)	C58—C59—C510—C511	-177.21 (15)

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N21—H21…N24	0.88	2.50	3.033 (2)	119
N21—H21…N24 ⁱ	0.88	2.22	2.804 (2)	123

Symmetry code: (i) -x+1, -y, -z+1.